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A review of abstraction methods towards verifying neural networks

FATEH BOUDARDARA and ABDERRAOUF BOUSSIF, Technological Research Institute Railenium,

France

PIERRE-JEAN MEYER and MOHAMED GHAZEL, Univ Gustave Eifel, COSYS-ESTAS, France

Neural networks as a machine learning technique are increasingly deployed in various domains. Despite their performances
and their continuous improvement, the deployment of neural networks in safety-critical systems, in particular for autonomous
mobility, remains restricted. This is mainly due to the lack of (formal) speciications and veriication methods and tools that
allow for getting suicient conidence in the behavior of the neural network-based functions. Recent years have seen neural
network veriication getting more attention; and many veriication methods were proposed, yet the practical applicability
of these methods to real-world neural network models remains limited. The main challenge of neural network veriication
methods is related to the computational complexity and the large size of neural networks pertaining to complex functions. As
a consequence, applying abstraction methods for neural network veriication purposes is seen as a promising mean to cope
with such issues. The aim of abstraction is to build an abstract model by omitting some irrelevant details or some details
that are not highly impacting w.r.t some considered features. Thus, the veriication process is made faster and easier while
preserving, to some extent, the relevant behavior regarding the properties to be examined on the original model. In this paper,
we review both the abstraction techniques for activation functions and model size reduction approaches, with a particular
focus on the latter. The review primarily discusses the application of abstraction techniques on feed-forward neural networks,
and explores the potential for applying abstraction to other types of neural networks. Throughout the paper, we present the
main idea of each approach, and then discuss their respective advantages and limitations in details. Finally, we provide some
insights and guidelines to improve the discussed methods.

CCS Concepts: · Theory of computation → Abstraction; Logic and veriication; · Computing methodologies → Neural

networks.

Additional Key Words and Phrases: Formal veriication, neural network veriication; Abstraction; Abstract interpretation;

1 INTRODUCTION

Neural Network (NN) is one of the most popular machine learning techniques [21, 37]. The use of such an
approach has shown fast progress during the last decade, giving rise to a noticeable enhancement of the tech-
nique, as witnessed by its successful achievements in various domains [42]. Nowadays, applications of NNs can
be encountered in a wide range of domains, such as in inancial transactions, trading, forecasting and fraud
detection [42, 48]. In recent years, with the advances in terms of computational performances, NNs have been
widely adopted in image recognition and object detection systems [48]. Namely, they are increasingly investi-
gated to be deployed for safety-critical applications, in particular for the design of environment monitoring and
decision-making functions in autonomous vehicles and trains [63]. A software module of a safety-critical system
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needs to be certiied before its deployment. Thus, it is required to develop methods to verify safety speciications
and certify such NN-based software [26, 27].
The earliest works that deal with the veriication of NN models are based encoding the model at hand as a

system of linear equations, which can then be solved using of-the-shelf veriication tools, namely SAT/SMT
solvers [16, 31, 51] andMILP solvers [9, 13, 43, 59]. Although thesemethods are theoretically sound1 and complete2,
they are limited to small-size neural networks due to the non-linearity of NN models. Indeed, the number of
linear constraints grows exponentially with the number of neurons for which the activation functions need to be
linearized, which may give rise to a state-space explosion problem. Therefore, veriication methods based on
over-approximation have been proposed to help mitigate this problem while preserving the soundness but not
the completeness [15, 23, 33, 39, 52, 65ś67, 70] (see [64] for more details). Among these techniques, abstraction
methods try to ease the veriication problem by abstracting the activation function using linear bounds [16] or
abstract domains [19, 55, 56], or by reducing the size of the network to improve the scalability of NN veriication
engines. In the latter case, an abstract (or reduced) model, which is smaller and easier to verify, is generated from
the original network [17, 50]; thus, instead of applying the veriication method directly on the original model, the
veriication process can be enhanced by applying it on the reduced model.

Regarding the substantial interest in NN veriication and the amount of existing methods for certifying NNs,
many surveys and reviews on NN veriication methods have been proposed in the literature. For instance, Leofante
et al. [38] established three types of NN veriication properties: equivalence, invertibility and invariance. They
also provided a review of NN veriication techniques based on constraints solving. Liu et al. [41] classiied the
existing veriication methods into three basic categories: optimization, reachability and search-based veriication
techniques. Huang et al. [24] conducted a review about deep NN safety and trustworthiness. For NN veriication,
the authors distinguished between global and local properties. Regarding the guarantees of the veriication
technique, the survey classiies NN veriication techniques into deterministic, approximative and statistical.
According to [62], veriication methods can be classiied as geometric-based methods, MILP, SAT/SMT and
optimization-based methods, even though MILP and SAT/SMT based veriication methods can also be considered
as particular cases of optimization techniques. Recently, Urban et al. [64] discussed the veriication methods
applied to machine learning. For NN veriication, the authors proposed a classiication of the existing methods into
complete or incomplete methods with respect to the output of the veriication process. Moreover, the review [64]
summarizes formal veriication approaches for diferent machine learning techniques such as support vector
machine and decision trees. Another research area that is surveyed in [5] involves exploiting the sequential
behavior of Recurrent Neural Networks (RNNs) to convert RNNmodels into automata and verify certain properties
on the resulting automaton model. Although such techniques can also be seen as a form of NN abstraction into
automata, their focus on recurrent neural networks places them out of the scope of the present survey where we
primarily consider feed-forward neural networks.
Among all the surveys and reviews discussed above, and to the best of our knowledge, no existing work

ofers an overview on the abstraction methods for feed-forward NNs veriication purposes. The aim of this
work is to present a review on the existing activation function abstraction and model reduction methods in the
literature for NN veriication, and derive a critical discussion regarding these techniques. Concretely, for each
presented approach we will sketch out the main idea, analyze its advantages and its drawbacks, and discuss
the corresponding formal guarantees. For model reduction techniques, we will particularly highlight how each
method can afect the veriication process, and we will discuss further research directions in terms of these
techniques. Although this work focuses on feed-forward NNs, we also provide some perspectives on how these
abstraction methods can be adjusted to support other types of NNs. It is worth noticing that in this paper, we only

1Whenever the method returns that the property holds, it indeed holds on the system.
2The veriication method never returns "Unknown".
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Fig. 1. Example of a neural network

consider NN abstraction methods that are used for veriication purposes, i.e., we do not include neural networks’
compression techniques such as quantization and edges pruning [22], since their goal is to build a compressed
model to speed up the run-time execution [8], while preserving the model’s accuracy but not necessarily its
behavior, neither providing formal guarantees on the compressed model.

The remainder of the paper is structured as follows: In Section 2, preliminary concepts and notations pertaining
to neural networks are introduced, the veriication problem of NNs is stated and an overview of the existing
NN veriication methods is provided. Section 3 reviews existing NN abstraction approaches, with a deeper focus
on model reduction methods. Besides discussing the main features of the evoked techniques, some pointers to
possible enhancements of the discussed methods will be provided. Finally, in Section 4 we recall the main indings
through our review and outline some challenges and perspectives regarding NN abstraction.

2 BACKGROUND

2.1 Neural networks

A feed-forward neural network (FFNN) is a sequence of interconnected layers {�1, �2, ..., ��}. When the number
of layers is important, the term Deep Neural Networks is used. In an NN, each layer holds one or many nodes,
called neurons. The irst layer �1 is called the input layer, the last one �� is the output layer and the remaining
layers �� : 2 ≤ � ≤ � − 1 are referred to as hidden layers. Likewise, the nodes in the hidden layers are called hidden

nodes. Each hidden node is associated with a bias and an activation function. The nodes of a layer �� ∈ {�2, �3, ..., ��}

are connected to the nodes of the previous layer via weighted edges. That is to say, a neuron of layer �� receives
data from layer ��−1, calculates the weighted sum of this data and adds a bias. An activation function is then
applied, and the result is forwarded to interconnected neurons of the next layer ��+1 (more details are given below).
The propagation of data from the input layer to the output layer, passing through multiple hidden layers, is
called łfeed-forward propagationž. An NN is built upon a training phase that aims to recognize and encode the
underlying input-output relationship (correlation) of a data set. To evaluate an NN model, the accuracy, which is
the rate of correct predictions, is calculated. Fig. 1 shows a neural network of 4 layers: an input layer of 3 inputs,
two hidden layers of 4 and 3 nodes, respectively, and a 2-node output layer.
An NN model can indeed be seen as a function N : �� → �� , where �� is the input domain and �� is the

output domain of the model. For image classiication for example, �� is a matrix of pixel values representing an

ACM Trans. Embedd. Comput. Syst.
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Fig. 2. An example showing the connection between a neuron of �� and ��−1

image, �� is the set of all possible classes of these images. As an NN model consists of a sequence of � layers, N
can be considered as a composition of a set of functions {�1, �2, ..., ��} where �� , 1 ≤ � ≤ � is the corresponding
function of layer �� . This can be written, formally, as: N(�) = �� (��−1 (...(�1 (�)) ...), where �1 is the identity
function. In the following, we give some formal deinitions pertaining to NN concepts and properties that will be
used later on in this paper.

Deinition 2.1. For a layer �� : � ∈ {1 . . . �}, we deine the set of neurons of �� by �� , with |�� | the number of
neurons in the layer �� . And for a neuron �� � ∈ �� , its value w.r.t to an input � is �� � (�). For simplicity, when � is
not speciic, we use �� � instead of �� � (�).

Let �� � ∈ �� be a neuron of a hidden layer �� , its value �� � is calculated in two steps:

(1) Aine transformation: calculates the sum of previous layer’s outputs modulated by the weights assigned
to the corresponding edges, plus the bias. This can be formulated as:

�� � =

�= |��−1 |︁

�=1

� �−1
�,� × ��−1,� + �� �

where� �−1
�,�

is the weight of the edge connecting the nodes ��−1,� and �� � , and �� � is the bias of the node �� � .
Note that �� � is also called the pre-activation value of �� � .

(2) Activation function: the inal value �� � , also called the value after activation, is determined by applying
an activation function � to �� � , i.e. �� � = � (�� � ).

The two steps are summarized in Equation (1). The obtained value �� � is the output value of �� � which will be
forwarded to the next layer ��+1. Fig. 2 illustrates these steps on an example.

�� � = �

(
�= |��−1 |︁

�=1

� �−1
�,� × ��−1,� + �� �

)

(1)

The calculation of the NN output � = N(�) for a given input � , is done by successively applying these
operations, layer by layer, from the input to the output layer.
Depending on the application, there exists several activation functions: Sigmoid, Tanh, Relu, etc. [71]. Relu

(for Rectiied Linear Unit), as deined in Equation (2), is a piece-wise linear function that has linear behaviors in
(−∞, 0] and in [0, +∞). The Relu activation function is widely used in NN, and due to its simple form and its
piece-wise linear behaviour, the majority of the existing neural network veriication and abstraction approaches
consider models with this activation function [24, 31, 43].

ACM Trans. Embedd. Comput. Syst.
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���� (�) = max(�, 0) =

{
�, if � ≥ 0

0, otherwise
(2)

Remark (Weights). In this paper, the weight of an edge connecting ��� ∈ �� to a node ��+1, � ∈ ��+1 is written as
� �

��
or� (��� , ��+1, � ).

2.2 Verification of neural networks

Formal veriication is the domain of proving or disproving that a system meets certain formal speciications and
properties. A veriication problem is deined as:

� |= � ? (3)

which is equivalent to answering the question: does the system model M satisfy the property P? Depending
on the veriication technique, the system has to be modelled (e.g., state transition model) and the speciications
need to be expressed respecting some speciic syntax (e.g., temporal logic). The aim of a veriication technique
is to prove that P holds on M or generate a counterexample witnessing the violation of P . Many veriication
techniques, such as model-checking, SAT/SMT, abstract interpretation, and theorem proving have been broadly
and successfully applied to verify software-intensive systems [3, 11].
Accordingly, formal veriication for NN can be deined as in Formula (3), whereM is the NN model and P is

the property to be checked, which is generally a mathematical formula constituted of a set of constraints on the
inputs and the outputs of the network.

According to Leofante et al. [38], for a given NN represented by its corresponding function N : �� → �� , the
NN veriication problem can be stated as follows:

• Deine ��� (�) and ���� (�) as a set of constraints on the input � (preconditions) and the output � (postcon-
ditions), respectively. Here, ��� (�) and ���� (�) are sorted irst order logic formulas.

• For all � satisfying the preconditions ��� (�), verify whether or not N(�) fulills the postconditions
���� (N (�)).

This can be formulated as follows:

∀� ∈ �� , ��� (�) =⇒ ���� (N (�)) (4)

Example 2.2. By taking�� = R
2 and�� = R as the input and output domains of some given NN, the veriication

problem deined by Formula (4) can be instantiated as:
{
��� (�) : �1 ∈ [�1, �1] ∧ �2 ∈ [�2, �2], with � = (�1 �2)

�

���� (N (�)) : N(�) ≥ �

where �� , �� , � ∈ R, and �� ≤ �� . The veriication problem of this example thus aims to check that for all input � in
the 2-dimensional interval deined in the precondition, the corresponding output N(�) is lower-bounded by � as
in the postcondition.

Example 2.3. To verify the robustness property of a classiication network for an input image �0, i.e., to check
for a classiication problem that the network assigns the same label (class) �� to all inputs within a small region
surrounding �0, the veriication problem can be formulated using (4) as follows:





���� �0 ∈ �� : N(�0) = ��

��� (�) : ∥� − �0∥� ≤ �

���� (N (�)) : N(�) = ��

ACM Trans. Embedd. Comput. Syst.
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���� (�)

���� (�)

� ≥ 0 � < 0

� ≥ 0

���� (�)

� ≥ 0 � < 0

� < 0

Fig. 3. An example of state-space explosion. For two Relu nodes, case spliting leads to four linear subproblems.

where ∥.∥� is a given norm.

It is worth mentioning that the paper [38] introduces other types of properties such as equivalence between two
NNs. However, it should be noted that most of the existing veriication methods and all the abstraction methods
reviewed in this paper concentrate on verifying a single network and rely on properties based on Formula 3.

Verifying properties of NNs is increasingly receiving more attention and many approaches have been proposed
in recent years [24, 41]. The straightforward veriication way consists of encoding the NN behavior, as well as
the property to be checked, as a system of linear equations, and then use an appropriate engine to perform the
veriication process. For instance, SAT/SMT and MILP encoding are widely used to verify NNs properties [9, 14,
25, 31, 32, 43, 59]. These methods are also called complete because they encode the exact behavior of the network.
However, since most of the common activation functions are nonlinear, this kind of veriication methods does not
scale in the case of large neural networks, and sufers from state-space explosion. For example for the piece-wise
linear activation function Relu, each Relu node has to be split into two linear constraints, i.e.: if � = ���� (�),
then � = 0 when � < 0 and � = � when � is positive. Therefore, solving a veriication problem of a network
of � Relu nodes leads to solving 2� linear sub-problems as illustrated in Fig. 3. To address this issue, several
approaches based on abstraction have been proposed. The next section provides more details about this category
of techniques.

3 ABSTRACTION APPROACHES FOR NEURAL NETWORK VERIFICATION

In order to overcome the drawbacks of complete veriication methods for NN, some abstraction approaches are
proposed. The main idea behind these approaches consists in generating an abstract model from the original
network ensuring that whenever the property P holds on the abstract model N , it necessarily holds on the
original one N , i.e.,:

� |= � =⇒ � |= � . (5)

However, these approaches may fail to provide any conclusion on the original network when the property is
violated on the abstract model. This is in fact due to spurious counterexamples. Namely, when the property
does not hold, a counterexample (CE) on the abstract model is generated, but due to the over-approximation
of the abstract model, this CE might not correspond to any real behavior in the original model (i.e., spurious
counterexample).

Concretely, the abstraction of NN can be performed in two diferent manners:

ACM Trans. Embedd. Comput. Syst.
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Fig. 4. The activation function Sigmoid (�) and its abstraction in � ∈ [−2, 2]. The solid line represents � = � (�) and each

small region (yellow rectangles) is an over-approximation of � [51].

• Activation function abstraction (AF abstraction): to ease the veriication process, non-linear activation
functions of the NN are over-approximated by a set of linear constraints.

• NN model reduction: abstracting the network model by merging some nodes in order to reduce the size of
the network, and thus improve the scalability of existing veriication tools.

A detailed survey of these methods is given in Sections 3.1 and 3.2, respectively.

Remark (Reinement). Some works consider improving the incomplete veriication methods by ruling out as
many spurious CE as possible by introducing a reinement phase. In other words, the veriication method reines
the abstract model iteratively until we can prove either the property holds or the generated CE exhibits a real
behavior on the original model [16, 60, 61, 65, 66].

3.1 Abstraction of the activation function

The key challenge of NN veriication is pertaining to the non-linearity of activation functions. AF abstraction-
based veriication approaches are applied to handle this issue by over-approximating the activation functions
with linear constraints.

The earliest work dealing with NN veriication problem was introduced by Pulina et al. [51]. In this work,
authors divided the ������� function into small regions, then a linear over-approximation is computed for each
region, as shown in Fig. 4.
With the same spirit, Ehlers [16] proposed a precise ����-abstraction technique where ���� is replaced by a

system of linear constraints (see Fig. 5a) and hence the veriication problem of NN is reformulated as a linear
programming (LP) problem that can be solved using classic LP solvers. The approach in [16] was implemented in
a tool called Planet and brings the LP toolkit GLPK into play along with the Minisat solver for veriication.
Gehr et al. [19] applied an abstract interpretation method [12] on NN for the irst time. They proposed a

framework called �� 2 (Abstract Interpretation for Artiicial Intelligence) that soundly over-approximates NN
operations by means of �������� abstract domain3. The approach can be extended to support other abstract
domains. �� 2 can handle feed-forward and convolutional neural networks (CNN) with ���� and���-�������
functions. The approach in [19] was extended by Singh et al. [55] to support ������� and ���ℎ activation
functions. This is accomplished by means of abstract transformers based on zonotopes for each function. As an
example, the abstraction of ���� is given in Fig. 5b
Furthermore, Singh et al. [56] proposed a new method, called ��������, based on Abstract Interpretation by

introducing a new abstract domain. DeepPoly combines loating point polyhedra and intervals. Each neuron

3An abstract domain is a set of logical constraints that deine a geometric shape. The most popular abstract domains are: box (or Interval),
zonotope and polyhedra. For example, a zonotope abstract domain [20] � is deined by a set of constraints �� , s.t: �� = �� +

∑�
�=1 �� �� � , where

� � ∈ [�� ,�� ] is an error term and �� , �� � are constants.

ACM Trans. Embedd. Comput. Syst.
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is represented by its concrete and symbolic upper and lower bounds. Moreover, Singh et al. [56] introduced
abstract transformers for popular NN operations: aine transformation, ����, ������� , ���ℎ and���-�������
to propagate the inputs successively through the layers of the network. For ����, two diferent abstractions are
proposed as shown in Figs. 5c and 5d. It is worthwhile to mention that the approach supports both feed-forward
and convolutional NN.
While the previous works consider only a single neuron, some others try to deine sound approximations of

a set of neurons, jointly. Singh et al. [54] introduced a new method that provides an approximation of � ����
nodes (in the same layer) at a time in order to capture dependencies of the ���� inputs. First, the � nodes are
selected and then the convex relaxation of the group of nodes is calculated. The framework has a parameter �
which represents the number of ���� nodes to be considered together. A more general framework, based on [54],
was recently proposed by Müller et al. [45]. The framework, called ����� (PRecIse Multi-neuron Abstraction),
computes the convex over-approximation of a set of � outputs of arbitrary activation function, including ����,
������� and ���ℎ. The approach decomposes the � activations into overlapping groups of size � , then calculates
the convex approximation of the octahedral over-approximation for each group � . Finally, it takes the union of all
the obtained output constraints. These constraints combined with the encoding of the whole NN are used for
veriication.

Other techniques based on symbolic propagation are proposed in [39, 70] to enhance the precision of abstract
interpretation-based approaches. In symbolic propagation every neuron is associated with a formula expressed
using the activations of neurons in its previous layers. In [57], a combination of over-approximation techniques
with linear relaxation methods is proposed so as to gain more precision of over-approximation techniques and
the scalability of complete methods.
These techniques can be adapted to support further types of NNs. One way to deal with Recurrent Neural

Networks is to generate an equivalent feed-forward neural network and then apply the abstraction method [1, 28].
For Convolutional Neural Networks, most of the techniques are applicable and the only restriction is that the
activation function of the convolution layer has to be Relu or other supported functions such as Sigmoid and
Tanh [56].

3.2 NN model reduction

The main objective of NN model reduction is to reduce the size of the NN model while guaranteeing some
behavioral relation: the desired property P holds on the original model N whenever it holds on the reduced
model N as deined in (5). Fig. 6 provides an illustrative example of the main idea behind model reduction applied
on a small neural network.
Such a behavioral relation is obtained by ensuring that � is an over-approximation of � (i.e. all behaviors

of � can be reproduced in � ). Therefore, the reduction process must carefully select the set of neurons to be
merged (or removed), and determine how to calculate the weights of the new edges.
Prabhakar and Afzal [50] proposed a method based on Interval Neural Networks (INN) for output range

analysis. In this method, the nodes of the same layer are merged while replacing the weights of their input
edges by the interval hull of the incoming edges. In other words, the weights of incoming edges are replaced by
[min(���),max(���)], where��� are the values of the incoming weights to the nodes to be merged. The weights
of the outgoing edges from these nodes are replaced by the interval hull multiplied by the number of merged
nodes �: � × [min(���� ),max(���� )].
For the veriication part, Prabhakar and Afzal [50] adapted INN to MILP big-M encoding [9] and used the

Gurobi MILP solver for veriication. The performance of this method is tested on the airborne collision avoidance
ACAS Xu benchmark [30, 31]. The authors claim that the abstraction enhances the veriication process. Namely,

ACM Trans. Embedd. Comput. Syst.



A review of abstraction methods towards verifying neural networks • 9

(a) The abstraction of the ����

activation function proposed in [16].

(b) The abstraction of the ����

activation function using

zonotopes [19, 55].

(c) The abstraction of the ����

activation function proposed in [56]

(d) The abstraction of the ����

activation function proposed in [56]

Fig. 5. Relu activation function abstractions using diferent abstract domains. The ���� (� = ���� (�)) is represented by the

green line and its over-approximation on the range � ∈ [�, �] by the blue filled area.

(a) An NN before abstraction (the

concrete NN model)

(b) The NN ater model reduction (the

two hidden nodes are merged)

Fig. 6. Model reduction of a small neural network

Gurobi was not able to verify a number of properties on the original model (no return), while the same properties
have been successfully checked when Gurobi was applied on the abstract model.
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Recently, Boudardara et al. [7] proposed an interval-weight based model reduction method. The elaborated
method supports Relu and Tanh neural networks. While an outgoing weight of a set of merged nodes is the sum
of absolute values of their corresponding outgoing weights, an abstract incoming weight is an interval deined as:
the min and the max of the sign of the corresponding outgoing weights of the merged nodes multiplied by the
the original incoming weights. The sign function deined in this work returns 1 if the value is at least equal to 0,
and −1 otherwise. The method is applied to the ACAS Xu Relu-NN benchmark [31], where the Interval Bound
Propagation (IBP) algorithm [68] is used to calculate the output range on the original and abstract networks.
Moreover, the authors of [7] have varied the number of merged nodes to assess the output range and the IBP
computation time for abstract networks. It has been shown, in particular, that merging more nodes accelerates
the IBP algorithm while generating larger output ranges. The authors observe that the wide output range is due
to the IBP algorithm which is not an exact veriication method. However, this work does not discuss possible
adaptation to support other veriication tools. More recently, Boudardara et al. [6] introduced a variant of the
approach designed to accommodate all non-negative activation functions, such as Relu and Sigmoid functions.
This new method has been also evaluated on the ACAS Xu Relu-NNs, wherein it demonstrated an interesting
competitive performance in comparison to the two methods proposed in [7, 50].
In [58], Sotoudeh and Thakur, by introducing the notion of Abstract Neural Network (ANN), provided a

formalization of a general abstraction approach. In ANN, the weights are represented using abstract domains.
Accordingly, the approach proposed by Prabhakar and Afzal [50] can be considered as a particular instantiation
of this approach using the interval abstract domain. Notice that the proposed approach supports a wide range of
activation functions. Moreover, it can be instantiated using other convex abstract domains and it is not restricted
to intervals as used in INNs [50]. The approach provides a generic formula to calculate the weight merging matrix
� from the original weight matrix� and the partitions ��� and ���� of two successive abstract layers �� and ��+1,
respectively. A partition �� is a rearrangement of a set �� of neurons, i.e., if �� = {��1, ��2, ��3}, a possible partition
of �� would be �� = {{��1, ��2}, {��3}}, which means that ��1 and ��2 will be merged in the abstract network.�
is the convex combination (calculated by a function �) of the partitioning combination matrix of ��� and ���� ,
denoted by � and � , respectively, and the weight matrix� , i.e.,� = �(�,� ,�). Next, the abstract weight
matrix, denoted by���� , is built by applying a convex abstract domain �� on the obtained� :���� = �� (� ).
The reduced model is obtained by applying the same procedure to every layer, iteratively. Therefore, the obtained
reduced model is an over-approximation for any non-negative activation function that satisies the Weakened
Intermediate Value Property (WIVP). Although some activation functions can have negative values and others
are not continuous (thus not WIVP), the authors of [58] claim that there is always a way to overcome these
problems, as they showed for Leaky ���� and the �ℎ���ℎ��� activation functions.
In [2], Ashok et al. apply K-means clustering algorithms to partition each hidden layer �� into �� subgroups,

such that �� ≤ |�� |, then replace each subgroup with its representative neuron. The abstraction method, called
DeepAbstract, has three parameters: the original network � , a inite set of input-points � and a vector �� which
contains the number of nodes on each abstract layer. For each hidden layer �� , the following steps are performed:

(1) For every � ∈ � , calculate the value �� � (�) of each neuron in �� ,
(2) Apply K-means to split each layer �� into �� clusters. Let ��� denote the set of clusters of �� ,
(3) For each cluster � ∈ ��� :
(a) Determine the representative neuron ���� ,
(b) Calculate the corresponding outgoing weights of ���� :

�
�

∗, ���� =

︁

�� � ∈�

� �
∗ , �� �

(c) Replace all the neurons in � with ���� .
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Note that the representative neuron ���� of a cluster � is the nearest neuron to the centroid of � , thus; the
incoming weights of ���� remain the same as the corresponding neuron before abstraction. All the other neurons
from cluster � are omitted with their incoming edges.
In addition, Ashok et al. [2] provide a method to lift the veriication results from the abstract model to the

original one. The idea is to calculate the accumulated error induced by replacing a cluster of neurons by its
representative for each image � in � , and then propagate this error through the successive layers using the
DeepPoly veriication Algorithm4. A set of experiments were conducted to check the performance of DeepAbstract.
Local robustness of some MNIST images was checked and the authors claim that the veriication time was reduced
by 25% when DeepPoly is combined with DeepAbstract.
Elboher et al. [17] proposed an abstraction approach based on merging neurons of the same category (see

hereafter) to build a smaller model so as to enhance the scalability of the existing veriication tools. Regarding
the veriication property, which has the form: � : ∀� ∈ ��� (�) =⇒ � ≤ � , the aim of this approach is to build a
reduced model � (its corresponding function is N ), s.t ∀� ∈ �� , N(�) ≥ N (�). Therefore, � |= � whenever
� |= � (i.e., N(�) ≤ �). First, each neuron is labelled according to the sign of its outgoing weights. A neuron is
split if it has both positive and negative outgoing weights. Next, to guarantee that � is an over-approximation of
� , the proposed method tries to increase the output of the abstract model by classifying each neuron as � or � .
The class � means the output will increase by increasing the value of this neuron, while a neuron is marked as �
when decreasing its value leads to increasing the output’s value.Finally, the nodes of the same layer and the same
category can be merged by summing up the weights of their outgoing edges and taking the min value of the the
weights of their incoming edges if they are marked as � , or the max value for any � group of nodes. Moreover,
some heuristics are proposed in [17] to enhance the abstraction process. The proposed method is applied on
ACAS Xu networks while Marabou [32] is used as back-end veriication tool. A comparison study between the
abstraction method combined with Marabou and the vanilla version of Marabou was conducted, and the results
showed that the abstraction method allows Marabou to verify more properties in less execution time.
A novel approach based on bisimulation [34] is proposed by Prabhakar [49]. The generated abstract neural

network is equivalent, or bisimilar, to the original one. To guarantee the equivalence between � and � , two
neurons �� � and ��� to be merged must have the same activation function, the same bias value (�� � = ��� ) and
the same weights for each incoming edge respectively, i.e., ∀�′ ∈ ��−1,� (�′, �� � ) = � (�′, ��� ). Due to the strict
conditions that, generally, do not hold in most of real networks, Prabhakar [49] extends the NN bisimulation to a
more feasible relaxed method, called NN �-bisimulation. Using NN �-bisimulation (� ∈ R+), two nodes �� � and
��� in �� can be merged if the following conditions are satisied:

(1) �� � and ��� have the same activation function
(2) |�� � − ��� | ≤ �
(3) ∀�′ ∈ ��−1, |� (�′, �� � ) −� (�′, ��� ) | ≤ �

where � ≥ 0. So the obtained network � is �-bisimilar to network � .
Taking advantages of code refactoring [18], Shriver et al. [53] introduced the concept of refactoring neural

networks to restructure the initial model and preserve its accuracy to enhance further operations on it, for instance
veriication. Concretely, NN refactoring consists of two steps: architecture transformation and distillation. The
former applies some changes on the network’s architecture by dropping or changing some layers and/or their
types that are not supported by veriication tools (e.g. residual blocks and convolutional layers). The latter updates
the model’s parameters: weights and biases, while preserving the original model’s behavior, which is captured by
its accuracy and test error according to Shriver et al. [53]. A tool called R4V was developed from this approach.
R4V was tested on DAVE-2 [4] and DroNet [44] networks. The used veriication tools are presented in Table 1.

4Available at https://github.com/eth-sri/ERAN.
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Table 1. A list of NN model reduction methods used for verification. The underscore symbol "−" is used to denote that no

information is provided in the corresponding original paper.

Method Pub. Year Supported AFs Veriication
methods

Evaluation on Guarantees of the
reduced model

R4V [53] 2019 Relu Relupex[31],
ERAN[55],
Neurify[65],
Planet[16]

DAVE-2[4],
DroNet[44]

None

INN [50] 2019 Relu MILP [43] ACAS Xu [31] N(�) ∈ N (�)

ANN [58] 2020 Relu,

Leaky Relu 5
- - N(�) ∈ N (�)

DeepAbstract [2] 2020 Relu ERAN MNIST[36] Depends on the
data set

Elboher et al. [17] 2020 Relu Marabou[32] ACAS Xu [31] N(�) ≤ N (�)

Bisimulation [49] 2021 Relu - - N ≡ N 6

Boudardara et
al. [7]

2022 Relu, Tanh IBP[68] ACAS Xu [31] N(�) ∈ N (�)

The results showed that applying the veriication tools on the refactored model improves their scalability. For
example, Planet [16] fails to check any property on DroNet within 24 hours. However, after refactoring the
network, Planet was able to verify three out of the ten properties.
The main features of the above discussed neural networks reduction techniques are summarized in Table 1.

The last two columns of the table contain veriication methods and the data sets used during the evaluation of the
abstraction method. Veriication methods are those used during the evaluation of the abstraction in the original
paper; notice that other methods can be used to verify the obtained abstract model.

An example is provided in Figure 7 to demonstrate the application of some of the methods mentioned in this
section [7, 17, 50, 58] 7. Notice that the abstract network using the ANN method [58] with the box (or interval)
abstract domain is the same as the abstract network obtained using the method of INN [50] (see Figure 7b). The
example presents a segment of a Relu-NN, i.e, �1 is an arbitrary neuron of a hidden layer and not the input of the
network, and all nodes are assigned a Relu activation function. We apply abstraction (using the selected methods)
to merge the two nodes �3 and �4, while assuming that � (�1) = 1, and we calculate the value of �5, � (�5) and �̂ (�5)
on the original and the abstract networks, respectively. While model reduction methods [7, 50, 58] (Figures 7c
and 7b) ensure that the output of the original network is within the ranges of the output of the abstract network,
i.e.: � (�5) ∈ �̂ (�5), the method introduced in [17] (Figure 7e) guarantees that the output of the obtained abstract
network is always greater than the output’s value of the original network, i.e.: � (�5) ≤ �̂ (�5)

It is worth noting here that these techniques can be adjusted to support other types of NNs. For instance, RNN
can be transformed into an equivalent FFNN [1, 28], and then model reduction approaches can be applied to
generate the abstract network. On the other hand, model reduction can be applied on the fully connected part of
CNNs [47, 69]. Regarding Binarized Neural Networks (BNN), due to their binary behaviour and their small size

5The authors claim that the method can be adjusted to support other activation function
6The abstract network is equivalent to the original one when bisimulation is used which is not the case for �-bisimulation
7Supplementary details are needed to apply the other methods. For example DeepAbstract [2] needs a data set for the clustering algorithm.
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(a) A toy NN example before

applying model reduction (the

original network). For � (�1) = 1,
we have � (�5) = 2

(b) The abstract network using

INN method [50] and ANN [58].

For � (�1) = 1, �̂ (�5) = [0, 17],
and we have � (�5) ∈ �̂ (�5)

(c) The abstract network using

the method presented in [7]. For

� (�1) = 1, �̂ (�5) = [0, 12], and
we have � (�5) ∈ �̂ (�5)

(d) The network ater neurons’

classification (positive /negative

and increasing /decreasing) [17]

(e) The abstract network using

the method of Elboger et al. [17].

For � (�1) = 1, �̂ (�5) = 12, andwe
have � (�5) ≤ �̂ (�5)

Fig. 7. The application of diferent model reduction methods on a toy example of NN

comparing to other types of NNs, their veriication does not require abstracting their behavior and, generally,
exact methods such as SAT and MILP can be applied directly [29, 35, 46].

It is worth mentioning that another family of techniques based on merging neurons and removing some edges
without afecting the accuracy of the model exists in the literature. These techniques are called NN compression
and acceleration, and their objective is to build a smaller network with low computational complexity, so that it
can be embedded on devices with limited resources and used in real-time applications, while keeping the accuracy
as high as possible [10, 22, 40]. Although both NN model reduction and NN compression strive to reduce the
number of neurons, NN compression techniques cannot be used for veriication, since the generated models
do not fulil the abstraction condition presented in Formula (5). In other words, verifying a property � on the
compressed network obtained by any compression method does not imply that the property does hold in the
original network.

3.3 Discussion

This section discusses the aforementioned model reduction methods, while highlighting their limitations and
proposing some possible area of improvements. In order to fairly compare the eiciency of the discussed
approaches, we analyze them according to three main criteria (with respect to the available information in the
original papers): (i) the precision of the over-approximation, (ii) the minimal number of neurons that can be
obtained when the reduction method is applied until saturation, and (iii) the eiciency regarding the veriication
time and the number of the veriied properties on the reduced model versus the original one.
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The abstraction method based on INNs, proposed by Prabhakar et al. [50] seems to be very useful when the
problem of output range analysis is considered. An exhaustive application of this method leads to merge all
neurons of each hidden layer and replace them by one abstract neuron. The results of their paper show that the
precision depends highly on the number and the selection of the nodes to be merged. The method needs some
improvements to be more precise, since no study has been provided for neuron selection. In addition, operations
on intervals may impact the precision of this method. MILP encoding is proposed to solve the veriication problem
on INNs, and to the best of our knowledge, no other veriication method is proposed to verify INNs. Moreover,
this method is restricted to abstract NNs with non-negative activation functions [58]. Consequently, Sotoudeh et
al. [58] proposed some fundamentals to abstract any NNs with diferent activation functions using any convex
abstract domain and which is not limited to intervals. In [58], the authors provide an example of abstraction
based on octagons, but no explanation was given of the meaning of using such abstract domain to represent
the merged neurons. Moreover, the work would have been more relevant if it had included an evaluation study
to concretely show how the ANN can be extended to deal with other abstract domains. In [7], Boudardara et
al. proposed a method that is similar to INNs[50], where the incoming weights are encoded as intervals, while
the outgoing weights are scalars. However, unlike INNs, the proposed method is not limited to non-negative
activation functions and can support the use of Tanh activation function. Moreover, the authors claim that the
method can be adjusted to support other activation functions as well.

DeepAbstract, proposed by Ashok et al. [2], is parametrized by the number of clusters on each layer; if there are
few clusters, the model will be more abstract and less precise. In addition, this method relies on the discrete input
set � that is used during clustering phase and can only verify the robustness of the model on points within this
set � . Ashok et al. [2] claim that the veriication time was reduced by 25% when DeepAbstract is used along with
DeepPoly, however, only 195 out of 200 images could be veriied to be robust against 197/200 when DeepPoly is
used without abstraction.
The abstraction-reinement proposed by Elboher et al. [17] boosted the Marabou veriier to check more

properties (58 out of 90 property versus 35/90). Moreover, the abstraction method reduces the total query median
runtime from 63671 seconds to 1045 seconds. As a consequence of the classiication of neurons, this method can
abstract a layer to four neurons at most. This is one of the main drawbacks of this method since only neurons
belonging to the same category can be merged. It should also be mentioned that only properties in the form: � ≤ �

are considered, although authors claim that the approach is adaptable to cope with various types of properties by
adjusting the output layer. In addition, this method cannot be applied if some neurons have negative values. For
instance, this method cannot be applied in hidden layers if the used activation function returns negative values
such as sigmoid and Leaky Relu. For the same reason, the irst hidden layer cannot be abstracted if the inputs are
negative. An example demonstrating this case is given in Fig. 8, where � is an input, � is the output.
The NN in Fig. 8.b is generated using Elboher et al.’s method [17], which is supposed to be an abstraction of

the original model of Fig. 8.a. Both � and � use the ���� activation function on the hidden layer. Although for
negative inputs the output of � is always zero: ∀� ≤ 0, � = 0, the output of � is always positive, for instance,
for � = −1, � = 3, thus the condition of the over-approximation ∀� ∈ �� : N(�) ≥ N (�) does not hold.
The NN bisimulation method proposed in [49] guarantees the equivalence between abstract and original

models, thus ofers an exact abstraction. However, the set of conditions are hard to satisfy on real neural network,
especially the condition on weights. On the other hand, the relaxed version, NN-�-bisimulation, looks more
feasible but needs further improvements to keep trace of the veriied property on the abstract model and lift it to
provide guarantees on the original network.

In [53], Shriver et al. propose an eicient approach with a dedicated tool, called R4V, to simplify and compress
NN models. The wide experimental study they performed with diferent veriication tools and data sets shows
that R4V ofers actual beneits to overcome the limitations of some NN veriication techniques. However, this
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(a) The concrete model � ater the

classification of nodes (I+ for increasing

positive node)

(b) The abstract model �

Fig. 8. Counterexample of Elboher et al. [17] abstraction method

method enables to verify properties on the refactored model and does not propose a way to lift these guarantees
to the original model. In other words, it does not provide any guarantee of whether the property holds on the
original model.
Regarding the challenges of neural network veriication, developing a new general approach that overcomes

the issues related to the existing abstraction methods mentioned above is necessary. The works [2, 49, 53]
could be adopted and combined with some heuristics to select candidate neurons to be merged. For instance,
the �-bisimulation method [49] can be used to select similar nodes by analyzing their incoming weights. The
approach in [2] can be adapted using discretization of the input region, so that the nodes that are close to each
other (in the same cluster) are good candidates for abstraction.

While the technique in [17] ensures thatN(�) ≤ N (�), the three methods presented in [7, 50, 58] go further by
guaranteeing that the output of the original network is always included within the output range of the obtained
abstract network, i.e., N(�) ∈ N (�). However, it is necessary to conduct a comparative study to assess the
performance of these methods. On the other hand, an abstract network obtained using DeepAbstract [2] can
be used only to verify the robustness of the model on inputs within the set of images � that is used during
the clustering phase. The last column of Table 1 summarizes the relation between the original and the abstract
networks using diferent methods.

4 CONCLUSION

In this work, we discussed the problem of neural network veriication and we presented diferent existing
techniques used to solve this problem. We showed that the abstraction of neural networks can be used to help
tackle the non-linearity and the complexity of the generated models. Abstraction of neural networks can be
applied in two levels: abstracting the activation function and reducing the network’s size (model reduction).
While the abstraction of activation functions aims to over-approximate the non-linear activation functions with
linear constraints, model reduction is used to reduce the number of neurons of the network. Both categories are
applied to improve the veriication process as a whole. The abstraction has to be sound, meaning that the desired
behavior of the original model must be maintained. In this paper we focused more on model reduction methods
since, to the best of our knowledge, no survey about neural networks reduction for veriication purposes has
been introduced.

While the main focus of this work is on the application of abstraction methods to feed-forward neural networks,
discussing their advantages, limitations, and the formal guarantees provided by each model reduction method,
we also addressed the perspectives and potential applicability of these methods to other types of NNs, including
convolutional neural networks (CNNs) and recurrent neural networks (RNNs).
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