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INNAbstract: An INN-Based Abstraction Method
for Large-Scale Neural Network Verification

Fateh Boudardara , Abderraouf Boussif , Pierre-Jean Meyer , and Mohamed Ghazel , Member, IEEE

Abstract— Neural networks (NNs) have witnessed widespread
deployment across various domains, including some safety-
critical applications. In this regard, the demand for verifying
means of such artificial intelligence techniques is more and more
pressing. Nowadays, the development of evaluation approaches
for NNs is a hot topic that is attracting considerable interest,
and a number of verification methods have been proposed.
Yet, a challenging issue for NN verification is pertaining to
the scalability when some NNs of practical interest have to be
evaluated. This work aims to present INNAbstract, an abstraction
method to reduce the size of NNs, which leads to improv-
ing the scalability of NN verification and reachability analysis
methods. This is achieved by merging neurons while ensuring
that the obtained model (i.e., abstract model) overapproximates
the original one. INNAbstract supports networks with numerous
activation functions. In addition, we propose a heuristic for
nodes’ selection to build more precise abstract models, in the
sense that the outputs are closer to those of the original
network. The experimental results illustrate the efficiency of the
proposed approach compared to the existing relevant abstraction
techniques. Furthermore, they demonstrate that INNAbstract
can help the existing verification tools to be applied on larger
networks while considering various activation functions.

Index Terms— Formal verification, neural network (NN)
abstraction, neural networks (NNs), NN verification.

I. INTRODUCTION

NEURAL networks (NNs) are one of the most widely
used techniques in machine learning. They have been

successfully applied to solve many complex problems in
different domains, including automatic speech recognition,
computer vision, and healthcare [1], [2]. The success of NNs
motivated the academic and industrial communities to adopt
this technique in safety-critical systems, such as autonomous
cars and trains [3], [4] and air traffic collision avoidance
systems [5]. The development of such systems requires a rig-
orous process of testing, verification, and validation to ensure
that each (software) component in the system meets a set of
functional and safety requirements. Evaluating the network’s
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performance on a representative set of samples (test set) is
a common way to assess its accuracy. However, this remains
insufficient when such NN-based software is used in safety-
critical applications since there is no guarantee of how the
network would behave on other unseen samples. Indeed, recent
studies have demonstrated the sensitivity and the vulnerability
of NNs to adversarial attacks (i.e., small perturbations to the
inputs that can drastically change the corresponding outputs).
These perturbations are generally imperceptible to humans and
easy to generate [6], [7]. For instance, Szegedy et al. [8]
demonstrated that adding small noise to an image may lead the
NN to misclassify the image that was, beforehand, correctly
classified. For these reasons, NN verification has become a hot
research topic and has witnessed a noticeable interest in the
last few years [9], [10], [11].

Formal verification methods, such as model checking [12],
satisfiability analysis (SAT) [13], reachability analysis, and
abstract interpretation [14] have proven to be effective in
offering formal proofs of the safety for both software and hard-
ware systems. Recently, these techniques have been adopted
to verify some properties of NNs. Verifying an NN consists
of checking that the NN never violates some predefined
properties. Namely, for a given input region defined by a set
of constraints, we check whether the NN’s generated output
is necessarily within a safe output region [15]. Early works
dealing with this issue relied on reducing the verification pro-
cess to an optimization problem by encoding the input–output
constraints (the property) and the network’s behavior (the
model) as a linear programming (LP) problem and then
applying an LP-solver, such as mixed integer LP (MILP) [16],
[17] or satisfiability modulo theory (SMT) solvers [18], [19],
[20] to check the properties. NN verification is known to
be an NP-complete problem [21], and the complexity of
the verification algorithms increases exponentially with the
number of neurons in the network. As a result, most of the
existing verifiers encounter the state-space explosion problem.
For instance, a straightforward application of SAT/SMT or
MILP on a network of n Relu neurons may result in generating
2n linear subproblems. One way to address this issue is to
resort to approximation and abstraction methods. The general
concept of these methods is to either linearly approximate the
activation function, or merge some neurons of the network to
create an abstract one that is a sound overapproximation of
the original network [22]. The latter are often called model
reduction techniques.

We should mention here another field known as NN com-
pression, which is interested in merging neurons to build
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smaller networks with comparable performance to the orig-
inal one. In particular, methods based on quantization [23]
and pruning [24] are extensively used in NN compression.
These techniques aim to produce smaller networks to improve
their efficiency in terms of memory usage and computational
resources. This allows them to be deployed on resource-
constrained devices. However, it is important to emphasize
that NN compression does not provide any formal guarantee
about the obtained reduced network. Consequently, the verifi-
cation results on the reduced network cannot be lifted to the
original network, and thus no inference can be made about the
correctness of the original network. Unlike NN compression,
NN abstraction (or model reduction) methods generate abstract
networks that are used to enhance the verification process.
Indeed, once the required properties have been successfully
verified on an abstract network, we can lift this result to
the original network, allowing for its safe deployment in the
intended system.

In this article, we present INNAbstract, a model reduction
method for NNs to enhance the scalability of NN operations,
particularly in the context of verification and reachability
analysis. The proposed method relies on merging a set of
nodes (neurons) and calculating the abstract node’s weights
using mathematical formulas to ensure that the abstract model
is an overapproximation of the original one (i.e., the output of
the original network is always within the output range of the
abstract network). Indeed, node merging allows for reducing
the size of the NN and, hence, instead of verifying properties
on the large original model, these properties can be checked
on the reduced model with lower computation complexity.
This helps improve the scalability of the reachability analysis
and verification processes. Unlike other abstraction techniques,
INNAbstract applies to NNs with various activation functions.
To assess the efficiency and the scalability of the proposed
approach, we conducted a series of experiments on a set of
selected benchmarks from the literature.

Notice that this work is a revised and extended version
of a workshop article [25], in which the general idea of
the approach along with some early preliminary results was
presented. Compared to the preliminary workshop version,
in this article.

1) We present the theoretical foundations of the approach
while extending it to support a wide range of activation
functions (Relu, Tanh, Bipolar Sigmoid, etc.).

2) We provide the formal proofs of the underlying theoret-
ical results, particularly regarding the assurance of the
overapproximation relation.

3) We provide the pseudo-algorithms that implement the
main steps of the abstraction process.

4) We propose a heuristic for efficiently selecting the
nodes to be merged, to enhance the precision of the
abstraction.

5) Finally, we present a software tool implementing the
approach, which is used to conduct an extensive exper-
imental study (on random-generated and well-known
benchmark networks), to evaluate the efficiency of the
approach. Furthermore, we compare our method to other
relevant approaches from the literature.

The remainder of this article is structured as follows:
Section II provides a brief overview of NN verification and
abstraction works. Section III gives basic concepts and nota-
tions of NNs and recalls some concepts pertaining to the NN
verification problem. Section IV presents the proposed abstrac-
tion approach along with the underlying pseudo-algorithms,
and heuristics for selecting nodes to be merged. The descrip-
tion of the conducted experiments and some related discussion
are given in Section V. Finally, Section VI concludes the
article and proposes some guidelines for future works.

II. RELATED WORKS

The interest in NN verification can be traced back to the
early 2000s [26]. However, the first concrete work that deals
with this problem was proposed by Pulina and Tacchella [20],
where they proposed an SMT-based verification method for
Sigmoid feed-forward NNs. Katz et al. [21] introduced Relu-
plex for Relu networks. Reluplex combines the Simplex
optimization method with the SAT technique to handle the
nonlinearity of Relu constraints. Many verification methods
based on SAT/SMT solvers for Relu NNs have been pro-
posed [18], [19]. Other methods based on LP-solving encode
the network behavior and the input–output constraints as an
MILP problem and apply an adequate solver to address the
verification problem [17], [27], [28]. Although these tech-
niques are exact since they encode the complete behavior of
the network and the property to be verified, they are severely
limited to small networks due to the complexity and the
nonlinearity of NNs [29].

Another line of research consists of applying the concept
of abstract interpretation [14] in an attempt to build an
abstract network that is easy to verify, and at the same time,
overapproximates the behavior of the original network. The
abstraction method must ensure that if the property holds on
the abstract model, it necessarily holds on the original one.
Various approaches based on convex and linear relaxation of
the activation function have been proposed. Gehr et al. [30]
applied abstract interpretation to verify NNs for the first time.
They proposed an abstraction of the Relu activation function
using zonotopes. This approach is lately improved further by
proposing an abstraction for other activation functions, such
as Tanh and Sigmoid [31], [32]. In other works, the problem
of NN verification is formulated as a reachability problem
that is solved by calculating the reachable set (region) of the
network with respect to some given input region. Therefore,
the verification is carried out by checking whether the obtained
output region is included in some predefined safe region [33],
[34], [35], [36]. Since reachability methods are incomplete
and may generate coarse outputs, some optimization methods
are proposed for networks with piecewise linear activation
function, particularly for Relu-NN, to provide tighter bounds
of the outputs [37], [38], [39], [40], [41]. Some recent works
propose a convex relaxation of Relu networks by considering
multiple nodes and the dependencies between them at the same
time [42], [43]. In this article, we employed the interval bounds
propagation (IBP) algorithm [34] as a reachability analysis
technique to calculate the output range of the abstract and
original networks.
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As a subcategory of abstraction methods, model reduction
methods’ objective is to build an abstract (also called reduced)
model by merging a set of neurons of the same layer. Hence,
instead of applying the verification on the large original
model, it is rather applied on the smaller abstract model [44],
[45], [46]. Ashok et al. [44] proposed DeepAbstract as
a model reduction method. DeepAbstract implements the
K-mean clustering algorithm to rearrange Relu nodes of a layer
in clusters. Next, each cluster is replaced by its representative
node. The overapproximation is established by propagating
the error introduced during the merging process and, then,
the verifier ERAN [31] is brought into play for verification.
Elboher et al. [46] proposed a model reduction method for
Relu-NN. The main idea of the approach is to classify neurons
into four different categories according to the sign of their out-
going weights (positive and negative), and whether increasing
the value of the neuron at hand would increase or decrease
the network’s output (increasing and decreasing). Finally,
model reduction is applied by merging nodes belonging to the
same category. To evaluate the performance of the approach,
Elboher et al. [46] used the Marabou tool [19] as a back-end
verifier and compared the obtained results to those obtained
by Marabou without applying the model reduction method.
Recently, a similar method to the one of Elboher et al. [46] is
proposed by Liu et al. [47], where the authors classify neurons
into only two categories (increasing and decreasing) instead of
four categories. In addition, they introduced a new operation
called FREEZE to replace an increasing (resp. decreasing)
neuron by its upper bound (resp. lower bound) and then
propagate this constant through the network. Another approach
for Relu-NN model reduction based on Interval NNs (INNs)
was introduced by [45]. The abstract node is defined by its
incoming and outgoing weights; its incoming weight is the
interval-hull of the incoming weights of the corresponding set
of merged nodes in the original network, and its outgoing
weight is the interval-hull of the outgoing weights of the
same set multiplied by its size (i.e., the number of nodes).
Moreover, the big-M MILP encoding [16] is adopted to com-
pute the output range of the obtained INN. A generalization
of this approach is proposed by Sotoudeh and Thakur [48],
where the abstraction can be performed using further abstract
domains, such as Zonotopes, and is not restricted to intervals.
Recently, Prabhakar defined NN-bisimulation that can be used
to reduce the size of NN [49]. As a consequence of NN-
bisimulation’s conditions, which are far from being satisfied
on real-world models, a more tolerated (mitigated) approach,
namely δ-bisimulation, is proposed in the same article [49].
Refer to [22], for a comprehensive review of model reduction
methods.

A related research field, known as NN compression, focuses
also on reducing the size of NNs by merging neurons and
eliminating certain weighted-edges without affecting their
accuracy. Techniques such as pruning [24], quantization [23],
and distillation [50] have gained significant attention in the
field. These techniques are more valuable to build compressed
NN models to effectively deploy them on resource-constrained
devices. However, it is important to note that these techniques
do not provide any formal guarantee about the obtained

compressed models [51], making them unsuitable for verifica-
tion purposes.

In the present article, we propose a model reduction method
that provides formal guarantees on the obtained network and
ensures that the reduced model overapproximates the original
one. Compared to the aforementioned abstraction works, the
abstraction technique elaborated in our work is more general.
While most of the previously discussed works are limited to
the Relu activation function, our method supports different
types of activation functions. Moreover, compared to [44],
where the abstraction depends on the set of input images
on which one wants to check the robustness of the net-
work, our approach generates abstract networks independent
of any specific input domains. We should also mention the
two techniques presented in [46] and [47] which focus on
categorizing the weights of the network by analyzing their
signs and impact on the output (increasing or decreasing).
Both techniques require a preprocessing phase to classify all
nodes of the networks. Additionally, these approaches can only
merge nodes that belong to the same category. In contrast,
our approach does not require any preprocessing phase, and if
applied until saturation, a layer can be (theoretically) reduced
to a single abstract node. Finally, we should highlight that
the approach proposed in [45] is the closest to our technique
since both are based on INN. However, there is a signifi-
cant difference in our approach. Specifically, Prabhakar and
Afzal [45] define the abstract weights as the interval-hull of the
corresponding weights in the original network. In our method,
we define the abstract outgoing weights as the sum of absolute
values over the original weights and transfer their signs to the
corresponding incoming weights. This approach helps build
more precise abstract networks,1 as can be observed through
the experimental results discussed in this article.

III. PRELIMINARIES

A. Deep NNs

Deep NNs (DNNs) are a graph-based machine-learning
technique. Depending on the application domain, many DNN
architectures have been proposed (CNNs, RNNs, etc.) [9],
[52], [53]. In this article, we focus on feed-forward NNs [54]
and we use the term DNN to refer to them.

A DNN is a set of interconnected nodes organized in
layers. It receives (numerical) data from the input layer and
propagates them through its hidden (i.e., intermediate) layers,
up to the last one which is called the output layer. Fig. 1
depicts an example of an NN with a 4-D input layer, two
hidden layers, and a 2-D output layer. The nodes are connected
via weighted edges whose values are determined during the
training phase.

Definition 1: For a DNN N , the set of nodes of a layer
li is represented by Si . S0 is the input set, Sn is the output
set, and ∀i ∈ {1, 2, . . . , n − 1}, Si represents the set of
nodes of the hidden layer li . Two successive layers, li−1 and
li , are connected via a weighted-matrix Wi , such that for
i ∈ {1, 2, . . . , n}, wi

jk = w(si−1,k, si, j ) denotes the weight

1In the sense that its output is closer to the output of the original network.
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Fig. 1. Example of an NN.

of the edge connecting si−1,k ∈ Si−1 to si j ∈ Si , for all
k ∈ {1, 2, . . . , |Si−1|} and j ∈ {1, 2, . . . , |Si |}.

Definition 2: Given a node si j ∈ Si , i ∈ {1, 2, . . . , n}, its
valuation v(si j ) = vi j is calculated as follows:

v(si j ) = α

 ∑
si−1,k∈Si−1

w(si−1,k, si j )× v(si−1,k)

 (1)

where ∀s0 j ∈ S0, j ∈ {1, 2, . . . , |S0|}, v(s0 j ) = x j is the value
of the j th element of the input x , and α : R → R is the
activation function of the DNN.

Notice that several types of activation functions can be used
with DNNs. For instance, (2) and (3) define Relu and Tanh
functions, respectively,

relu(x) = max(0, x); x ∈ R (2)

tanh(x) =
ex
− e−x

ex + e−x
; x ∈ R. (3)

From Definition 2, and with a slight abuse of notation,
we use v(Si ) or Vi to denote the valuation vector correspond-
ing to all nodes of layer Si , that is,

Vi = v(Si ) = [v(si1), v(si2), . . . , v(si |Si |)]
τ .

Definition 3: Given a DNN of n layers with its associated
function: N : R|S0| → R|Sn |, its valuation for an input x is
N (x) = v(Sn).

In Definition 3, the function N is the composition of a set
of vector functions fi , where i ∈ {1, 2, . . . , n}, that is, N =
fn ◦ fn−1 ◦ · · · ◦ f1, where fi is the function of layer li and is
defined as follows:

fi = α
(∑

Wi × v(Si−1)
)

(4)

where Wi ∈ R|Si |×|Si−1| is the weight matrix of layer li .
In the remainder of this article, we exchangeably use wi

jk or
w(si−1,k, si j ) to represent the weight of the edge connecting
the node si−1,k ∈ Si−1 to the node si j ∈ Si .

Remark 1: For the sake of simplicity of formulas and
proofs, we did not include biases explicitly in the definition of
DNNs. In fact, the bias vector bi of a layer li can be replaced
by a weight vector connecting a new node si−1,b ∈ Si−1 to all
the nodes si j of Si such that v(si−1,b) = 1 and w(si−1,b, si j ) =

bi j . An illustrative example is given in Fig. 2.

Fig. 2. Example explaining how to replace the bias vector with a weight
vector. (a) Network with a bias vector. (b) Equivalent network to the one
presented in (a) where biases are replaced by weights, s.t. v(Si−1,b) = 1.

Fig. 3. Example of an INN of three layers.

Interval NN: A new structure to represent NNs, namely
INNs, was introduced by Prabhakar and Afzal [45]. In INNs,
a weight w of an edge is an interval w = [wl , wu

], such that
wl
≤ wu . Fig. 3 depicts an example of an INN composed of

three layers. INN is a more general representation of DNN
since any DNN can be transformed into an equivalent INN by
defining its weights as w = [wl , wu

], s.t. wl
= wu .

B. DNN Verification

Since the parameters of a DNN are determined during
the training phase of the model on a limited set of data,
DNNs may not cover the whole behavior of the modeled
system. For example, a DNN model for image classification
may misclassify some human-imperceptible perturbed images,
which would cause significant damage if it is deployed in a
safety-critical system. That is why verifying NNs is crucial.

In general terms, the goal of verifying a network is to check
its correctness with respect to some desired properties. Despite
the existence of many types of verification properties for DNN,
most of the related works focus on the invariant property. For
such property, NN verification aims to prove (or disapprove)
that for a specific input region, the DNN output lies within
some predefined output region. Accordingly, the verification
problem of an NN N : R|S0| → R|Sn | can be defined with the
tuple ⟨N , Pre, Post⟩ such that Pre and Post are constraints on
the inputs and the outputs of the DNN N, respectively. In other
words, for an input region defined by a set of constraints Pre,
the objective is to verify whether all the corresponding outputs
are within the region defined by the set of constraints Post.
This is formulated as

∀x ∈ R|S0|, Pre(x) H⇒ Post(N (x)). (5)

Therefore, the verification process consists of either prov-
ing that the property defined in (5) is true, or providing
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a counterexample (x∗, y∗) ∈ R|S0| × R|Sn | such that y∗ =
N (x∗), Pre(x∗) holds true and Post(y∗) is false.

For image classification, most of the research works focus
on DNN robustness [10]. In this case, for a given input image
x0 that is classified as cx0 , the Pre constraints define a region
µ that includes perturbed images around x0, and the goal of
a verification technique is to check whether all these images
have the same class cx0 using the network N . If so, we say
the network is robust with respect to region µ.

A common approach to NN verification is to encode the
network and the property to be checked as an LP problem.
Then, off-the-shelf LP solvers, for example, SAT/SMT and
MILP solvers, can be used to perform the verification process.
However, methods based on this approach suffer from the
state-space explosion problem. This issue primarily arises from
the nonlinear behavior of DNNs induced by the activation
functions, including simple functions such as piecewise linear
functions [e.g., Relu (2)]. Indeed, a Relu neuron has to be split
into two linear equations, namely, if y = relu(x), then y = 0
when x < 0 and y = x when x is positive. Thus, verifying
a network of n Relu neurons leads to 2n linear subproblems,
and, accordingly, the complexity of the verification problem
grows exponentially with the number of neurons. To cope
with this inherent complexity problem, abstraction methods
are employed to build smaller networks while conserving
the relevant behavior of the original one. For instance, these
methods can be used to generate abstract networks, which
constitute an overapproximation of the original network by
merging its nodes [45], as defined below.

Definition 4: A network N̄ with its associated function
N̄ : R|S0| → R|Sn | is an overapproximation of a network N
if the following relation is fulfilled:

N̄ |H P H⇒ N |H P. (6)

The above definition means that any time the property P is
satisfied by the abstract network N̄ , P is necessarily satisfied
by N . Formula (6) can be combined with Formula (5) as
follows:

∀x ∈ R|S0|, Pre(x) ∧ Post(N̄ (x)) H⇒ Post(N (x)). (7)

It is worth noticing that if N̄ ̸|H P , no conclusion can
be inferred regarding N . In this case, we need to check
whether the counterexample violating the property P on N̄
(i.e., N̄ ̸|H P) leads to N ̸|H P . If for the generated coun-
terexample, N̄ ̸|H P but N |H P , then this counterexample is
called a spurious one and hence no conclusion can be made
regarding the satisfiability of P by the original network N .

IV. PROPOSED APPROACH

The objective of our method is to reduce the size of a DNN
by merging a set of nodes. Abstracting a set of nodes requires
providing formulas to determine the incoming and outgoing
weights of the obtained abstract node, and a proof ensuring
that the reduced network over-approximates the original one.
The broad idea of this approach is to define the output weights
of the abstract node as the sum of the absolute values over the
outgoing weights of the set of merged nodes and bring back

Fig. 4. Example explaining the main idea of the proposed approach,
where the incoming weight to the abstract node ŝ is: ŵl

= min
{sign(c) × a, sign(d) × b} and ŵu

= max{sign(c) × a, sign(d) × b}.
(a) Original network. (b) Abstract network.

their signs to be used with their incoming weights to calculate
the new incoming weights of the abstract node. Fig. 4 provides
an illustration of the abstraction procedure, where Fig. 4(a)
represents the original network N, and Fig. 4(b) represents
the obtained abstract network. Mathematical formulations and
examples of the application of the proposed method are
presented below. First, we start by giving a general formula
for NNs with odd and monotone activation functions and then
provide a modified version to support networks with the Relu
activation function.

A. Model Reduction for Networks With Odd
Activation Functions

Before discussing the details of the approach, let us first
recall the definition of an odd function.

Definition 5: A function g : R→ R is odd if

∀x ∈ R : g(−x) = −g(x).

Examples of some used odd activation functions are Tanh,
Bipolar Sigmoid, LeCun’s Tanh, the identity function, Hard
Tanh, and so on [55].

The method consists of merging a set of nodes Ŝ ⊆ Si ,
where Si is the set of nodes of hidden layer li , and replacing
the subset Ŝ by an abstract node ŝ that is determined by its
weights as follows.

1) Incoming weights:
∀si−1,k ∈ Si−1, w(si−1,k, ŝ) = [ŵl

k, ŵ
u
k ], such that

ŵl
k = min

si∈Ŝ,si+1, j∈Si+1

{sign(w(si , si+1, j ))× w(si−1,k, si )}

ŵu
k = max

si∈Ŝ,si+1, j∈Si+1

{sign(w(si , si+1, j ))× w(si−1,k, si )}.

(8)

2) Outgoing weights

∀si+1, j ∈ Si+1, w(ŝ, si+1, j ) =
∑
si∈Ŝ

|w(si , si+1, j )| (9)
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Fig. 5. Example of the abstraction method applied on two neurons of a hidden layer li . For v(si−1,1) = 1, then we have v(si+1,1) = 0 and v(si+1,2) = 5,
v(ŝi+1,1) = [−10, 15] and v(ŝi+1,2) = [−4, 6]. Hence, the overapproximation is fulfilled, since v(si+1,k) ∈ v(ŝi+1,k) for k = 1, 2. (a) Network N : si p and siq
are to be merged. (b) Obtained abstract model N̄ .

Algorithm 1 Pseudo-Code of INNAbstract
1: procedure ABSTRACT(N , select Strategy)
2: N̄ ← duplicate(N ) ▷ Initialize the abstract network
3: for i ← 1 to n − 1 do ▷ Explore all layers
4: Pi ← Select Nodes(N̄ , i, select Strategy)

5: Abstract OneLayer(N̄ , i, Pi )

6: end for
7: return N̄
8: end procedure

Algorithm 2 Pseudo-Code of the Abstraction Method Applied
on One Hidden Layer li

1: procedure ABSTRACTONELAYER(N , i , Pi ) ▷ Pi a set
containing the partitions

2: for every subset Ŝ in Pi do
3: create a node ŝ
4: for si−1,k ∈ Si−1 do
5: calculate ŵ(si−1,k, ŝ) using Equation 8
6: end for
7: for si+1, j ∈ Si+1 do
8: calculate ŵ(ŝ, si+1, j ) using Equation 9
9: end for

10: for si ∈ Ŝ do
11: remove si

12: end for
13: add ŝ to Si

14: end for
15: end procedure

where |.| is the absolute value, and sign is the sign
function defined as: sign : R→ {−1, 1}

sign(x) =

{
1, if x ≥ 0
−1, otherwise.

(10)

The main steps of the abstraction method (INNAbstract) are
presented in Algorithm 1. The algorithm takes as input two
parameters: the original network N and the nodes selection
strategy. First, a copy of the original network denoted N̄
is generated. Next, for each layer, a partition Pi of disjoint
subsets of Si is created using the SelectNodes procedure. Then
the procedure AbstractOneLayer, presented in Algorithm 2,
is applied for merging each subset Ŝ in the partition Pi and
calculating the weights of the obtained abstract nodes. Finally,
the algorithm returns the abstract network N̄ . SelectNodes may

correspond to a random selection, or may implement some
heuristics as will be discussed in Section IV-C.

An example of executing Algorithm 1 is given in Fig. 5.
In this example, we consider that the network uses the identity
activation function (α(x) = x). The application of Algorithm 1
on a network N allows the generation of an abstract network
that is an overapproximation of N. Based on Algorithm 1, the
following results are stated and proved.

Proposition 1: Let N be an NN. Assume that the activation
function of N is odd and monotone. Let Ŝi = (Si\Ŝ) ∪ {ŝ}
be the set of nodes in layer i after applying the abstraction
procedure on this layer. Then, we have

∀v(Si−1), v(Si+1) ⊆ v(Ŝi+1).

Proposition 2: Let N be an NN. Assume that the activation
function of N is odd and monotone. Let N̄ be the abstract
network of N obtained using Algorithm 1. Then, we have

∀x ∈ R|S0|, N (x) ⊆ N̄ (x).

The proof of Proposition 1 is given in Appendix . The proof
of Proposition 2 is straightforward and can be derived from
the proof of Proposition 1 by propagating the abstraction from
layer li to li+1, up to ln−1.

B. Model Reduction Method for Relu-NN

The piecewise linear function Relu [see (2)] is monotone;
however, it is not odd, thus the model reduction method
presented in Section IV-A is not straightforwardly applicable
on Relu-NN. Concretely, applying the approach presented in
Section IV-A on a Relu-NN does not guarantee the overap-
proximation, that is, the output of the original network may
not be within the range of the output of the reduced network
(see the counterexample in Fig. 6).

In this section, we present a relaxation of the method
presented in Section IV-A, so it can support Relu-NN. The
idea is to check whether the incoming weight to every node
s ∈ Ŝ has the same sign as its corresponding outgoing weight,
and if so, the lower bounds are calculated using the following
equation instead of (8):2

ŵl
k = min

si∈Ŝ,si+1, j∈Si+1

{w(si−1,k, si )}

ŵu
k = max

si∈Ŝ,si+1, j∈Si+1

{sign(w(si , si+1, j ))× w(si−1,k, si )}.
(11)

2The formula for calculating the upper bounds of the incoming weights is
the same as NN with odd and monotone, that is, Equation 9.
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Fig. 6. Counterexample of applying Algorithm 2 on a Relu-NN. Assume
that v(s1) = 2, then v(s4) = 8 and v(ŝ4) = [12, 18], hence v(s4) ̸∈ v(ŝ4).
(a) Network N : s2 and s3 are to be merged. (b) Obtained abstract model N̄ .

Algorithm 3 Pseudo-Algorithm of the Abstraction Method
Applied on One Relu Hidden Layer li

1: procedure ABSTRACT1RELULAYER(N , i , Ŝ ) ▷ N : the
network, i : the layer’s number

2: for every subset Ŝ in Pi do
3: create a node ŝ
4: for si−1,k ∈ Si−1 do
5: calculate ŵ(si−1,k, ŝ) using Equation 8 and

determine w∗i+1, j
6: if Equation 12 is true then
7: update ŵ(si−1,k, ŝ) using Equation 11
8: end if
9: end for

10: for si+1, j ∈ Si+1 do
11: calculate ŵ(ŝ, si+1, j ) using Equation 9
12: end for
13: for si ∈ Ŝ do
14: remove si

15: end for
16: add ŝ to Si

17: end for
18: replace all the scalar-weights w of layer li by an

interval [min(w, 0), w]

19: end procedure

For two nodes si−1,k ∈ Si−1 and s ∈ Ŝ ⊆ Si , we define
w∗i+1, j ∈ {w((s, si+1, j )) : si+1, j ∈ Si+1} as the weight
minimizing {sign(w(s, si+1, j )) × w(si−1,k, s)}. For a subset
Ŝ ⊆ Pi of nodes to be abstracted, if all the concrete nodes s ∈
Ŝ satisfy in the following equation below, then the incoming
weights of the abstract node ŝ are calculated using (11)∧

s∈ŝ

(
sign(w∗i+1, j ) = sign(w(si−1,k, s))

)
. (12)

The second step consists of replacing every scalar weight
w of layer li by an interval weight ŵ = [min(w, 0), w]. This
is done at the end of the abstraction process of layer li and
before switching to layer li+1. The main steps of abstracting a
set of nodes of a hidden layer li of a Relu-NN are summarized

Algorithm 4 Pseudo-Algorithm of INNAbstract for Relu-NN
1: procedure ABSTRACT(N , selectStrategy)
2: N̄ ← duplicate(N ) ▷ Initialize the abstract network
3: for i ← 1 to n − 1 do ▷ Explore all layers
4: Ŝ← Select Nodes(N̄ , i, select Strategy)

5: Abstract1ReluLayer(N̄ , i, Ŝ)

6: end for
7: return N̄
8: end procedure

Fig. 7. Output range results on Tanh-NN.

in Algorithm 3. The algorithm can be applied on multiple
layers as presented in Algorithm 4.

In the following, we state the main results for the abstraction
of Relu-NN. Due to the limit on the number of pages, the
proof of Proposition 3 is omitted from the article. We should
mention that proof of Proposition 4 can be derived from that
of Proposition 3 by propagating the abstraction from layer li

to li+1, up to ln−1.
Proposition 3: Let N be an NN. Assume that Relu is the

activation function of N . Let Ŝi = (Si\Ŝ) ∪ {ŝ} be the set of
nodes upon applying the abstraction on Si . Then, we have

∀v(Si−1), v(Si+1) ⊆ v(Ŝi+1).

Proposition 4: Let N be an NN. Assume that Relu is the
activation function of N . Let N̄ be the abstract network of N
obtained using Algorithm 4. Then, we have

∀x ∈ R|S0|, N (x) ⊆ N̄ (x).

C. Heuristic for Nodes Selection

The precision of the reduced model depends mostly on
the features of the merged nodes. One of the most important
features is the sign of the outgoing weights since we use this
feature to calculate the weights of the abstract node. Therefore,
we propose a heuristic to select the set of nodes to be merged
on each layer based on the sign of their outgoing weights.
Recall that the sign of outgoing weights of the initial network
affects the sign of both incoming and outgoing weights of the
abstract network after merging (multiplying incoming weights
by this sign, and taking the absolute value for outgoing
weights). Therefore, intuitively, it seems more likely that the
abstract network will be closer to the original one when the
outgoing weights are positive.

In our approach, we propose a heuristic for nodes selection
giving priority to nodes having positive outgoing weights, that
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Fig. 8. Total computation time, IBP, and abstraction time results on Tanh-NN. (a) Total computation time. (b) IBP computation time. (c) Abstraction time.

Algorithm 5 Nodes Selection Strategy Based on Heuristics
1: procedure NODESELECTIONHEURIS(N, i, nbAbst)
2: W ← the outgoing weight matrix of layer li

3: Wsign ← sign(W ) ▷ calculate the sign matrix of W
4: sumrows ← sum(Wsign, axis = 1) ▷ Sum by row
5: sort (sumrows)

6: save the first nbAbst nodes in a set Ŝ
7: return Ŝ
8: end procedure

is, the nodes that have more positive weights are to be merged
first. This is done by calculating the sign of the outgoing
weight matrix of the hidden layer li , summing the obtained
matrix by rows, and then sorting the obtained list. Finally,
the selection of the nodes to be merged is done by picking
nbAbst nodes from the top of this ordered list, where nbAbst
is a parameter of NodeSelectionHeuris procedure that is sum-
marized in Algorithm 5. Notice that NodeSelectionHeuris is
used within the procedure SelectNodes in Algorithms 1 and 4
if selectStrategy = heursitics.

V. EXPERIMENTS AND EVALUATION

For evaluation purposes, we implemented the approach as a
Python software prototype. The implementation includes three
main modules.

1) Network_Reader: reads the DNN model and the
inputs’ constraints. The tool supports both NNET and
ONNX formats.

2) Abstractor: a proof-of-concept implementation of
the presented approach, which is used to generate
abstract networks from the initial one brought by the
first module (Network_Reader).

3) Analyzer: we implemented and adjusted IBP
method3 [34] to support INN, and we used it to calculate
the output range of the network.

The remaining of the section is dedicated to the empirical
evaluation of our approach. It includes a description of the
evaluation setup and a summary of the obtained results. A dis-
cussion of the obtained results is provided in Section V-C.

In fact, we conducted a set of experiments on networks
with a Tanh activation function, which is odd and monotone,

3IBP is an algorithm to calculate the output range of NNs by propagating
the inputs (intervals) through the network’s layers.

Fig. 9. Output range results on Relu-NN.

and also on Relu-NN. The evaluations include the following
experimental parts.

1) Evaluation on Random NN: applying model reduc-
tion on randomly generated Tanh-NN and Relu-NN.
To examine the impact of the network’s size on the
abstraction method, we generate a set of abstract net-
works with different sizes.

2) Evaluation on Benchmarks: applying model reduction
on two benchmarks: MNIST4 and ACAS Xu [21] for
Tanh-NN and Relu-NN, respectively.

3) Heuristic’s Improvement: applying our method with two
different node selection strategies: random and based
on the proposed heuristic, to assess the improvement
brought by the latter. A set of Relu-NN of different sizes
and depths is used.

Additionally, we performed a comparison study between
our method and two other abstraction techniques proposed
in [46] and [45]. Since the latter support only the Relu acti-
vation function, we considered random Relu-NN and ACAS
Xu benchmark networks. The obtained results are depicted
iteratively in various tables and graphs throughout the article.
In the sequel, we refer to the obtained results using our
abstraction method, the method introduced in [46], and the
method presented in [45], as INNAbstract, Elboher et al., and
INN, respectively. The results obtained on the original initial
network are denoted by original.

A. Experiments on Random NNs

In this first part, we perform an evaluation study on a
set of randomly generated networks with the odd monotone
activation function Tanh, and the Relu activation function.

4A database of handwritten digits, available in http://yann.lecun.com/
exdb/mnist/
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Fig. 10. Total computation time, IBP, and abstraction time results on Relu-NN. (a) Total computation time. (b) IBP computation time. (c) Abstraction time.

TABLE I
OUTPUT RESULTS ON Tanh-NN, L = 20 LAYERS

TABLE II
ABSTRACTION TIME AND TOTAL COMPUTATION

TIME ON Tanh-NN, L = 20 LAYERS

The generated networks have five inputs, L = 20 hidden layers
with nl = 30 nodes per layer, and one output. We apply our
method to produce abstract networks of different sizes (differ-
ent layer sizes): n̂l ∈ {25, 20, 15, 10} as presented in Table I.
Next, for an input X∗ ∈ [−1, 1], we apply a perturbation
ϵ ∈ [0.01, 0.1] to generate input bounds [X∗ − ϵ, X∗ + ϵ],
then, we compute the output bounds of the original model as
well as of the abstract networks using the IBP algorithm.

Over 50 runs, we calculate the average of the output’s
upper bound, the abstraction time, the IBP computation time,
and the total computation time which represents the sum of
the abstraction time and output range computation time on
the abstract networks. The obtained results on Tanh-NN are
presented in Tables I and II. Furthermore, we depict these
results graphically in Figs. 7 and 8. For Relu-NN, we compare
the results to the ones obtained using the abstraction method of
Elboher et al. [46] and INN [45]. Finally, Figs. 9–11 provide
more details about these results. A thorough discussion of the
obtained results is provided in Section V-C.

B. Experiments on MNIST and ACAS Xu Benchmarks

1) MNIST: In this second series of experiments on Tanh-
NN, we use the ONNX networks trained on the dataset of
handwriting digits, namely MNIST. The networks are avail-
able on the VNN 2020 Competition’s GitHub repository.5

5Available in: https://github.com/verivital/vnn-comp/tree/master/2020/
NLN/benchmark/mnist/tanh

Fig. 11. Total computation time and the abstraction time for INNAbstract
and INN on Relu-NN. (a) Total computation time. (b) Abstraction time.

The networks have 784 inputs and 10 outputs; however,
the size and the number of hidden layers may change.
In this work, we perform our experiments on the network
tansig_200_100_50_onnx.onnx which has three hidden layers
with 200, 100, and 50 nodes, successively. We select an image
from the MNIST dataset and then we apply a perturbation (ϵ)
on each pixel using the L∞ norm [29]. Next, we calculate the
output range of the network using the IBP algorithm. Similarly,
using the same input image and perturbation ϵ, we calculate
the average of the output range of the reduced models over
50 runs. We also calculate the average of the IBP computation
time for the original and reduced models and the average of
the abstraction time.

Figs. 12 and 13 summarize the obtained results. Since the
hidden layers do not have the same number of nodes,
the X -axis in Figs. 12 and 13 represents the percentage of
the remaining nodes after abstraction. For instance, the value
0.9 means that the number of the nodes in each hidden layer
of the abstract network has been reduced by 10% (180, 90,
and 45, successively).
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Fig. 12. Total computation time, IBP, and abstraction time results on MNIST Tanh-NN. (a) Total computation time. (b) IBP computation time. (c) Abstraction
time.

Fig. 13. Output range results on MNIST Tanh-NN.

2) ACAS Xu: We consider the ACAS Xu networks as
a case study to evaluate our method on realistic Relu-NN.
The benchmark ACAS Xu is an airborne-collision avoidance
system that has 45 networks [5]. These networks are trained
to provide advisories for an unmanned aircraft (ownership) to
avoid a collision with another aircraft (intruder). Each network
has seven inputs of sensor measurements, such as the speed
of the ownership and the intruder, the distance between them
and their directions, and so on. The network processes these
inputs and returns five outputs that are scores of a possible
advisory for the ownership: clear-of-conflict, strong/weak turn
to the left, or strong/weak turn to the right.

For a given network and inputs’ constraints of a specific
property,6 we compute the corresponding output range on the
original network as well as on the generated abstract networks
using the three methods, namely, our method (INNAbstract),
INN [45], and the technique presented in Elboher et al. [46].
Over 50 runs, and for each network, we calculate the output
upper bound average, the average of the IBP computation
time, the abstraction time, and the total computation time. The
results are shown in Figs. 14–16.

Through the performed experiments, we can observe that
the computation time values obtained using Elboher et al.’s
method were excessively high, making it challenging to com-
pare the original network with the abstract networks generated
using the INNAbstract and INN methods. For a compre-
hensive comparison, we include Figs. 11 and 15 to display
the computation time values for the INNAbstract, INN, and
original network on the Relu-NN and ACAS Xu benchmark,
respectively.

C. Discussion
As illustrated in Figs. 8, 10, 11, 12, 14, and 15, decreasing

the size of the network (i.e., reducing the number of the

6In this article, we used the property φ5 presented in [21], and the network
ACASXU_experimental_v2a_1_1.nnet.

remaining nodes) by performing more abstraction leads to
a linear increase in the abstraction time and a significant
decrease in the IBP computation time. As a result, the total
computation time, defined as the sum of the abstraction time
and the IBP computation time, is also decreased. Additionally,
the IBP algorithm is always faster on the abstract networks
than on the original ones. With the exception of the abstract
networks that are generated using Elboher et al., the total
computation time on the abstract networks of INNAbstract
and INN is consistently lower than the computation time on
the original ones, especially when the abstraction degree is
significant [see Figs. 11(a) and 15(a)]. Moreover, the compu-
tation time of INNAbstract is always smaller than that of INNs.
For example, in Fig. 15(a) when the number of the remaining
nodes is 10, which represents a reduction of the original
network’s size by 80%, the whole process on the abstract
models obtained using INNAbstract (abstraction + IBP) is two
times faster than the IBP on the original model.

Moreover, all three model reduction methods exhibit sim-
ilar IBP computation times, which decrease as the size of
the abstract networks decreases. This can be explained by the
fact that the IBP algorithm is performed on networks of the
same size (same remaining nodes). However, by comparing
the abstraction time of INNAbstract to the two other methods
[shown in Figs. 10(c) and 14(c)] and more specifically to INNs
[see Figs. 11(b) and 15(b)], we can observe that INNAbstract
is faster. Namely, when considering the same number of
abstract neurons, INNAbstract generates abstract networks in
less time compared to the other methods. We can also observe
that the Elboher et al. method is computationally expensive
compared to INNAbstract and INN. This can be attributed to
the preprocessing phase, which involves classifying neurons
into different categories and potentially splitting numerous
neurons. As a result, the network to be abstracted may have
a larger size than the original one, which leads to increasing
the abstraction time, significantly. Additionally, the abstraction
time using our method increases linearly, and hence much
more slowly compared to INNs [see Figs. 11(b) and 15(b)].
Moreover, the total computation time of INNAbstract is less
than the total computation time of both methods. This clearly
illustrates the efficiency of our method, which can handle
larger networks without a significant increase in abstraction
time.

Figs. 7, 9, 13, and 16 show the results of the output
range of the different abstractions. A general observation from
Figs. 7, 9, and 16 shows that decreasing the size of the abstract
network, which leads to less precise network, increases the
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Fig. 14. Total computation time, IBP, and abstraction time results on ACAS Xu Relu-NN. (a) Total computation time. (b) IBP computation time. (c) Abstraction
time.

Fig. 15. Total computation time and abstraction time results of INNAbstract
and INN on ACAS Xu Relu-NN. (a) Total computation time. (b) Abstraction
time.

Fig. 16. Output range results on ACAS Xu Relu-NN.

upper bound of the output. Furthermore, when focusing on the
output range results of the three abstraction methods, we can
see that the output range’s upper bounds of abstract networks
obtained using INNAbstract are generally smaller than the
output ranges of those obtained using Elboher et al. [46] and
INNs [45]. Specifically, INNAbstract significantly outperforms
Elboher et al. considering the different sizes of the abstract net-
works. Although the INN abstraction method initially shows
slightly better performance when only a few neurons are
merged, its performance drops drastically as the abstraction
becomes more intensive (more neurons are merged), where
the output range of the obtained abstract networks increases
rapidly. In contrast, we can notice that the output range
on abstract networks obtained using INNAbstract exhibits
a slow increase with the number of remaining nodes, and
INNAbstract outperforms the INN method when significant
abstraction is applied.

In Fig. 13, we can observe that the output range of the
abstract models is fairly close to the output range of the orig-
inal one. Interestingly, the output’s upper bound of different
abstract networks does not change while varying the number of
the remaining nodes. This is potentially related to the behavior
of Tanh with large (resp. small) values, where the slope is
almost null and the output of Tanh is basically 1 (resp. −1).

The main conclusion through these series of experiments is
that: while the IBP computation time decreases, the abstraction
time and the output range related to INNAbstract models
exhibit a linear and slow increase with the number of merged
nodes. Furthermore, we can observe that the total computation
time (including both the abstraction and output range compu-
tation) on the abstract networks obtained using INNAbstract is
consistently lower than the computation time on the original
networks. Furthermore, according to the conducted exper-
iments and the obtained results, INNAbstract significantly
outperforms Elboher et al. [46] and INN [45] approaches in
the sense that it produces tighter output bounds in less time.
This highlights the effectiveness of INNAbstract in reducing
the computation time, thus allowing for faster analysis and
operations on NN.

It is worth recalling that the IBP is a very fast algorithm
and allows for calculating an overapproximation of the outputs.
Thus, the gain in precision and computation time will be more
significant with other more precise methods.

D. Heuristic’s Improvement
The objective of this section is to assess the perfor-

mance of our model reduction method when combined with
the proposed heuristic for node selection (Algorithm 5).
To achieve this, we conduct a series of experiments on a set of
randomly generated Relu-NN using two node selection strate-
gies: random selection and heuristic-based selection. Namely,
we generate various networks with different sizes by varying
the number of layers L and the number of nodes on each layer
nl to examine their impact on the heuristic’s performance.
More details about the generation of these networks are given
in Section V-A. Next, we calculate the output range of the
obtained abstract networks and we determine the improvement
rate (Irate) in terms of precision using the proposed heuristic.
This is done by calculating the percentage of the difference
between the output range with respect to the output range of
the abstraction method with the random nodes selection using
the following formula:

Irate =
Urand −Uheuris

Urand
× 100
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Fig. 17. Graph representing the improvement of the output range using the
proposed heuristic. Results on networks with different numbers of (a) layers,
L = 20 and L = 40, and (b) nodes per layer, nl = 30 and nl = 40.

where Urand and Uheuris are the upper bounds of the abstract
network using INNABstract with the random and heuristic-
based strategy for node selection, respectively.

Fig. 17 depicts the obtained results, where Fig. 17(a)
represents the results on networks with different layers number
(L = 20, L = 40) and the same number of nodes on hidden
layers (nl = 30), and Fig. 17(b) represents the results of
networks whose layers number is set to 20 (L = 20) and
have different hidden layer sizes (nl = 30, nl = 40).

As shown by the results presented in Fig. 17, the combina-
tion of the proposed heuristic with INNAbstract can enhance
the precision of the generated abstract networks. Moreover,
the performance of the heuristic depends on the number of
layers and hidden nodes in the initial network. Specifically, the
proposed heuristic performs better with large networks, since
the population from where the nodes are selected is large, thus
the algorithm has more options.

To illustrate the improvement in terms of precision through
the proposed heuristics, we chose the configurations L = 20
and nl = 40 to generate a random network of 20 layers,
with 40 nodes in each hidden layer. We then compute the
output range and the abstraction time of the resultant abstract
networks, employing both random and heuristic selection
strategies.

As depicted in Fig. 18(a), the output range obtained using
INNAbstract in combination with the proposed heuristic is
tighter compared to the output range obtained using INNAb-
stract with a random selection of nodes. Furthermore, the
improvements become more significant when more nodes are
merged. However, it is important to note that achieving these
improvements comes at the cost of increased abstraction time,
as illustrated in Fig. 18(b).

Finally, it is worth noticing that we have conducted the
same experiments on Tanh-NN; however, the improvement rate
remains negligible. This is mainly due to the nature of the Tanh
function (illustrated by its hyperbolic behavior) which tends to

Fig. 18. Output range and abstraction time results on Relu-NN with random
and heuristics-based selection strategy. (a) Output range (upper bound).
(b) Abstraction time.

push the output value to either end of the curve (1 or −1) due
to its S-like shape, that is, in the region close to zero, if we
slightly change the input value, the respective changes in the
output are very large and vice versa.

VI. CONCLUSION

In this work, we presented INNAbstract, a model reduction
method for NNs. The approach consists of merging nodes
of the same layer and provides a formula to calculate the
new weights ensuring that the output range of the original
model is always included within that of the abstract one.
The proposed approach supports NNs with Relu and odd-
monotone activation functions, including Tanh and Bipolar
Sigmoid. With the aim of enhancing the performance of the
approach, we proposed a heuristic for node selection based on
some features of the network’s nodes. Furthermore, we carried
out a series of experiments using randomly generated NNs in
addition to some benchmarks to assess the performance of the
proposed method. We also compared the performance of our
method to other relevant works from the literature.

The results of the experimental study show that INNAb-
stract can effectively be used to reduce the size of large
networks, leading to reduced computation costs, while pro-
viding formal guarantees that the generated abstract networks
overapproximate the original ones. Additionally, the proposed
heuristic allows for significantly improving the precision of
the abstraction method. From the obtained results, the manip-
ulation operations on abstract networks are clearly faster.
However, there is a tradeoff between abstraction, precision,
and computation time. Furthermore, on the basis of the
conducted experiments, INNAbstract outperforms the other
relevant abstraction methods presented in Elboher et al. [46]
and Prabhakar and Afzal [45] in terms of both precision and
computation time.

We plan to pursue this work in different directions. First,
we want to integrate our model reduction method with
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more precise NN-bound propagation and verification methods.
Moreover, we will investigate the abstraction approach to
support additional activation functions. Finally, we intend to
explore more heuristics for node selection toward generating
more precise abstract networks.

APPENDIX

We provide in this section the formal proof of the soundness
of our proposed method for NNs with odd and monotone
activation functions, namely Proposition 1. We would like to
note that, due to page limitations, the proof of Proposition 3
is omitted from this version of the article.

PROOF OF PROPOSITION 1

Proposition 1: Let N be an NN. Assume that the activation
function of N is odd and monotone. Let Ŝi = (Si\Ŝ) ∪ {ŝ}
Be the set of nodes after applying the abstraction on Si . Then,
we have

∀v(Si−1), v(Si+1) ⊆ v(Ŝi+1).

■
In Proposition 1, v(Si+1) ⊆ v(Ŝi+1 means that v(si+1, j ) ∈

v(ŝi+1, j ),∀ j ∈ {1, 2, . . . , m|}, where m = |Si+1| = |Ŝi+1|.
Proposition 1 considers merging many nodes on a hidden
layer li , and for the sake of simplicity, we provide the proof
of merging two nodes. The generalization of this proof by
considering multiple nodes can be done following the same
steps.

Assume that we want to merge two hidden nodes s1 and
s2 of a hidden layer li , such that li−1, li , and li+1 all have an
odd and monotone activation function, and let ŝ denotes the
obtained abstract node.

We denote by ak (resp. bk) the incoming weights of
s1 (resp. s2) from node si−1,k ∈ Si−1{

ak = w(si−1,k, s1)

bk = w(si−1,k, s2)

and we denote by c j (resp. d j ) the outgoing weight of
s1 (resp. s2) for each node si+1, j ∈ Si+1, that is,{

c j = w(s1, si+1, j )

d j = w(s2, si+1, j ).

The weights of the remaining edges connecting other nodes
than s1 and s2 (s ∈ Si \ {s1, s2}) to each node si+1, j ∈ Si+1 are
defined as follows:

w(s, si+1, j ) = ws,s j .

We denote by ŝ the obtained abstract node after merging s1 and
s2 using Algorithm 2. The new abstract layer is denoted as
Ŝi = ŝ ∪{Si \ {s1, s2}}. For clarity, we use vk instead of vi−1,k .
Since the activation function α is monotone and odd, that is,
∀x ∈ R : α(−x) = −α(x) and

∀x1, x2 ∈ R : x1 ≤ x2 H⇒ α(x1) ≤ α(x2).

For each j ∈ {1, 2, . . . , |Si+1|}, we have

vi+1, j = α(zi+1, j )

= α

c j × α

(
m∑

k=1

akvk

)
+ d j × α

(
m∑

k=1

bkvk

)

+

∑
s∈Si\s1,s2

ws,s j v(s)


v̂i+1, j = α(ẑi+1, j )

= α

(|c j | + |d j |)× α

(
m∑

k=1

ŵkvk

)

+

∑
s∈Si\s1,s2

ws,s j v(s)


where zi+1, j (resp. ẑi+1, j ) is the value of si+1, j (resp. ŝi+1, j )
before applying the activation function α, and m = |Si−1| is
the number of nodes of layer li−1 and ŵk = [ŵ

l
k, ŵ

u
k ] is the

abstract weight connecting each node sk ∈ Si−1 to the abstract
node ŝ ∈ Ŝi as defined in Algorithm 2. The main results is to
prove that vi+1, j ∈ v̂i+1, j .

By definition of ŵk , we have{
ŵl

k ≤ sign(c j )ak ≤ ŵu
k

ŵl
k ≤ sign(d j )bk ≤ ŵu

k

∀k = {1, 2, . . . , m},∀ j ∈ {1, 2, . . . , n}.
Thus, we have{

ŵl
kvk ≤ sign(c j )akvk ≤ ŵu

kvk, if vk ≥ 0
ŵu

kvk ≤ sign(c j )akvk ≤ ŵl
kvk, Otherwise.

Two cases need to be proved, vk ≥ 0 and vk < 0. We provide
below a detailed proof for the case vk ≥ 0. The proof of
the second case, that is, vk < 0, is omitted and it is done
similarly by just inverting the lower and upper bounds of ŵk

when multiplying it by vk .
Assume that vk ≥ 0, multiplying the aforementioned

inequality by sign(c j ), we obtain
if c j ≥ 0:
sign(c j )ŵ

l
kvk ≤ sign(c j )sign(c j )akvk ≤ sign(c j )ŵ

u
kvk

Otherwise:
sign(c j )ŵ

u
kvk ≤ sign(c j )sign(c j )akvk ≤ sign(c j )ŵ

l
kvk .

The proof contains two parts: c j ≥ 0 and c j < 0.
Here, we provide details of the proof for the first case:
sign(c j ) ≥ 0. The proof of the other case (sign(c j ) < 0)
can be performed following the same logic, using the fact that
α is odd, so α(sign(c j ) × x) = sign(c j ) × α(x), and that we
have sign(c j ) × c j = |c j |.

For sign(c j ) ≥ 0 and by taking the sum over all k, we have

m∑
k=1

sign(c j )ŵ
l
kvk ≤

m∑
k=1

akvk ≤

m∑
k=1

sign(c j )ŵ
u
kvk .
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And since α is monotone increasing, we have

α

(
m∑

k=1

sign(c j )ŵ
l
kvk

)
≤ α

(
m∑

k=1

akvk

)

≤ α

(
m∑

k=1

sign(c j )ŵ
u
kvk

)
.

Since α is odd, we have α(sign(c j ) × x) =

sign(c j ) × α(x), thus the previous inequality is equivalent to

sign(c j )α

(
m∑

k=1

ŵl
kvk

)
≤ α

(
m∑

k=1

akvk

)

≤ sign(c j )α

(
m∑

k=1

ŵu
kvk

)
. (13)

Multiplying equality (13) by c j implies

|c j | × α

(
m∑

k=1

ŵl
kvk

)
≤ c j × α

(
m∑

k=1

akvk

)

≤ |c j | × α

(
m∑

k=1

ŵu
kvk

)
. (14)

Recalling that sign(c j ) × c j = |c j |. The same reasoning
remains valid when we replace ak by bk and c j by d j

|d j | × α

(
m∑

k=1

ŵl
kvk

)
≤ d j × α

(
m∑

k=1

bkvk

)

≤ |d j | × α

(
m∑

k=1

ŵu
kvk

)
. (15)

Summing inequalities (14) and (15) with the remaining incom-
ing nodes values to si+1, j ∈ Si+1 \ {s1, s2}, we obtain

(|c j | + |d j |)× α

(
m∑

k=1

ŵl
kvk

)
+

∑
s∈Si\s1,s2

ws,s j v(s)

≤ c j × α

(
m∑

k=1

akvk

)
+d j × α

(
m∑

k=1

bkvk

)
+

∑
s∈Si\s1,s2

ws,s j v(s)

≤ (|c j | + |d j |)× α

(
m∑

k=1

ŵu
kvk

)
+

∑
s∈Si\s1,s2

ws,s j v(s). (16)

And since α is monotone, by applying the activation α on the
inequality (16), we obtain

v̂(ŝi+1, j )
l
≤ v(si+1, j ) ≤ v̂(ŝi+1, j )

u .

Finally, we have

vi+1, j ∈ v̂i+1, j ∀ j ∈ {1, . . . , n}.

□

ACKNOWLEDGMENT

This research work contributes to the French collabora-
tive project TASV (autonomous passengers service train),
with Railenium, SNCF, Alstom Crespin, Thales, Bosch, and
SpirOps. It was carried out in the framework of IRT Railenium,
Valenciennes, France, and, therefore, was granted public funds
within the scope of the French Program “Investissements
d’Avenir.”

REFERENCES

[1] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: Analysis, applications, and prospects,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 6999–7019, Dec. 2022.

[2] G. Litjens et al., “A survey on deep learning in medical image analysis,”
Med. Image Anal., vol. 42, pp. 60–88, Dec. 2017.

[3] A. Bouguettaya, H. Zarzour, A. Kechida, and A. M. Taberkit, “Vehicle
detection from UAV imagery with deep learning: A review,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 33, no. 11, pp. 6047–6067, Nov. 2022.
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