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INTRODUCTION

Reliability analysis is an integral part of system design and operating. Moreover, it can be an input to optimize maintenance policies. Recently, Dynamic Bayesian Networks (DBN) have been proved relevant to represent complex systems and perform reliability studies. The major drawback of this approach comes from the constraint on the sojourn times which are necessarily exponentially distributed, as in usual Markovian approaches.

To avoid this constraint, a new formalism named Graphical Duration Models (GDM) was introduced [START_REF] Donat | A Dynamic Bayesian Network to represent Discrete Duration Models[END_REF]. This approach, based on semi-Markovian models, allows representing all kind of sojourn time distributions. Then, the degradation process of complex systems (multi-components, multi-states, eventually influenced by contextual variables) can be accurately modeled and thus, the related reliability indicators correctly estimated.

With this generic approach (named VirMaLab, for Virtual Maintenance Laboratory) various industrial applications were developed, especially as decision support tools for the optimization of railway infrastructure maintenance strategies.

In this paper, an extension of the commonly used VirMaLab formalism will be introduced. Indeed, this new application deals the broken rails prevention in an automation context for railway Paris metro lines. The final goal of the project is to evaluate and compare various diagnostic, maintenance and operating scenarios, in terms of availability, broken rails frequency… Due to the peak hour's constraints, the operator (RATP) needs to estimate, hour by hour its ability to detect broken rail. But, for many reasons (time computation, accuracy of parameters, learning data…), the modeling of a rail degradation process with a one hour step is impossible.

To address this problem, a multi-nets model was developed, allowing a variable granularity in respect of the state of the rail. Usually, in VirMaLab applications, the all model infers with a constant step. Here, four models were introduced, with their own inference step fixed in accordance with the defect gravity (from one month for early inner rail cracks to one hour for broken rails) and their own set of diagnosis devices (all defects levels are not detected by the same appliances). Finally, the three first models emphasize the use of the preventive maintenance strategies on the availability of the network whereas the last model focuses on the corrective maintenance and evaluates, hour by hour, the response of the diagnosis system in terms of broken rail detection ability.

Parameters of these models are learnt by use of REX databases and/or expert advises. Then, the global model is validated by various experiments with the standard running, diagnosis and maintenance parameters. Receiving the validation of these first results by RATP experts, new sets of scenarios can be computed, evaluating the influence of any parameters.

To evaluate a given maintenance strategy, various indicators are analyzed, from annual numbers of broken rails and preventive maintenance actions to delays before broken rails detection and related An original multi-nets approach for modeling and evaluating maintenance strategies L. Bouillaut & O. François French National Institute for Transport and Safety Research -Laboratory of New Technologies, Noisy-le-Grand, France
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Then, the acceptable speed is strongly decreased up to the rail refurbishment).

This paper is divided in four sections. The second one introduces the VirMaLab generic approach and will briefly focus on the Graphical Duration Models formalism. Then, the original multi-net extension of this decision support tool, dedicated to the broken rail prevention in a metro lines automation context, will be introduced. Finally, some conclusions and perspectives are discussed in section 4.

THE VIRMALAB APPROACH

Introduction of the generic approach

During a previous study, a model named VirMaLab (for virtual maintenance laboratory), able to settle for a predetermined context and for running constraints the optimal diagnosis parameters and the most adapted maintenance policy, was proposed.

Figure 1 introduces this generic approach used for building such a decision support tool for determining optimal maintenance strategies. This approach is divided in three steps: -The first one consists in the mathematical modeling of the physical state of the system and, the time evolution of its various components. This means to be able determining if the system is still fault free after a given running time, knowing its initial state and the running parameters. On the contrary, if a defect appears, it is therefore necessary to determine, among a predefined list of possible defects, in which damaged state the system is.

Due to the variability of contexts and the system size, a probabilistic approach is adopted. This way the probability of facing a given system's state is estimated rather than its deterministic existence.

One of the most commonly used approaches is based on the Markov Chains formalism, frequently modeled by Bayesian Networks. Nevertheless, this approach needs a Markovian hypothesis. This means that sojourn times in each state must necessarily be exponential. If some systems confirm this assumption, most of industrial applications underline non Markovian behaviors. In this case, a Markovian degradation process modeling can introduce non negligible biases. Then, the estimated maintenance parameters can be far from optimal results (Bouillaut et al. 2009).

To overcome this drawback, the VirMaLab approach introduces an original semi-Markovian modeling of degradation processes, able to fit all kinds of sojourn time distributions: The Graphical Duration Models (GDM), introduced in section 2.3. [START_REF] Donat | A Dynamic Bayesian Network to represent Discrete Duration Models[END_REF]). -The second step consists in the modeling of diagnostic devices (detection rate, false alarms rate…) and their setting parameters (periodical auscultations…). According to results of the diagnosis' measurement campaign, each reference frame recommends the use of a maintenance action adapted to the current estimated state of the system. When a maintenance action is realized, the state of the system and its degradation process has to be updated to take into account the corrective action impact. -Finally, diagnosis and maintenance of the system being characterized by a set of parameters and each action having a defined cost (financial, human …), the last phase consists in quantifying the maintenance policy in term of safety, cost, availability, service quality …

Then, with such decision support tool, one can evaluate various maintenance strategies and determine, for a given cost functions, the best set of maintenance and diagnostic parameters. It can be applied to simple systems but also to multi-states and multicomponent systems (with eventually interacting components). The learning of such modeling can be done with both expert advices and REX databases.

The considered formalism: Bayesian Networks

BN are mathematical tools relying on both the probability theory and the graph theory [START_REF] Jensen | An introduction to Bayesian networks[END_REF]. They allow to qualitatively and quantitatively representing uncertainty. Basically, BN are used to compactly describe the joint distribution of a collection of random variables X=(X 1 ,…,X N ) taking their values in = { 1 … M }.

Formally, a BN denoted by  is defined as a pair (,{p n } 1≤ n≤ N ) where =(ξ, ε) is a Directed Acyclic Graph (DAG) and {p n } 1≤ n≤ N a set of Conditional Probability Distributions (CPD) associated with the random variables. These distributions aim to quantify the local stochastic behavior of each variable. The graph nodes and the associated random variables being both represented by ξ = {X 1 , …, X N }. ε is the set of edges encoding the conditional independence relationships among these variables. Finally,  is said to be the qualitative description of the BN.

Besides, both the qualitative (i.e. ) and quantitative (i.e. {p n }) parts can be automatically learnt, if some complete or incomplete data or experts opinions are available [START_REF] Jordan | Learning in graphical models[END_REF].

Using BN is also particularly interesting because of the easiness for knowledge propagation through the network. Indeed, various inference algorithms allow computing the marginal distribution of any subset of variables. The most classical one relies on the use of a junction tree [START_REF] Lauritzen | Local computations with probabilities on graphical structures and their application to expert systems[END_REF].

Finally, note that such modeling is able to represent dynamic systems (e.g. which contain variables with time dependant distributions) via the DBN solution [START_REF] Murphy | Dynamic Bayesian Networks: Representation, Inference and Learning[END_REF].

A DBN is a convenient extension of the BN formalism to represent discrete sequential systems. Indeed, DBN are dedicated to model data which is sequentially generated by some complex mechanisms (time-series data, bio-sequences, number of mechanical solicitations before failure…). It is therefore frequently used to model Markov chains. Figure 2 illustrates this property, introducing a DBN modeling the Markov Chain of the sequence X=(X 1 , … , X N ) taking its values in the set . This DBN is described by the probabilities that quantify the transitions from one state of  to another. More precisely, a DBN defines the probability distribution of a collection of random variables (X t ) t≥1 = (X 1,t , …, X D ,t ) t≥1 where t is the discrete time index.

Graphical Duration Models

The Graphical Duration Model is a specific DBN, using semi-Markov models. The main idea is the introduction of remaining time variable into the graph that allows to model multi-state systems featuring complex sojourn times. Figure 3 shows a GDM in its DBN form. (one variable at least) that works on variable state X t and/or duration variable X t D .

Besides, the DAG of a GDM shows that the current system state X t depends on the previous system state X t-1 , the previous remaining duration X t-1 D and, optionally, on contextual variables Z n,t . On the other hand, the current duration variable X t D is dependent on the previous duration variable X t-1 D , the current state X t and, optionally, on the previous state X t-1 and some contextual variables Z n,t .

Consequently, the process (X t ) (respectively,

(X t D )) is not Markovian since X t-1 ⊥ ⊥ X t+1 | X t (re- spectively, X t-1 D ⊥ ⊥ X t+1 D | X t D ).
Where the notation means that variables A and B are statistically independent.

On the other hand, the GDM structure leads to ( ) ( ) ( )
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So, the set (X t , X t D ) engendered by a GDM is Markovian, despite (X t ) is not. The GDM generalizes the recent studies on discrete semi-Markovian processes [START_REF] References Barbu | Discrete time semi-Markov processes for reliability and survival analysis[END_REF]).

On the practical point of view, this approach allows specifying arbitrary state sojourn time distributions by contrast with a classic Markovian framework in which all durations have to be exponen-tially distributed. This modeling is therefore particularly interesting as soon as the question is to capture the behavior of a given system subjected to a particular context and a complex degradation distribution. More details on this GDM (quantitative description, optional context description …) can be found in. (Donat et al. 2008a, b).

3 APPLICATION: BROKEN RAILS PREVENTION

Introduction of the system

In an automation context, the implementation of a new command-control-system on some lines of the Paris metro network, enforce the RATP Company to identify precisely the impact of rail flaws on safety and availability of the railway system: the assessment of the current broken rail monitoring process regarding the new control-command system has to be made. Depending on the nature of defects, the disturbance will be more or less penalizing for the passenger service. A statistical model of the rail defects evolution should help the identification of the most critical flaws.

To simplify the analysis, the rail states along the main deterioration process are clustered into four classes: OK (the rail has no defect), X 1 (Internal Cracks < 24mm), X 2 (Internal Cracks < 30mm) and BR (Broken rail, introduced in Figure 4). frequently feel some shocks from the rails, and so, can contribute through their reporting to the detection of some BR. -The track circuit's (TC) principle task is the localization of trains on a given rail section. Depending on this block is free or not, the signaling will be opened or closed. Nevertheless, the TC analyses the rail impedance and so can detect some BR when no train are on the area. TCs finally detect almost 80% of broken rails and are actually the first contributor in BR detection.

In its metro lines automation programs, RATP has to change the control command system and TC are no longer indispensable in terms of signaling. But with automated lines, the occurrence of a BR is a very critical event. Its prevention is a key point to ensure availability requirements. Our study aims to furnish a decision support tool allowing (across various indicators) to evaluate and compare some running and maintenance strategies.

A great amount of information, distributed among databases (from signaling and track departments) and expert advices are available. But, this information is sometimes uncertain, imprecise, or even missing. For all of these reasons, the formalism of the Bayesian network theory, introduced in section 2.2, offers an adequate framework to represent our system and its maintenance.

StatAvaries, a multi-nets Modeling

The adopted modeling is based on the VirMaLab generic approach, introduced section 2.1. Nevertheless, the aims of this study do not take into account economic parameters. So, only the two first blocks (Degradation process and Maintenance modeling) will be considered.

A metro line is constituted of hundreds of elementary rails lengths (between 5 and 18 meters long), with various ages, various states… For complexity reasons, the development of a degradation model of a complete line is, therefore, unrealistic.

To address this problem, a metro track is assumed to be the sequence of a set of independent basic rail elements. The proposed model focuses on only one of these basic elements and then, results are extrapolated to larger track sections to obtain reliability indicators on the considered portion of line.

Contrary to the preliminary study (Bouillaut et al. 2008), the second specificity of this application consists in the necessity of being able to evaluate, hour by hour, the consequences of a BR (especially during peak hours) when the rail degradation speed unit should be between the week and the month. The development of a rail degradation process model with a one hour step is therefore absolutely unsuitable (in terms of complexity, accuracy…).

To overcome this problem, an original multi-nets approach (introduced in Figure 5) is proposed. Each state of the rail S i (taking its values in {OK, X 1 , X 2 , BR}) is characterized by a VirMaLab Bayesian Network with a sojourn time distribution S i D , learnt from REX databases. The two first slices of the multi-nets are characterized by one month iterations. The second one, dedicated to X 2 defects, has a one week step. Finally, the last network, evaluating the ability of the system to detect BR, has one hour iteration.

VirMaLab preventive maintenance network

This first model, introduced in figure 6, deals with the rail's preventive maintenance strategy. As a VirMaLab modeling, it is constituted of two blocks.

The first one describes the degradation process of the rail, using the GDM formalism (introduced in section 2.3.). The rail degradation can be influenced by several contextual variables such as the rolling stock (changing from on line to another), the curve radius (and if we consider the inner or outer rail) and the steel's stiffness. The second block of this model describes the diagnosis devices and the maintenance strategy. Three devices trigger periodic auscultations of the rails: The USV, WT and drivers (whom presence depends on the state of the traffic, with peak hours, night operating stops…). The modeling of the last device is a little more complex. Indeed, various Track Circuits technologies constitute the whole signaling network, with different failure rates (if a TC is down, it is unable to detect a BR), different sizes... Moreover, the analysis of RATP databases underlines that, during worm seasons, the rail dilatation keeps the electric contact of many BR. In this case, the TC ability to detect BR registers a 50% decrease... All this variables have, therefore, to be taken into account in the final modeling.

All four diagnosis devices supply an estimation of the current state of the rail (integrating their own good detection and false alarm rates) that influences the maintenance decision. When a maintenance action is performed, it is assumed that the system turns to the OK state in a single iteration.

VirMaLab corrective maintenance network

This second model, introduced in figure 7, focuses on BR's detection and corrective actions. Indeed, it evaluates both the ability of the system to detect a BR and the impact of such an event on the global indicators (time before detection, availability, number of lost trains…). This network is activated when a BR occurs. To evaluate the time before the detection, only the real time devices are necessary. USV and WT diagnosis are, therefore, not taken into account and drivers are compared to a real time device. Indeed, in traffic period, Drv systematically diagnose the rail (a train runs at least each 180s and the model iteration is one hour long).

Experiments running

Each experiment begins in the OK state. Then, a sojourn time T OK is generated in respect of OK D . During this period, some indicators are computed (mainly false alarms). After T OK iterations (i.e. T OK months in terms of rail degradation) an inner crack appears and the second network is activated. A new duration T X1 is generated on respect of X 1 D . To allow quick degradations modeling, this duration can be null. In such cases, the third network is immediately activated. On the other hand, during these T X1 months, the preventive maintenance strategy is evaluated analyzing false alarms, good detections… If a maintenance action is performed, the system is reinitialized during the next iteration.

If no preventive maintenance action is done, when the X 1 sojourn time ended, the third network is activated with a new duration T X2 . The preventive maintenance policy is one more time evaluated. If the X 2 defect is not detected and/or if no preventive maintenance action is performed, the rail will broke after T X2 weeks.

Then the last network is activated. No sojourn time is generated since the BR is a blocking state. Indeed, the only way to end this state is the detection of the defect and the replacement of the rail.

The final decision support tool

To make easier the use of this multi-nets model for both maintenance operators and managers of the automation lines project, a friendly user interface was developed.

It allows determining the following parameters: -The considered line (among the 11 iron contact RATP metro lines) -The rail context: The whole line or only the in curve rails (eventually only the upper rail). -The critical curve radius. It determines the set of curves on which a BR could have critical consequences in terms of passengers' safety.

-The rail quality. For different reasons, an operator can decide to change the iron stiffness. Consequently, the rail degradation process must be adapted. -Rolling stock specifications: Running period, mean speed, length and axle load. These parameters influence the rail degradation speed and are also necessary to evaluate some final indicators. -Diagnosis parameters: Good detection and false alarms rates, USV and WT auscultation periods, parameters of the TC technologies encountered on the considered metro line. -Traffic periods. The user can define the night and running periods (usually, a metro line is operating 20 hours a day) and, in the operating period, 6 different temporal windows and their own train periods. Thus, the real traffic conditions of each line (but also hypothetical parameters that might be evaluated) can be modeled.

When all parameters are defined, the inference can begin. Due to the modeling complexity, the computation of an experiment can be quite long (around 2 hours). But the user can be sure that the StatAvaries tool provides the exact values of expected results since the inference of the modeling is based on an exact inference algorithm [START_REF] Lauritzen | Local computations with probabilities on graphical structures and their application to expert systems[END_REF]).

After discussing with RATP experts, the final indicators must provide information about: erating is stopped or, at least, strongly slowed down. Then, the train period cannot be maintained and the number of running trains strongly decreases.

-
As an illustration, the next section will introduce results obtained in one of the scenarios investigated for RATP. The aim of this paper is not to list all results obtained during the study but to introduce the VirLaLab multi-nets extension, illustrated by one experimental example. For more information on some of the obtained results, readers can contact the authors.

Some results

In this study, one of the considered scenarios deals with the influence of the USV auscultation period on maintenance actions and network's availability.

The following figure introduces some results of this experiment, obtained for line 7. For industrial reasons, exact values of indicators are deleted. Nevertheless, the interest of this picture lays in the dynamic of defects numbers.

For this experiment, the ultrasonic auscultation period was changed (the currently commonly used value is To), with three considered options: 2To, To/2 and To/6.

We can note that, as expected, the more frequently ultrasonic equipment sound the infrastructure, the more preventive actions will be planed. Early defects are therefore more easily diagnosed, and then, corrected before they turn to the critical state of broken rail.

Moreover, the gain in terms of broken rails is especially significant for the first simulations (To/2) and, beyond, seems to decrease. In terms of network's availability, this experiment furnished a number of lost trains, balanced according to the day's period when the BR occurs (operating periods, peak hours, night...).

Indeed, the model assumes that, when a rail breaks, the running in completely stopped during 45 minutes. This induces around 22 lost trains in peaks hours, 9 in early morning, 4 in late evening and none during the 4 hours 'night' period.

Due to the rolling stock action on the upper rail (located in curves), the larger part of BR occurs in curves. Figure 9 introduces the influence of preventive maintenance on the localization of BR and on their number. We can note that, decreasing the USV auscultation period, the preventive maintenance improves (as introduced in figure 8). Then, more X 2 defaults can be detected which means less BR.

As introduced previously, mechanical constrains on the rail are higher in curves. So, this context triggers a quicker degradation speed and a higher number of X 2 (with finally a higher number of BR).

The improvement of preventive maintenance shows a decrease of 'in risky curves' BR numbers with finally a nearly equivalent behavior of both contexts (Alignment and risky curves).

CONCLUSIONS

In this paper an original maintenance strategy modeling was introduced, dedicated for the prevention of broken rails, in a metro lines automation context. This modeling is based on a generic approach named VirMaLab (Virtual Maintenance Laboratory) using the Dynamic Bayesian Network theory, with a modular approach. Thus, the proposed modeling can be divided in sub networks, eventually interconnected, describing the rail degradation process, the different diagnosis devices and, finally, the maintenance actions decision.

The originality of this work is that, if the application introduced in this paper deals with the railway infrastructure, the considered approach is generic and can easily be extended to all kind of maintenance processes modeling for determining Maintenance and/or Diagnosis optimal parameters. Moreover, the use of Graphical Duration Models ensures an accurate degradation process modeling, whatever sojourns times distributions in all system's states.

Finally, the multi-nets extension allows introducing a multiple temporal sampling, satisfying both the degradation dynamic and the accuracy required to quantify correctly the impact of broken rails and to answer operator's questions.

As an illustration of this generic approach, some results are introduced, focusing on the influence of USV auscultation period on annual broken rails and on their localization. These experiments were realized for the line 7 of the Paris metro network.

This illustrates the ability of the approach to simulate all kinds of scenarios, modifying maintenance decisions, diagnosis parameters or running variables.

One last advantage of the introduced method leads in the fact that all new information (from database or expert advice) or modification of the diagnosis process can easily be taken into account to amend the modeling.

Finally, the integration of metaheuristics in the inference algorithm is actually in progress will furnish useful tool to determine, in respect of some predetermined criteria, the optimal diagnosis and/ or maintenance parameters.
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 1 Figure 1. Generic approach for the VirMaLab maintenance decision support tool.
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 2 Figure 2. Dynamic Bayesian Network modeling a Markov chain.

  The solid lines define the basic structure; dashed lines indicate optional items and red bold edges characterize dependencies between time slices.
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 3 Figure 3. Graphical Duration Model in the form of a Dynamic Bayesian Network. The model handles two kinds of variable: -1 ( ) t t T X represents the system state over a sequence of length T. -1 ( ) t D t T X   represents the remaining time before a system state modification (remaining sojourn time). These variables are called duration variables. Optionally, it is possible to introduce a context description of the studied system by means of a prior graphical model  Zt . It aims to define the distribution of a possible collection of context variables (covariates) Z t = , 1 ( ) p t p P Z
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 4 Figure 4. Broken rail due to the spreading of an Inner Crack. Currently, the diagnosis of rail defects results from the combination of diagnoses from the four actors (detecting devices or specific staffs) involved in the broken rail monitoring process: these actors are characterized by different inspection periodicities and different detection efficiency according to the type of defect and its location in the rail. -A specific vehicle (USV) dedicated to preventive maintenance actions is equipped with ultrasonic sensors. It diagnoses the rail on average twice a year. It is the only device able to detect the 4 classes of defects. It will be named. -Some walking survey teams (WT) are passing along the lines on average once or twice a month. They only can detect BR and have therefore a corrective function. -During the passenger service, metro drivers (Drv)frequently feel some shocks from the rails, and
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 5 Figure 5. Multi-nets structure of the VirMaLab decision support tool StatAvaries.

Figure 6 .

 6 Figure 6. Structure of the VirMaLab model for the 3 first slices of the StatAvaries Multi-nets.
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 7 Figure 7. Structure of the VirMaLab model for the 'one hour step' slice of the StatAvaries Multi-nets.

  Broken rails: Number of annual BR on the line, mean time (in hours) before their detection and the contribution of each diagnosis device in these detections. Number of annual 'dangerous' BR (occurring in a critical 'in curve' context). -Maintenance actions: Number of annual preventive and corrective maintenance actions, ratio of actions started by false alarms and their distribution among all diagnosis devices. -Number of lost trains: When a BR occurs, the op-
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 8 Figure 8. Influence of the USV period on rail's degradation -Application to line 7.
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 9 Figure 9. Influence of the USV period on rail's degradation for different curves contexts -Application to line 7.