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Abstract A numerical procedure based on Isogeometric Analysis (IGA) is de-

veloped to analyze the dynamic response of flexoelectric systems in the frequency

domain. In materials or composites with an effective flexoelectric response, a po-

larization can be induced by local strain gradients. In general, these effects are

small in the static regime. However, larger effects may be induced by dynamic

loads, and can be used in energy harvesters converting mechanical vibrations into

electrical energy. In this work, the equations describing frequency response of

flexoelectric systems under dynamic loads are first described. Then, an IGA dis-

cretization procedure is employed to handle the C1 continuity of the displacement

fields. The conditions of both open and close-circuits are formulated. The numer-
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ical methodology is used to evaluate the sensitivity of different parameters such

as load resistors, dynamic scale parameter, and the use of flexoelectric or non-

flexoelectric materials on the frequency response of output voltage, power and

displacements of beam-like structures, possibly incorporating structural geometri-

cal features. The potential of IGA with respect to mesh refinement (h-refinement)

and higher order approximation (p-refinement) for modeling complex geometries

within the present framework is invetigated.

1 Introduction

Flexoelectricity describes the coupled electromechanical behavior when an elec-

trical polarization is induced by a strain gradient (direct flexoelectricity), or when a

mechanical strain is induced by a polarization gradient (converse flexoelectricity)

in dielectric materials. With the miniaturization of electronic devices, flexoelectric

effect have gained increasing attention as the effects are more pronounced when

the size of the devices decreases. A wide range of promising application for flex-

oelectricity were studied, such as nano generators [1], energy harvesters [2,3],

sensors and actuators [4,5]. Flexoelectric effect was first theoretically predicted

by Mashkevich and Tolpygo [6], and experimentally observed in the 1960s [7].

However, a pioneering experimental measurement of flexoelectric coefficients was

performed in the 2000s by Ma and Cross [8,9]. In [10], Kogan estimated the range

of flexoelectric coefficients for several materials. The fourth-order partial differen-

tial equations for flexoelectricity in solid were solved with analytical methods on

simple geometries in [11–14].
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In general, flexoelectric effects are small in the static regime. However, larger

effects may be induced by dynamic loads, and can be used in energy harvesters

converting mechanical vibrations into electrical energy. The analytic solutions of

flexoelectric dynamic models have been obtained in several studies focusing on

simple Euler-Bernoulli or Timoshenko beams. Deng examined the output power

density and conversion efficiency of flexoelectric energy harvesters [2], and stud-

ied the impact of the flexo-dynamic effects on nanoscale energy harvesters [15].

Baroudi [16] analyzed analytically the static and dynamic responses of nanobeam

with different boundary conditions. Wang[17] developed an analytical model in-

corporating flexoelectric effects for nanoscale unimorph piezoelectric energy har-

vesters with arbitrary length and position of piezoelectric layer and proof mass.

Flexoelectric vibrating models can be used as sensors [18], actuators and vibra-

tion control of flexoelectric beam [19,20]. The surface and size effects were in-

troduced to the dynamic response of flexoelectric energy harvesters in [21] and in

nanobeams in [22,23]. Nguyen [24] investigated the influence of dynamic flexo-

electric effect on the natural frequency of both the Timoshenko and Euler-Bernoulli

beams, where the flexo-dynamic term and dynamic polarization were both consid-

ered. Yu [25] studied dynamic flexoelectric effects in functionally graded piezo-

electric nano beams. The dynamic responses of nanoplates with flexoelectric effect

in Kirchhoff plates was proposed by [26,27]. Other studies incorporating nonlinear

effects in dynamic response of flexoelectric systems can be found in [28–32].

For general geometries, the main difficulty is due to the fourth-order nature

of the flexoelectric partial differential equation, requiring C1 continuity of the dis-
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cretized displacement field. Several numerical methods were proposed to solve

this issue, including the local maximum-entropy (LME) meshfree methods [33,

34], mixed FEM [35,36], isogeometric analysis [37–39], B-spline techniques [40],

or the Argyris triangular elements [41]. Several numerical methodologies for dy-

namic analysis of flexoelectric models were proposed. Kumar developed a finite

element analysis of flexoelectric energy harvester where a trapezoidal shaped can-

tilever was optimized for a wide range of excitation frequencies [42], and used it

on a flexoelectric bi-stable energy harvester [43]. Thai [44] developed a staggered

explicit-implicit isogeometric formulation for large deformation flexoelectricity

based on transient analysis. Xue [45] presented a flexoelectric micro cantilever en-

ergy harvester with a broad bandwidth. A few papers incorporated strain gradient

inertial effects in the formulation (see [46–49]). A review paper summarizing the

different dynamic flexoelectric formulations can be found in [50].

In this work, we developed an isogeometric analysis (IGA) framework to solve

the dynamic response of flexoelectric energy harvesters for arbitrary geometries,

in the frequency domain, including strain gradient inertial effects. Note that we

do not consider here flexoelectric dynamic effects related to the coupling between

velocity and rate of polarization, which could be investigated in future studies.

As compared to the previous related works available in the literature, the IGA

discretization is proposed here for the first time to solve dynamic flexoelectric

problems in the frequency domain. The conditions of both open and close-circuits

are formulated. The numerical methodology is used to evaluate the sensitivity of

different parameters such as load resistors, flexoelectric coefficients and dynamic
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scale parameter on the frequency response of output voltage, power and displace-

ments of a beam-like structure with structural geometrical features, to evaluate

the potential of the proposed IGA approach, and its advantages for h− and p−

refinements when considering complex geometries.

2 Static flexoelectricity

The equations governing the static flexoelectric equilibrium are first reviewed. An

open domain Ω ⊂ R2 is considered, with boundary ∂Ω . The boundary is com-

posed of Dirichlet and Neumann parts, which are denoted by ∂Ωu and ∂Ωt for

the displacement problem, respectively, and ∂Ωφ and ∂ΩD for the electric prob-

lem, respectively, such as ∂Ωu ∪Ωt = ∂Ω , ∂Ωu ∩Ωt = /0 and ∂Ωφ ∪ΩD = ∂Ω ,

∂Ωφ ∩ΩD = /0. In the following, bold symbols denote vectors or tensors, while

non-bold symbols denote scalars or tensor components.

The electric enthalpy density h∗ of a linear electromechanical system, where

piezoelectricity and flexoelectricity are both taken into account, is expressed by [2,

33,49]:

h∗ =
1
2

Ci jklεi jεkl −
1
2

αi jEiE j − ei jkEkεi j −µi jklEi∇ε jkl +
1
2

Gi jklmn∇εi jk∇εlmn

(1)

In Eq. (1), C, α and e denote the fourth-order elastic, second-order dielectric

and third-order piezoelectric tensors, respectively, µ denotes the fourth-order flex-

oelectric tensor, while G is the sixth-order strain gradient elastic tensor. Note that

the above model does not include converse flexoelectric effects [51]. For further

extensions about this model, see e.g. [52].
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The strain tensor ε, the strain-gradient tensor ∇ε and the electric field vector

E are related to displacement vector u and the electric potential φ through:

εi j =
1
2
(ui, j +u j,i) (2)

Ei =−φ,i (3)

∇εi jk = εi j,k =
1
2
(ui, jk +u j,ik) (4)

Then the constitutive equations are obtained by:

σi j =
∂h∗

∂εi j
=Ci jklεkl − eki jEk (5)

di =−∂h∗

∂Ei
= αi jE j + ei jkε jk +µi jkl∇ε jkl (6)

τi jk =
∂h∗

∂∇εi jk
= Gi jklmn∇εlmn −µi jklEl (7)

where the σ, d and τ denote stress, electric displacement and hyperstress tensors,

respectively. The equations of the dielectric problem without free charge and me-

chanical problem without body force are given by [12]

di,i = 0 in Ω (8)

σi j, j − τi jk, jk in Ω (9)

The problem is completed by boundary conditions for the electric problem as

φ = φ
d on ∂Ωφ (10)

dini =−Dd
n on ∂ΩD (11)

where φ d and Dd
n are the prescribed electric potential and surface charge density

and n is the unitary normal vector to the boundary ∂Ω . The mechanical boundary
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conditions are given by (see e.g. [33]):

ui = ud
i on ∂Ωu (12)

tk = n j
(
σ jk − τi jk,i

)
−D j

(
niτi jk

)
= Fd

k on ∂ΩF (13)

where ud and Fd are the prescribed mechanical displacements and tractions, and

D j(.) =
∂ (.)
∂x j

−n jnq
∂ (.)
∂xq

. Due to strain gradients, additional boundary conditions are

considered:

ui, jn j = vd
i on ∂Ωv (14)

nin jτi jk = rd
k on ∂Ωr (15)

with ∂Ωv∪Ωr = ∂Ω , ∂Ωv∩Ωr = /0. Here, we assume natural boundary conditions

on ∂Ωv and Ωr, i.e. vd = rd = 0.

3 Dynamic flexoelectricity

The total electric enthalpy H, the kinetic energy K, the Rayleigh dissipation R̃ and

the external work W ext are expressed by [33,50] :

H =
∫

Ω

h∗dΩ (16)

K =
∫

Ω

1
2

ρ u̇iu̇i +
1
2
ℓ2

d u̇i, ju̇i, jdΩ (17)
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R̃ =
∫

Ω

1
2

Vi ju̇iu̇idΩ (18)

W ext =
∫

∂Ωt

Fd
i uidS−

∫
∂ΩD

Dd
nφdS (19)

Above, ρ is the density, ˙(.) indicates time derivative, ℓd is dynamic scaling pa-

rameter (micro inertia characteristic length). The term ℓ2
d u̇i, ju̇i, j is a dynamic term

associated with the strain gradient problem [50,53] and V denotes viscous damp-

ing coefficients. Let us group all unknown quantities, respectively the displacement

vector u and the potential φ in a vector q. From the Hamilton’s principle, the fol-

lowing Lagrangian equations are obtained, taking into account dissipation due to

viscous damping terms:

d
dt

(
Dδ q̇L

)
−DδqL+Dδ q̇R =W ext (20)

where Dδv f (u) is the directional derivative, expressed by

Dδv f (u) =
[

d f (u+αδv)
dα

]
α=0

(21)

and Dq = Dδu +Dδφ , Dq̇ = D ˙δu and

L = K −H (22)

We have, using (17):
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Dq̇L = Du̇L =
∫

Ω

Du̇KdΩ =
∫

Ω

ρ u̇iδ u̇i + ℓ2
d u̇i, jδ u̇i, jdΩ (23)

Then,

d
dt

(Dq̇L) =
∫

Ω

ρ üiδ u̇i + ℓ2
d üi, jδ u̇i, jdΩ (24)

and

DδL =−DδuH −Dδφ HdΩ . (25)

We have, using (1)-(16):

DδuH =
∫

Ω

Ci jklεi jδεkl − ei jkδεi jEk −µi jklEiδ∇ε jkl +Gi jklmn∇εi jkδ∇εlmndΩ

(26)

Dδφ H =
∫

Ω

αi jEiδφ, j + ei jkεi jδφ,k +µi jklδφ,i∇ε jkldΩ (27)

and

Dδ q̇R̃ = Dδ u̇R̃ =
∫

Ω

Vi ju̇iδu jdΩ (28)

We finally obtain the weak forms:

∫
Ω

σi jδεi j + τi jkδ∇εi jk +ρ üiδui + ℓ2
d üi, jδui, j +Vi ju̇iδu jdΩ =

∫
∂Ωt

Fd
i δuidS

(29)∫
Ω

diδφ,idΩ =
∫

∂ΩD

Dd
nδφdS (30)
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with δεi j =
1
2 (δui, j +δu j,i) and δ∇εi jk =

1
2

(
δui, jk +δu j,ik

)
.

4 IGA discretization of dynamic flexoelectricity equations

4.1 IGA discretization scheme

The flexoeoectric problem requires at least C1 continuity of displacement fields

due to the strain gradient terms in (29). Different approaches have been proposed

in the literature, as described in the introduction. In this work, we use Isogeometric

Analysis (IGA) [54] for the discretization of the dynamic flexoelectric problem in

the frequency domain. In isogeometric analysis, the NURBS (Non-Uniform Ra-

tional B-Spline) are used to construct curves, surface and solid, and NURBS basis

functions are employed to approximate the physical fields like the displacements

(see e.g. [54,55]). The NURBS basis functions are defined by

Ri,p(ξ ) =
Ni,p(ξ )wi

W (ξ )
=

Ni,p(ξ )wi

∑
n
j=1 N j,p(ξ )w j

(31)

where ξ = {ξ1,ξ2, ...,ξn+p+1}, denote the knots, p is the polynomial order, n is

the number of basis function and wi, i = 1,2, ...,n are positive weights. It is worth

noting that when all the weights are equal, the NURBS basis degenerate to the

B-Spline basis. In (31), Ni,p(ξ ) are B-Spline basis functions which are recursively

defined using the Cox-de Boor formula [56] and starting with piecewise constants

functions (p = 0):
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Ni,0 =


0, i f ξi ≤ ξ ≤ ξi+1

1, otherwise.
(32)

For p = 1,2, ..., we have

Ni,p(ξ ) =
ξ −ξi

ξi+p −ξi
Ni,p−1(ξ )+

ξi+p+1 −ξ

ξi+p+1 −ξi+1
Ni+1,p−1(ξ ) (33)

The NURBS surfaces are formulated as

S(ξ ,η) =
n

∑
i=1

m

∑
j=1

Rp,q
i, j (ξ ,η)Bi, j (34)

Where Bi, j are the coordinates of the control points. The rational terms Rp,q
i, j are

provided by

Rp,q
i, j (ξ ,η) =

Ni(ξ )M j(η)wi, j

∑
n
î=1 ∑

m
ĵ=1 Nî,p(ξ )M ĵ,q(η)wî, ĵ

(35)

and Ni,p(ξ ) and Mi,q(η) are univariate B-Spline basis of order p and q correspond-

ing to knot vectors ξ and η, respectively.

In this work, the IGA discretization for the problem defined in (29)-(30) is pre-

sented with 2D plane strain assumption. The displacement u and electric potential

ϕ fields are both approximated using NURBS according to

u(x) =
n

∑
i=1

m

∑
j=1

Rp,q
i, j (ξ ,η)ue

i j =Nuu
e (36)

ϕ(x) =
n

∑
i=1

m

∑
j=1

Rp,q
i, j (ξ ,η)φ e =Nφϕ

e (37)

defining the following vectors:

ue =
[
u1

x ,u
2
x , ...,u

n
x ,u

1
y ,u

2
y , ...,u

n
y
]

(38)
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ϕe =
[
φ

1,φ 2, ...,φ n] (39)

[ε] = [ε11,ε22,2ε12] (40)

[∇ε] = [∇ε111,∇ε221,2∇ε122,∇ε222,2∇ε121] (41)

and the different following quantities are obtained from the shape function deriva-

tives by

[ε] =Buu
e (42)

E =−Bφϕ
e (43)

[∇ε] =Huu
e (44)

where Bu, Bφ and Hu are shape function derivative matrices, given by

Bφ =

 ∂N1
∂x · · · ∂Nn

∂x

∂N1
∂y · · · ∂Nn

∂y

 , Bu =


∂N1
∂x · · · ∂Nn

∂x 0 · · · , 0

0 · · · 0 ∂N1
∂y · · · ∂Nn

∂y

∂N1
∂y · · · ∂Nn

∂y
∂N1
∂x · · · ∂Nn

∂x

 (45)
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Hu =



∂ 2N1
∂x2 · · · ∂ 2Nn

∂x2 0 · · · 0

0 · · · 0 ∂ 2N1
∂x∂y · · · ∂ 2Nn

∂x∂y

∂ 2N1
∂y2 · · · ∂ 2Nn

∂y2
∂ 2N1
∂x∂y · · · ∂ 2Nn

∂x∂y

0 · · · 0 ∂ 2N1
∂y2 · · · ∂ 2Nn

∂y2

∂ 2N1
∂x∂y · · · ∂ 2Nn

∂x∂y 0 · · · 0

∂ 2N1
∂x∂y · · · ∂ 2Nn

∂x∂y
∂ 2N1
∂x2 · · · ∂ 2Nn

∂x2



(46)

and ue and ϕe denote the nodal displacements and potentials, respectively.

When only static equilibrium is considered, substituting (36)-(44) into (29)-

(30) yields a discrete system of algebraic equations in the form:

 Kuu Kuφ

−KT
uφ

Kφφ


 u

ϕ

=

 fu

fφ

 (47)

with

Kuu =
∫

Ω

[BT
u CBu +HT

u GHu]dΩ (48)

Kuφ =
∫

Ω

[BT
φ eBu +BT

φ µHu]dΩ (49)

Kφφ =
∫

Ω

[BT
φ αBφ ]dΩ (50)

fu =
∫

Ω

NT
u FddΩ (51)

fφ =−
∫

Ω

NT
φ Dd

ndΩ (52)
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Moreover, the material parameters C, e, α, µ and G can be defined in the

matrix form [34,57] as

C =


c11 c12 0

c12 c22 0

0 0 c44

 , e=

e111 e122 e112

e211 e222 e212

 , α=

α11 0

0 α33

 (53)

µ=

µ1111 µ1221 µ1122 µ1222 µ1112 µ1121

µ2111 µ2221 µ2122 µ2222 µ2112 µ2121

 (54)

For the sake of simplicity, we assume the matrix G is in the form:

G = ℓ2



c11 0 0 c12 0 0

0 c11 c12 0 0 0

0 c12 c11 0 0 0

c12 0 0 c11 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44



(55)

4.2 IGA discretization of dynamic flexoelectricity in the frequency domain

When dynamic terms are taken into account, introducing (36)-(44) into (29)-(30)

yields the following discrete set of time-differential equations:


Mü+Du̇+Kuuu+Kuφϕ= fu

−KT
uφ

u+Kφφϕ= fφ

(56)
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where the mass matrix M and damping matrix D are defined by

M =
∫

Ω

ρ{NT
u Nu + ℓ2

dB̃
T
u B̃u}dΩ (57)

D =
∫

Ω

NT
u VNdΩ (58)

with

B̃u =



∂N1
∂x · · · ∂Nn

∂x 0 · · · , 0

0 · · · 0 ∂N1
∂y · · · ∂Nn

∂y

∂N1
∂y · · · ∂Nn

∂y 0 · · · 0

0 · · · 0 ∂N1
∂x · · · ∂Nn

∂x


(59)

Following classical approaches, the matrix D is approximated by

D = β1M+β2Kuu (60)

Above, β1 and β2 are constants computed by [2]:β1

β2

=
2ω1ω2

ω2
1 −ω2

2

−ω2 ω1

1
ω2

− 1
ω1


ξ1

ξ2

 (61)

where ξ1 and ξ2 are two damping ratios, and ω1 and ω2 are the first two resonance

frequencies of the structure.

The displacement field, the potential and the external forces are assumed to be

in the form:

u = ũe jωt , ϕ= ϕ̃e jωt , fu = f̃ue jωt (62)
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where j is the complex number and ω is the frequency. In the case of an open

circuit, fφ = 0. Introducing (62) in (56), we obtain:
(
Kuu + jωD−ω2M

)
Kuφ

−KT
uφ

Kφφ


ũ

ϕ̃

=

f̃u

0

 (63)

In this work, boundary conditions associated with a close-circuit, as illustrated

in Fig. 1(b), are considered. Following [58], we have:

ḟφ =
ϕ̂

R
(64)

where R is the resistor value and ϕ̂ is the vector of nodal potentials where the resis-

tor is connected. The vector ϕ̂ is related to the global unknown vector ϕ̃ through

a matrix T such that ϕ̂= Tϕ̃ and which contains mainly zeros and ones. Deriving

the last equation of (56) with respect to time we obtain:

−KT
uφ u̇+Kφφ ϕ̇= ḟφ (65)

Then, using (62) and (64), it yields:

− jωKT
uφ ũ+ jωKφφ ϕ̃=

ϕ̂

R
(66)

The new linear system to be solved for a given frequency ω is given by:Kuu + jωD−ω2M Kuφ

−KT
uφ

Kφφ− T
jωR


ũ

ϕ̃

=

f̃u

0

 (67)

5 Numerical examples

In this section, we first validate the present IGA formulation for dynamic flex-

oelectric calculations. Then, we use the present numerical model to discuss the

influence of parameters in vibrating flexoelectric systems.
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Open circuith

L

F

Closed circuith

L

R

A

(a) (b)

Fig. 1: Electromechanical coupling cantilever beam with (a) open circuit boundary

conditions; (b) close-circuit boundary conditions.

5.1 Validation of the IGA flexoelectric model

5.1.1 Static flexoelectric benchmark First, we validate the present IGA frame-

work on a static flexoelectric benchmark. A beam made of a flexoelectric material

is considered, as shown in Fig. 1 (a). Displacements are fixed on the right-end, and

a static force F = 1 N is prescribed on the top-right corner along the y−direction.

On the left end, zero electric potential is prescribed to mimic an open circuit. The

beam has dimensions h×L. The length of the beam is L = 20h and the thickness

h varies. It is assumed that only the stress component σ11 and electric field com-

ponent E2 are non-zero. The analytical solution of the energy conversion de f f for

a 1-D flexoelectric beam model was provided in Majoub et al. [59] as:

de f f =
χ

1+χ

√
α

Y
(e2 +12(

µ

h
)) (68)

where χ is electric susceptibility, α =α33 is dielectric coefficient, Y is the Young’s

modulus, e = e31 is the transversal piezoelectric coefficient, and µ = µ12 is the

transversal flexoelectric coefficient. Then the analytical expression of the nor-

malized effective piezoelectric constant (NEPC) d∗ for this problem was provided
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as[59]

d∗ =
de f f

dpiez
=

√(
1+12

(
µ12

eh

)2
)

(69)

To simulate the one-dimensional analytical model in [59], we simplify our model

by neglecting the Poisson’s ratio (i.e. ν = 0) and considering only the transversal

piezoelectric and flexoelectric constants e13 and µ12 to be non-zero. The numerical

values of the coefficients are provided in Table 1. For numerical calculations, the

rectangular domain corresponding to the beam is discretized with Nx×Ny B-spline

elements of order 2. Considering plane strains, the matrices Kφφ and Kuu in (47)

are assembled using the values of C, α, e in (53) as:

C =
Y

(1+ν)(1−2ν)


1−ν ν 0

ν 1−ν 0

0 0 1
2 −ν

 , α=

α33 0

0 α33

 (70)

µ=

0 µ12 0 0 0 0

0 0 0 0 µ12 0

 e=

 0 0 0

e31 0 0

 (71)

and G = 0 in (55). The NEPC is evaluated from the numerical IGA calculations

by:

d̃∗ =

√
1
2ϕ1·Kφφ ·ϕ1
1
2 u1·Kuu·u1√

1
2ϕ2·Kφφ ·ϕ2
1
2 u2·Kuu·u2

(72)

where ϕ and u are the vector solutions of the linear system (47), and the subscript

1 and 2 correspond to piezo-flexoelectric effects and only piezoelectric effects,
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E ν µ12 α33 e31

100 GPa 0 10 nC/m 1nC/V m -4.4 C/m2

Table 1: Material parameters.

0 2 4 6 8

Normalized thickness

1

2

3

4

5

6

7

d
*

Analytical

IGA

Fig. 2: Normalized effective piezoelectric coefficient (NEPC) with respect to no-

malized thickness h′.

respectively. A comparison between the analytical and the numerical NEPC solu-

tions are provided in Fig. 2 for a fixed 240×24 B-Spline elements of order 2 and

varying values of the normalized thickness h′ = −eh/µ . A very good agreement

between both solutions can be appreciated.

5.1.2 Dynamic benchmark In this next example, we consider the free vibration

of a cantilever beam with square section where the left end is fixed and the other

boundaries are free. The objective is to validate the IGA scheme in the dynamic

case. Here, the electromechanical coupling is not taken into account. The analyti-
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cal expression of the natural frequencies fr are given by [60]:

fr =
λ 2

r

2πL2

√
Eh2

12ρ
(Hz) (73)

where r is the frequency number, I = bh3/12 (b = h is width) is the moment of

inertia for a square section, ρ is the density, and λr are the roots of the characteristic

equation:

1+ cosλr coshλr = 0 (74)

Here, λ1 is found numerically as λ1 = 1.875. The other parameters are the

same as in the previous example. The first natural frequency is computed from the

IGA calculation by solving the eigenvalue problem

Kuu −ω
2
r M = 0, f1 =

ω1

2π
. (75)

A comparison between the present IGA and the exact solution is provided in

Fig. 3, showing a very good agreement.

5.2 Frequency response of a flexoelectric beam

In this example, the effects of flexoelectricity on dynamic voltage, power and dis-

placement responses of a beam are investigated. The voltage and displacement

responses are defined as the absolute value of voltage and and displacement at the

top right corner of the structure. The power is obtained as P = Φ̄2

R , where Φ̄ is

the potential at the top right corner of the structure. Both open and close-circuit
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Fig. 3: Natural frequency of an elastic beam: comparison between exact and

present IGA solutions.

boundary conditions, as depicted in Fig. 1 (a) and (b), are considered. The dimen-

sions of the beam are h = 200 nm and L = 2000 nm. The left end is clamped and

an excitation force F(ω) = Fye jωt is prescribed on the top right corner in the y-

direction with Fy = 1 N. The effect of the resistor R is taken into account through

Eq. (67). The material parameters of the material composing the beam are taken

from [61] and correspond to a PZT/PZT composite. The corresponding coefficients

are provided in Appendix 8. The density is taken as ρ = 7500 kg.m−3. To define

the matrix G, we follow [62], and use the definition Gi jmkln =Ci jklLmn, where we

use Lmn = ℓδmn. There is no general agreement on the choice of the length scale

ℓ. In [50], it is recommended that ℓ should be of the order of L, L being the typ-

ical characteristic length of heterogeneities. Then, we have chosen here ℓ = 10−8

m. Other authors have used such values, see e.g. [34]. In [50], Askes et al. sug-

gested the heuristic rule for the dynamic length parameter ℓd > ℓ. In their work,

they employed a gradient elasticity model to fit wave dispersion results of carbon
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nanotubes based on molecular dynamics (MD) obtained by Wang et al. [63], and

found a good agreement with the MD results when ℓd is in the range 3ℓ - 35ℓ.

Then, in this work, ℓd was chosen as ℓd = 10ℓ. The modal damping ratios in (61)

are found as ξ1 = ξ2 = 0.01. For the close-circuit of Fig. 1 (b), the potential on

the top and bottom surfaces is enforced to be equal using a penalty method and

the penalty parameter is taken as 102 (see e.g. [64]). The evolution of the volt-

age, y−displacement and power frequency responses are shown in Fig. 4, when

the value of the resistor R varies. First, we can notice that the use of a flexoelec-

tric material instead of a purely piezoelectric creates a voltage response while the

purely piezoelectric material creates zero voltage (see Fig. 4). On the contrary, the

displacement response is significantly larger when considering non-flexo material,

and a small difference in the resonance frequency can be noticed. In Fig.4c, the

amplitude of the output power decreases with respect to the increasing resistors,

while the increase of output voltage is not significant.

In this last test, we evaluate the variation of the dynamic response of the system

with respect to the dynamic length scale parameter ℓd , which is varied from 5ℓ to

30ℓ (ℓ = 10−8m). Results are presented in Fig. 5. We can note that changing ℓd

has no influence on the amplitude of voltage and displacement reponses, and only

small influence on the resonance frequency.

5.3 Dynamic behavior of a flexoelectric beam with periodic wavy shape

In this example, the dynamic response of a flexoelectric beamwith periodic wavy

shape is investigated, to illustrate the present numerical framework for more com-
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Fig. 4: (a) Voltage, (b) displacement and(c) power frequency responses for varying

values of the resistor R in the open and close-circuit conditions.
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Fig. 5: (a) Voltage and (b) displacement frequency responses for varying values of

the micro inertial ℓd in the open circuit conditions.

plex structural geometries. The geometry of the beam is described in Fig. 6. The

beam geometry is defined by 4×1 patterns of dimensions H1×H2= 200×300 nm2

as described in Fig. 6 (b) and parametrized by a parameter h. The dimensions of

the rectangular domain containing the patch are H1 = 200 mm and H2 = 300 mm.

The geometric data, i.e. the coordinates of the control points defining the different
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H2

H1

h

(a) (b)

Fig. 6: Flexoelectric beam with periodic wavy shape: (a) geometry and boundary

conditions; (b) initial IGA discretization of a periodic pattern.

NURBS curves of one cell, are provided in Table 2. Both open and closed circuit

conditions are considered, but only the open circuit boundary conditions are de-

picted in Fig. 6. The closed circuit conditions are the same than in Fig. 1(b). The

material parameters are the same than in the previous example and are provided in

(76)-(80) while the dynamic length parameter is chosen as ℓd = 20ℓ.

First, the variations of voltage and y-displacements frequency responses are

studied for a variation of h in the open-circuit conditions. Results are shown in

Fig.7. It can be seen that a larger h increases displacement response while a small

increase on voltage response, and with a significant decrease of the resonance fre-

quency.

In Fig.8, voltage, y−displacement and power frequency responses are pre-

sented for the close-circuit, for different values of resistor R and fixed value of the

parameter h = 50 nm. We can note that in this configuration, the voltage and dis-
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i Bi,1(nm) wi,1 Bi,2(nm) wi,2

1 (0,0) 1 (0 300) 1

2 (100-6h/5,0) 1 (100-6h/5,300) 1

3 (100-h,0) 1 (100-h,300) 1

4 (100-4h/5,h)
√

2/2 (100-4h/5,300-h)
√

2/2

5 (100,h) 1 (100,300-h) 1

6 (100+4h/5,h)
√

2/2 (100+4h/5,300-h)
√

2/2

7 (100+h,0) 1 (100+h,300) 1

8 (100+6h/5h,0) 1 (100+6h/5,300) 1

9 (200,0) 1 (200,300) 1

Table 2: Control points Bi, j and weights wi, j for the geometry shown in Fig.6.

placement responses monotonically increase while increasing resistors decreases

the power response. This suggests that an optimal resistor value must be chosen to

maximize the effects in the application of flexoelectricity to energy harvesters.

The results associated with the same configuration but for the close-circuit with

R = 0.01 Ω are shown in Fig.9. In that case, increasing the parameter h increases

the voltage and power responses, but still increases the displacement response. In

all cases, increasing h slightly decreases the resonance frequency. It is worth noting

that in this example, varying h was done easily by simply moving the control

points in the present IGA framework. Note that for geometries like holes, multiple

patches with C1 continuity could be used, as described in [65].
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Fig. 7: (a) Voltage and (b) displacement frequency responses with respect to the

geometrical h parameter in the open-circuit conditions.

5.4 h− p refinement effects on flexoelectric beam with complicated geometry

In this example, we investigate the effects of mesh refinement (h−refinement) and

high-order approximation (p−refinement) of IGA to the dynamic analysis of flex-

oelectric structures with complex geometries, which could arise e.g. from CAD

(Computer Aided Design). The geometry and boundary conditions of the beam
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Fig. 8: (a) Voltage, (b) displacement and (c) power frequency responses with re-

spect to resistor R for a fixed radius h = 50 nm in the close-circuit conditions.
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Fig. 9: Voltage and displacement and power frequency responses with respect to

geometrical parameter h for resistor R = 0.01 Ω in the close-circuit conditions
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are shown in Fig.10. The geometric data, i.e. the control points defining the differ-

ent NURBS curves, are provided in Table 3. The material parameters are listed in

Appendix 8.

The maximum voltage frequency response is defined as the absolute value of

voltage on the first resonance frequency at the top right corner of the structure. The

convergence of the maximum voltage frequency response with respect to h and

p−refinements is presented in Fig.11. We can appreciate the convergence of the

solution using either h or p refinement. We can also observe from Fig. 11a that in-

creasing the order of approximation p may be advantageous to quickly reach con-

vergence, as compared to mesh refinement, which converges more slowly (see Fig.

11a.b). This constitutes an advantage over classical FEM, as increasing the order

in FEM, especially considering C1 continuity, introduces an intractable complex-

ity. We can note from Fig.11a that the curves do not show an obvious convergence

with respect to the mesh refinement, even though the differences between the re-

sponse values for the different meshes are small. To extract the maximum voltage

frequency response, it is required to solve the problem for different frequencies,

and then interpolate to find the maximum value. We believe that this process might

induce additional errors that could explain this low convergence with respect to the

mesh.

6 Conclusions

In this work, we developed an isogeometric analysis (IGA) framework to solve

the dynamic response of flexoelectric energy harvesters for arbitrary geometries,
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Fig. 10: Flexoelectric beam with complex geometry: (a) geometry and boundary

conditions; (b) initial IGA discretization.

in the frequency domain, including strain gradient inertial effects. As compared

to the previous related works available in the literature, the IGA discretization

was proposed here for the first time to solve dynamic flexoelectric problems in

the frequency domain. The conditions of both open and close-circuits were for-

mulated. The potential of the present formulation has been applied to evaluate the

sensitivity of different parameters such as load resistors, flexoelectricity, dynamic

scale parameter and geometric features on the frequency response of output volt-

age, power and displacements of beam-like dynamic energy harvesters, possibly

including structural geometrical features. It was shown that using a flexoelectric

material instead of a piezoelectric material has a critical influence on the voltage

response of the energy harvester in open circuit conditions, showing the optimal

resistive loads in the close-circuits. We also observe that the dynamic length pa-

rameter related to the gradient inertial term has only a small influence on the nu-

merical results. Then, we could conclude that creating large holes in a beam-like

structure made of a flexoelectric material can significantly increase voltage, power
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i Bi,1(×10nm) wi,1 Bi,2(×10nm) wi,2

1 (0,0) 1 (0,6) 1

2 (2,0) 1 (2,6) 1

3 (5,0) 1 (3,6) 1

4 (5,2) 1/
√

2 (6,6) 1

5 (7,2) 1 (9,6) 1

6 (9,2) 1/
√

2 (9,4) 1/
√

2

7 (9,0) 1 (11,4) 1

8 (11,0) 1 (13,4) 1/
√

2

9 (16,0) 1 (13,6) 1

10 (16,2) 1/
√

2 (17,6) 1

11 (18,2) 1 (20,6) 1

12 (20,2) 1 (20,4) 1/
√

2

13 (22,2) 1 (22,4) 1

14 (24,2) 1 (24,4) 1

Table 3: Control points Bi, j and weights wi, j for the geometry shown in Fig.10

and displacement responses in a dynamic energy harvester. Finally, the advantages

of IGA for h− and p-refinement in the present flexoelectric context with applica-

tions to dynamic loads have been demonstrated for complex geometries.
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Fig. 11: Voltage frequency response on the first resonance with respect to (a) h-

refinements and (b) p−refinement for open-circuit conditions.

8 Appendix: numerical values of material matrices

C1 =


132.1 84 0

84 155.6 0

0 0 35.8

(GPa) (76)
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µ=

1.365 1.365 0 0 0 0

0 0 0 2.641 2.641 0

(×10−4C ·m−1) (77)

e=

−0.5217 −0.5217 0

0 0 0

(C ·m−2) (78)

α1 =

2.102 0

0 4.065

(nC2 ·N−1 ·m−2) (79)

g = ℓ2



132.1 0 0 84 0 0

0 132.1 84 0 0 0

0 84 132.1 0 0 0

84 0 0 132.1 0 0

0 0 0 0 35.8 0

0 0 0 0 0 35.8



×109 (80)
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