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Dynamic analysis of flexoelectric systems in the frequency domain with Isogeometric Analysis

A numerical procedure based on Isogeometric Analysis (IGA) is developed to analyze the dynamic response of flexoelectric systems in the frequency domain. In materials or composites with an effective flexoelectric response, a polarization can be induced by local strain gradients. In general, these effects are small in the static regime. However, larger effects may be induced by dynamic loads, and can be used in energy harvesters converting mechanical vibrations into electrical energy. In this work, the equations describing frequency response of flexoelectric systems under dynamic loads are first described. Then, an IGA discretization procedure is employed to handle the C 1 continuity of the displacement fields. The conditions of both open and close-circuits are formulated.

ical methodology is used to evaluate the sensitivity of different parameters such as load resistors, dynamic scale parameter, and the use of flexoelectric or nonflexoelectric materials on the frequency response of output voltage, power and displacements of beam-like structures, possibly incorporating structural geometrical features. The potential of IGA with respect to mesh refinement (h-refinement) and higher order approximation (p-refinement) for modeling complex geometries within the present framework is invetigated.

Introduction

Flexoelectricity describes the coupled electromechanical behavior when an electrical polarization is induced by a strain gradient (direct flexoelectricity), or when a mechanical strain is induced by a polarization gradient (converse flexoelectricity) in dielectric materials. With the miniaturization of electronic devices, flexoelectric effect have gained increasing attention as the effects are more pronounced when the size of the devices decreases. A wide range of promising application for flexoelectricity were studied, such as nano generators [START_REF] Han | Nanogenerators consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes using flexoelectric effects[END_REF], energy harvesters [START_REF] Deng | Nanoscale flexoelectric energy harvesting[END_REF][START_REF] Liang | Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity[END_REF], sensors and actuators [START_REF] Rey | Stress-sensor device based on flexoelectric liquid crystalline membranes[END_REF][START_REF] Herrera-Valencia | Actuation of flexoelectric membranes in viscoelastic fluids with applications to outer hair cells[END_REF]. Flexoelectric effect was first theoretically predicted by Mashkevich and Tolpygo [START_REF] Mashkevich | Electrical, optical and elastic properties of diamond type crystals[END_REF], and experimentally observed in the 1960s [START_REF] Harris | Mechanism for the shock polarization of dielectrics[END_REF].

However, a pioneering experimental measurement of flexoelectric coefficients was performed in the 2000s by Ma and Cross [START_REF] Ma | Large flexoelectric polarization in ceramic lead magnesium niobate[END_REF][START_REF] Ma | Flexoelectric polarization of barium strontium titanate in the paraelectric state[END_REF]. In [START_REF] Kogan | Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals[END_REF], Kogan estimated the range of flexoelectric coefficients for several materials. The fourth-order partial differential equations for flexoelectricity in solid were solved with analytical methods on simple geometries in [START_REF] Maranganti | Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green's function solutions and embedded inclusions[END_REF][START_REF] Sharma | On the possibility of piezoelectric nanocomposites without using piezoelectric materials[END_REF][START_REF] Zhu | Piezoelectric composite based on the enhanced flexoelectric effects[END_REF][START_REF] Shen | A theory of flexoelectricity with surface effect for elastic dielectrics[END_REF].

In general, flexoelectric effects are small in the static regime. However, larger effects may be induced by dynamic loads, and can be used in energy harvesters converting mechanical vibrations into electrical energy. The analytic solutions of flexoelectric dynamic models have been obtained in several studies focusing on simple Euler-Bernoulli or Timoshenko beams. Deng examined the output power density and conversion efficiency of flexoelectric energy harvesters [START_REF] Deng | Nanoscale flexoelectric energy harvesting[END_REF], and studied the impact of the flexo-dynamic effects on nanoscale energy harvesters [START_REF] Deng | The flexodynamic effect on nanoscale flexoelectric energy harvesting: a computational approach[END_REF]. Baroudi [16] analyzed analytically the static and dynamic responses of nanobeam with different boundary conditions. Wang [START_REF] Wang | An analytical model for nanoscale unimorph piezoelectric energy harvesters with flexoelectric effect[END_REF] developed an analytical model incorporating flexoelectric effects for nanoscale unimorph piezoelectric energy harvesters with arbitrary length and position of piezoelectric layer and proof mass.

Flexoelectric vibrating models can be used as sensors [START_REF] Hu | Sensing signal and energy generation analysis on a flexoelectric beam[END_REF], actuators and vibration control of flexoelectric beam [START_REF] Fan | Dynamic flexoelectric actuation and vibration control of beams[END_REF][START_REF] Zhang | Analytical and experimental studies of flexoelectric beam control[END_REF]. The surface and size effects were introduced to the dynamic response of flexoelectric energy harvesters in [START_REF] Yan | Modeling of a nanoscale flexoelectric energy harvester with surface effects[END_REF] and in nanobeams in [START_REF] Yan | Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity[END_REF][START_REF] Zhang | Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory[END_REF]. Nguyen [START_REF] Nguyen | Dynamic flexoelectric effect on piezoelectric nanostructures[END_REF] investigated the influence of dynamic flexoelectric effect on the natural frequency of both the Timoshenko and Euler-Bernoulli beams, where the flexo-dynamic term and dynamic polarization were both considered. Yu [START_REF] Yu | The bending and vibration responses of functionally graded piezoelectric nanobeams with dynamic flexoelectric effect[END_REF] studied dynamic flexoelectric effects in functionally graded piezoelectric nano beams. The dynamic responses of nanoplates with flexoelectric effect in Kirchhoff plates was proposed by [START_REF] Zhang | Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate[END_REF][START_REF] Shingare | Static and dynamic response of graphene nanocomposite plates with flexoelectric effect[END_REF]. Other studies incorporating nonlinear effects in dynamic response of flexoelectric systems can be found in [START_REF] Wang | Non-linear flexoelectricity in energy harvesting[END_REF][START_REF] Baroudi | Dynamic analysis of a nonlinear nanobeam with flexoelectric actuation[END_REF][START_REF] Zarepour | Geometrically nonlinear analysis of timoshenko piezoelectric nanobeams with flexoelectricity effect based on eringen's differential model[END_REF][START_REF] Ajri | How does flexoelectricity affect static bending and nonlinear dynamic response of nanoscale lipid bilayers?[END_REF][START_REF] Chen | Theoretical study of micro/nanoscale bistable plate for flexoelectric energy harvesting[END_REF].

For general geometries, the main difficulty is due to the fourth-order nature of the flexoelectric partial differential equation, requiring C 1 continuity of the dis-cretized displacement field. Several numerical methods were proposed to solve this issue, including the local maximum-entropy (LME) meshfree methods [START_REF] Abdollahi | Computational evaluation of the flexoelectric effect in dielectric solids[END_REF][START_REF] Abdollahi | Revisiting pyramid compression to quantify flexoelectricity: A three-dimensional simulation study[END_REF], mixed FEM [START_REF] Mao | Mixed finite-element formulations in piezoelectricity and flexoelectricity[END_REF][START_REF] Deng | Mixed finite elements for flexoelectric solids[END_REF], isogeometric analysis [START_REF] Ghasemi | A level-set based iga formulation for topology optimization of flexoelectric materials[END_REF][START_REF] Thai | A large deformation isogeometric approach for flexoelectricity and soft materials[END_REF][START_REF] Nguyen | Numerical model for the characterization of maxwell-wagner relaxation in piezoelectric and flexoelectric composite material[END_REF], B-spline techniques [START_REF] Codony | An immersed boundary hierarchical b-spline method for flexoelectricity[END_REF],

or the Argyris triangular elements [START_REF] Yvonnet | A numerical framework for modeling flexoelectricity and maxwell stress in soft dielectrics at finite strains[END_REF]. Several numerical methodologies for dynamic analysis of flexoelectric models were proposed. Kumar developed a finite element analysis of flexoelectric energy harvester where a trapezoidal shaped cantilever was optimized for a wide range of excitation frequencies [START_REF] Kumar | Finite element analysis of vibration energy harvesting using lead-free piezoelectric materials: A comparative study[END_REF], and used it on a flexoelectric bi-stable energy harvester [START_REF] Kumar | A numerical study on flexoelectric bistable energy harvester[END_REF]. Thai [START_REF] Thai | A staggered explicit-implicit isogeometric formulation for large deformation flexoelectricity[END_REF] developed a staggered explicit-implicit isogeometric formulation for large deformation flexoelectricity based on transient analysis. Xue [START_REF] Xue | A wideband flexoelectric energy harvester based on graphene substrate[END_REF] presented a flexoelectric micro cantilever energy harvester with a broad bandwidth. A few papers incorporated strain gradient inertial effects in the formulation (see [START_REF] Papargyri-Beskou | Wave dispersion in gradient elastic solids and structures: A unified treatment[END_REF][START_REF] Gourgiotis | On the reflection of waves in half-spaces of microstructured materials governed by dipolar gradient elasticity[END_REF][START_REF] Li | Reflection and transmission through a microstructured slab sandwiched by two half-spaces[END_REF][START_REF] Sladek | Flexoelectric effect in dielectrics under a dynamic load[END_REF]). A review paper summarizing the different dynamic flexoelectric formulations can be found in [START_REF] Askes | Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results[END_REF].

In this work, we developed an isogeometric analysis (IGA) framework to solve the dynamic response of flexoelectric energy harvesters for arbitrary geometries, in the frequency domain, including strain gradient inertial effects. Note that we do not consider here flexoelectric dynamic effects related to the coupling between velocity and rate of polarization, which could be investigated in future studies.

As compared to the previous related works available in the literature, the IGA discretization is proposed here for the first time to solve dynamic flexoelectric problems in the frequency domain. The conditions of both open and close-circuits are formulated. The numerical methodology is used to evaluate the sensitivity of different parameters such as load resistors, flexoelectric coefficients and dynamic scale parameter on the frequency response of output voltage, power and displacements of a beam-like structure with structural geometrical features, to evaluate the potential of the proposed IGA approach, and its advantages for hand prefinements when considering complex geometries. 

∂ Ω u ∪ Ω t = ∂ Ω , ∂ Ω u ∩ Ω t = / 0 and ∂ Ω φ ∪ Ω D = ∂ Ω , ∂ Ω φ ∩ Ω D = / 0.
In the following, bold symbols denote vectors or tensors, while non-bold symbols denote scalars or tensor components.

The electric enthalpy density h * of a linear electromechanical system, where piezoelectricity and flexoelectricity are both taken into account, is expressed by [START_REF] Deng | Nanoscale flexoelectric energy harvesting[END_REF][START_REF] Abdollahi | Computational evaluation of the flexoelectric effect in dielectric solids[END_REF][START_REF] Sladek | Flexoelectric effect in dielectrics under a dynamic load[END_REF]:

h * = 1 2 C i jkl ε i j ε kl - 1 2 α i j E i E j -e i jk E k ε i j -µ i jkl E i ∇ε jkl + 1 2 G i jklmn ∇ε i jk ∇ε lmn (1) 
In Eq. (1), C, α and e denote the fourth-order elastic, second-order dielectric and third-order piezoelectric tensors, respectively, µ denotes the fourth-order flexoelectric tensor, while G is the sixth-order strain gradient elastic tensor. Note that the above model does not include converse flexoelectric effects [START_REF] Fu | Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition[END_REF]. For further extensions about this model, see e.g. [START_REF] Chen | Enhanced converse flexoelectricity in piezoelectric composites by coupling topology optimization with homogenization[END_REF].

The strain tensor ε, the strain-gradient tensor ∇ε and the electric field vector E are related to displacement vector u and the electric potential φ through:

ε i j = 1 2 (u i, j + u j,i ) (2) 
E i = -φ ,i (3) 
∇ε i jk = ε i j,k = 1 2 (u i, jk + u j,ik ) (4) 
Then the constitutive equations are obtained by:

σ i j = ∂ h * ∂ ε i j = C i jkl ε kl -e ki j E k (5) 
d i = - ∂ h * ∂ E i = α i j E j + e i jk ε jk + µ i jkl ∇ε jkl (6) 
τ i jk = ∂ h * ∂ ∇ε i jk = G i jklmn ∇ε lmn -µ i jkl E l (7) 
where the σ, d and τ denote stress, electric displacement and hyperstress tensors, respectively. The equations of the dielectric problem without free charge and mechanical problem without body force are given by [START_REF] Sharma | On the possibility of piezoelectric nanocomposites without using piezoelectric materials[END_REF] d i,i = 0 in Ω (8)

σ i j, j -τ i jk, jk in Ω ( 9 
)
The problem is completed by boundary conditions for the electric problem as

φ = φ d on ∂ Ω φ ( 10 
)
d i n i = -D d n on ∂ Ω D (11) 
where φ d and D d n are the prescribed electric potential and surface charge density and n is the unitary normal vector to the boundary ∂ Ω . The mechanical boundary conditions are given by (see e.g. [START_REF] Abdollahi | Computational evaluation of the flexoelectric effect in dielectric solids[END_REF]):

u i = u d i on ∂ Ω u (12) 
t k = n j σ jk -τ i jk,i -D j n i τ i jk = F d k on ∂ Ω F ( 13 
)
where u d and F d are the prescribed mechanical displacements and tractions, and

D j (.) = ∂ (.) ∂ x j -n j n q ∂ (.)
∂ x q . Due to strain gradients, additional boundary conditions are considered:

u i, j n j = v d i on ∂ Ω v ( 14 
)
n i n j τ i jk = r d k on ∂ Ω r (15) 
with

∂ Ω v ∪Ω r = ∂ Ω , ∂ Ω v ∩Ω r = / 0.
Here, we assume natural boundary conditions on ∂ Ω v and Ω r , i.e. v d = r d = 0.

Dynamic flexoelectricity

The total electric enthalpy H, the kinetic energy K, the Rayleigh dissipation R and the external work W ext are expressed by [START_REF] Abdollahi | Computational evaluation of the flexoelectric effect in dielectric solids[END_REF][START_REF] Askes | Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results[END_REF] :

H = Ω h * dΩ (16) 
K = Ω 1 2 ρ ui ui + 1 2 ℓ 2 d ui, j ui, j dΩ (17) 
R = Ω 1 2 V i j ui ui dΩ (18) 
W ext = ∂ Ω t F d i u i dS - ∂ Ω D D d n φ dS (19) 
Above, ρ is the density, ( .) indicates time derivative, ℓ d is dynamic scaling parameter (micro inertia characteristic length). The term ℓ 2 d ui, j ui, j is a dynamic term associated with the strain gradient problem [START_REF] Askes | Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results[END_REF][START_REF] Maranganti | A novel atomistic approach to determine strain-gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies[END_REF] and V denotes viscous damping coefficients. Let us group all unknown quantities, respectively the displacement vector u and the potential φ in a vector q. From the Hamilton's principle, the following Lagrangian equations are obtained, taking into account dissipation due to viscous damping terms:

d dt D δ qL -D δ q L + D δ qR = W ext (20) 
where D δ v f (u) is the directional derivative, expressed by

D δ v f (u) = d f (u + αδ v) dα α=0 (21) 
and

D q = D δ u + D δ φ , D q = D δ u and L = K -H (22) 
We have, using [START_REF] Wang | An analytical model for nanoscale unimorph piezoelectric energy harvesters with flexoelectric effect[END_REF]:

D qL = D uL = Ω D uKdΩ = Ω ρ ui δ ui + ℓ 2 d ui, j δ ui, j dΩ (23) 
Then,

d dt (D qL) = Ω ρ üi δ ui + ℓ 2 d üi, j δ ui, j dΩ (24) 
and

D δ L = -D δ u H -D δ φ HdΩ . (25) 
We have, using ( 1)-( 16):

D δ u H = Ω C i jkl ε i j δ ε kl -e i jk δ ε i j E k -µ i jkl E i δ ∇ε jkl + G i jklmn ∇ε i jk δ ∇ε lmn dΩ (26) 
D δ φ H = Ω α i j E i δ φ , j + e i jk ε i j δ φ ,k + µ i jkl δ φ ,i ∇ε jkl dΩ (27) 
and

D δ q R = D δ u R = Ω V i j ui δ u j dΩ (28) 
We finally obtain the weak forms:

Ω σ i j δ ε i j + τ i jk δ ∇ε i jk + ρ üi δ u i + ℓ 2 d üi, j δ u i, j +V i j ui δ u j dΩ = ∂ Ω t F d i δ u i dS (29) 
Ω d i δ φ ,i dΩ = ∂ Ω D D d n δ φ dS (30) 
with δ ε i j = 1 2 (δ u i, j + δ u j,i ) and δ ∇ε i jk = 1 2 δ u i, jk + δ u j,ik .

4 IGA discretization of dynamic flexoelectricity equations

IGA discretization scheme

The flexoeoectric problem requires at least C 1 continuity of displacement fields due to the strain gradient terms in [START_REF] Baroudi | Dynamic analysis of a nonlinear nanobeam with flexoelectric actuation[END_REF]. Different approaches have been proposed

in the literature, as described in the introduction. In this work, we use Isogeometric Analysis (IGA) [START_REF] Hughes | Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement[END_REF] for the discretization of the dynamic flexoelectric problem in the frequency domain. In isogeometric analysis, the NURBS (Non-Uniform Rational B-Spline) are used to construct curves, surface and solid, and NURBS basis functions are employed to approximate the physical fields like the displacements (see e.g. [START_REF] Hughes | Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement[END_REF][START_REF] Nguyen | Extended Isogeometric Analysis for Strong and Weak Discontinuities[END_REF]). The NURBS basis functions are defined by

R i,p (ξ ) = N i,p (ξ )w i W (ξ ) = N i,p (ξ )w i ∑ n j=1 N j,p (ξ )w j (31) 
where ξ = {ξ 1 , ξ 2 , ..., ξ n+p+1 }, denote the knots, p is the polynomial order, n is the number of basis function and w i , i = 1, 2, ..., n are positive weights. It is worth noting that when all the weights are equal, the NURBS basis degenerate to the B-Spline basis. In [START_REF] Ajri | How does flexoelectricity affect static bending and nonlinear dynamic response of nanoscale lipid bilayers?[END_REF], N i,p (ξ ) are B-Spline basis functions which are recursively defined using the Cox-de Boor formula [START_REF] Carl | A practical guide to splines[END_REF] and starting with piecewise constants functions (p = 0):

N i,0 =        0, i f ξ i ≤ ξ ≤ ξ i+1 1, otherwise. (32) 
For p = 1, 2, ..., we have

N i,p (ξ ) = ξ -ξ i ξ i+p -ξ i N i,p-1 (ξ ) + ξ i+p+1 -ξ ξ i+p+1 -ξ i+1 N i+1,p-1 (ξ ) (33) 
The NURBS surfaces are formulated as

S(ξ , η) = n ∑ i=1 m ∑ j=1 R p,q i, j (ξ , η)B i, j (34) 
Where B i, j are the coordinates of the control points. The rational terms R p,q i, j are provided by

R p,q i, j (ξ , η) = N i (ξ )M j (η)w i, j ∑ n î=1 ∑ m ĵ=1 N î,p (ξ )M ĵ,q (η)w î, ĵ (35) 
and N i,p (ξ ) and M i,q (η) are univariate B-Spline basis of order p and q corresponding to knot vectors ξ and η, respectively.

In this work, the IGA discretization for the problem defined in ( 29)-( 30) is presented with 2D plane strain assumption. The displacement u and electric potential ϕ fields are both approximated using NURBS according to

u(x) = n ∑ i=1 m ∑ j=1 R p,q i, j (ξ , η)u e i j = N u u e (36) 
ϕ(x) = n ∑ i=1 m ∑ j=1 R p,q i, j (ξ , η)φ e = N φ ϕ e (37) 
defining the following vectors:

u e = u 1 x , u 2 x , ..., u n x , u 1 y , u 2 y , ..., u n y ( 38 
)
ϕ e = φ 1 , φ 2 , ..., φ n (39) [ε] = [ε 11 , ε 22 , 2ε 12 ] (40) 
[∇ε] = [∇ε 111 , ∇ε 221 , 2∇ε 122 , ∇ε 222 , 2∇ε 121 ] (41) 
and the different following quantities are obtained from the shape function derivatives by

[ε] = B u u e (42) 
E = -B φ ϕ e (43) 
[∇ε] = H u u e (44

)
where B u , B φ and H u are shape function derivative matrices, given by

B φ =     ∂ N 1 ∂ x • • • ∂ N n ∂ x ∂ N 1 ∂ y • • • ∂ N n ∂ y     , B u =         ∂ N 1 ∂ x • • • ∂ N n ∂ x 0 • • • , 0 0 • • • 0 ∂ N 1 ∂ y • • • ∂ N n ∂ y ∂ N 1 ∂ y • • • ∂ N n ∂ y ∂ N 1 ∂ x • • • ∂ N n ∂ x         (45) 
H u =                     ∂ 2 N 1 ∂ x 2 • • • ∂ 2 N n ∂ x 2 0 • • • 0 0 • • • 0 ∂ 2 N 1 ∂ x∂ y • • • ∂ 2 N n ∂ x∂ y ∂ 2 N 1 ∂ y 2 • • • ∂ 2 N n ∂ y 2 ∂ 2 N 1 ∂ x∂ y • • • ∂ 2 N n ∂ x∂ y 0 • • • 0 ∂ 2 N 1 ∂ y 2 • • • ∂ 2 N n ∂ y 2 ∂ 2 N 1 ∂ x∂ y • • • ∂ 2 N n ∂ x∂ y 0 • • • 0 ∂ 2 N 1 ∂ x∂ y • • • ∂ 2 N n ∂ x∂ y ∂ 2 N 1 ∂ x 2 • • • ∂ 2 N n ∂ x 2                     (46) 
and u e and ϕ e denote the nodal displacements and potentials, respectively.

When only static equilibrium is considered, substituting ( 36)-( 44) into ( 29)-( 30) yields a discrete system of algebraic equations in the form:

    K uu K uφ -K T uφ K φ φ         u ϕ     =     f u f φ     (47) 
with

K uu = Ω [B T u CB u + H T u GH u ]dΩ (48) 
K uφ = Ω [B T φ eB u + B T φ µH u ]dΩ (49) 
K φ φ = Ω [B T φ αB φ ]dΩ (50) 
f u = Ω N T u F d dΩ (51) 
f φ = - Ω N T φ D d n dΩ (52) 
Moreover, the material parameters C, e, α, µ and G can be defined in the matrix form [START_REF] Abdollahi | Revisiting pyramid compression to quantify flexoelectricity: A three-dimensional simulation study[END_REF][START_REF] Yvonnet | Apparent flexoelectricity due to heterogeneous piezoelectricity[END_REF] as 

C =        
For the sake of simplicity, we assume the matrix G is in the form: 

G = ℓ 2                    
                    (55) 

IGA discretization of dynamic flexoelectricity in the frequency domain

When dynamic terms are taken into account, introducing (36)-( 44) into ( 29)- [START_REF] Zarepour | Geometrically nonlinear analysis of timoshenko piezoelectric nanobeams with flexoelectricity effect based on eringen's differential model[END_REF] yields the following discrete set of time-differential equations:

       M ü + D u + K uu u + K uφ ϕ = f u -K T uφ u + K φ φ ϕ = f φ ( 56 
)
where the mass matrix M and damping matrix D are defined by

M = Ω ρ{N T u N u + ℓ 2 d BT u Bu }dΩ (57) 
D = Ω N T u VNdΩ (58) 
with

Bu =             ∂ N 1 ∂ x • • • ∂ N n ∂ x 0 • • • , 0 0 • • • 0 ∂ N 1 ∂ y • • • ∂ N n ∂ y ∂ N 1 ∂ y • • • ∂ N n ∂ y 0 • • • 0 0 • • • 0 ∂ N 1 ∂ x • • • ∂ N n ∂ x             (59) 
Following classical approaches, the matrix D is approximated by

D = β 1 M + β 2 K uu (60) 
Above, β 1 and β 2 are constants computed by [START_REF] Deng | Nanoscale flexoelectric energy harvesting[END_REF]:

    β 1 β 2     = 2ω 1 ω 2 ω 2 1 -ω 2 2     -ω 2 ω 1 1 ω 2 -1 ω 1         ξ 1 ξ 2     (61) 
where ξ 1 and ξ 2 are two damping ratios, and ω 1 and ω 2 are the first two resonance frequencies of the structure.

The displacement field, the potential and the external forces are assumed to be in the form:

u = ũe jωt , ϕ = φe jωt , f u = fu e jωt ( 62 
)
where j is the complex number and ω is the frequency. In the case of an open circuit, f φ = 0. Introducing ( 62) in [START_REF] Carl | A practical guide to splines[END_REF], we obtain:

    K uu + jωD -ω 2 M K uφ -K T uφ K φ φ         ũ φ    =     fu 0     (63) 
In this work, boundary conditions associated with a close-circuit, as illustrated in Fig. 1(b), are considered. Following [START_REF] Nanthakumar | Topology optimization of flexoelectric structures[END_REF], we have:

ḟφ = φ R ( 64 
)
where R is the resistor value and φ is the vector of nodal potentials where the resistor is connected. The vector φ is related to the global unknown vector φ through a matrix T such that φ = T φ and which contains mainly zeros and ones. Deriving the last equation of ( 56) with respect to time we obtain:

-K T uφ u + K φ φ φ = ḟφ (65) 
Then, using ( 62) and ( 64), it yields:

-jωK T uφ ũ + jωK φ φ φ = φ R (66) 
The new linear system to be solved for a given frequency ω is given by: To simulate the one-dimensional analytical model in [START_REF] Majdoub | Erratum: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect[END_REF], we simplify our model by neglecting the Poisson's ratio (i.e. ν = 0) and considering only the transversal piezoelectric and flexoelectric constants e 13 and µ 12 to be non-zero. The numerical values of the coefficients are provided in Table 1. For numerical calculations, the rectangular domain corresponding to the beam is discretized with N x × N y B-spline elements of order 2. Considering plane strains, the matrices K φ φ and K uu in [START_REF] Gourgiotis | On the reflection of waves in half-spaces of microstructured materials governed by dipolar gradient elasticity[END_REF] are assembled using the values of C, α, e in (53) as: and G = 0 in [START_REF] Nguyen | Extended Isogeometric Analysis for Strong and Weak Discontinuities[END_REF]. The NEPC is evaluated from the numerical IGA calculations by:

    K uu + jωD -ω 2 M K uφ -K T uφ K φ φ -T jωR         ũ φ    =     fu 0     ( 
d e f f = χ 1 + χ α Y (e 2 + 12( µ h )) (68 
C = Y (1 + ν)(1 -2ν)         1 -ν ν 0 ν 1 -ν 0 0 0 1 2 -ν         , α =     α 33 0 0 α 33     (70) µ 
d * = 1 2 ϕ 1 •K φ φ •ϕ 1 1 2 u 1 •K uu •u 1 1 2 ϕ 2 •K φ φ •ϕ 2 1 2 u 2 •K uu •u 2 (72)
where ϕ and u are the vector solutions of the linear system (47), and the subscript respectively. A comparison between the analytical and the numerical NEPC solutions are provided in Fig. 2 for a fixed 240 × 24 B-Spline elements of order 2 and varying values of the normalized thickness h ′ = -eh/µ. A very good agreement between both solutions can be appreciated.

Dynamic benchmark

In this next example, we consider the free vibration of a cantilever beam with square section where the left end is fixed and the other boundaries are free. The objective is to validate the IGA scheme in the dynamic case. Here, the electromechanical coupling is not taken into account. The analyti-cal expression of the natural frequencies f r are given by [START_REF] Fan | Vibration control with the converse flexoelectric effect on the laminated beams[END_REF]:

f r = λ 2 r 2πL 2 Eh 2 12ρ (Hz) (73)
where r is the frequency number, I = bh 3 /12 (b = h is width) is the moment of inertia for a square section, ρ is the density, and λ r are the roots of the characteristic equation:

1

+ cos λ r cosh λ r = 0 (74)
Here, λ 1 is found numerically as λ 1 = 1.875. The other parameters are the same as in the previous example. The first natural frequency is computed from the IGA calculation by solving the eigenvalue problem

K uu -ω 2 r M = 0, f 1 = ω 1 2π . (75) 
A comparison between the present IGA and the exact solution is provided in Fig. 3, showing a very good agreement.

Frequency response of a flexoelectric beam

In this example, the effects of flexoelectricity on dynamic voltage, power and dis- Eq. ( 67). The material parameters of the material composing the beam are taken from [START_REF] Chen | Topology optimization of flexoelectric composites using computational homogenization[END_REF] and correspond to a PZT/PZT composite. The corresponding coefficients are provided in Appendix 8. The density is taken as ρ = 7500 kg.m -3 . To define the matrix G, we follow [START_REF] Gitman | Stress concentrations in fractured compact bone simulated with a special class of anisotropic gradient elasticity[END_REF], and use the definition G i jmkln = C i jkl L mn , where we use L mn = ℓδ mn . There is no general agreement on the choice of the length scale ℓ. In [START_REF] Askes | Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results[END_REF], it is recommended that ℓ should be of the order of L, L being the typical characteristic length of heterogeneities. Then, we have chosen here ℓ = 10 -8

m. Other authors have used such values, see e.g. [START_REF] Abdollahi | Revisiting pyramid compression to quantify flexoelectricity: A three-dimensional simulation study[END_REF]. In Then, in this work, ℓ d was chosen as ℓ d = 10ℓ. The modal damping ratios in [START_REF] Chen | Topology optimization of flexoelectric composites using computational homogenization[END_REF] are found as ξ 1 = ξ 2 = 0.01. For the close-circuit of Fig. 1 (b), the potential on the top and bottom surfaces is enforced to be equal using a penalty method and the penalty parameter is taken as 10 2 (see e.g. [START_REF] Felippa | Introduction to finite element methods[END_REF]). The evolution of the voltage, y-displacement and power frequency responses are shown in Fig. 4, when the value of the resistor R varies. First, we can notice that the use of a flexoelectric material instead of a purely piezoelectric creates a voltage response while the purely piezoelectric material creates zero voltage (see Fig. 4). On the contrary, the displacement response is significantly larger when considering non-flexo material, and a small difference in the resonance frequency can be noticed. In Fig. 4c, the amplitude of the output power decreases with respect to the increasing resistors, while the increase of output voltage is not significant.

In this last test, we evaluate the variation of the dynamic response of the system with respect to the dynamic length scale parameter ℓ d , which is varied from 5ℓ to 30ℓ (ℓ = 10 -8 m). Results are presented in Fig. 5. We can note that changing ℓ d has no influence on the amplitude of voltage and displacement reponses, and only small influence on the resonance frequency.

Dynamic behavior of a flexoelectric beam with periodic wavy shape

In this example, the dynamic response of a flexoelectric beamwith periodic wavy shape is investigated, to illustrate the present numerical framework for more com- In Fig. Table 2: Control points B i, j and weights w i, j for the geometry shown in Fig. 6.

placement responses monotonically increase while increasing resistors decreases the power response. This suggests that an optimal resistor value must be chosen to maximize the effects in the application of flexoelectricity to energy harvesters.

The results associated with the same configuration but for the close-circuit with R = 0.01 Ω are shown in Fig. 9. In that case, increasing the parameter h increases the voltage and power responses, but still increases the displacement response. In all cases, increasing h slightly decreases the resonance frequency. It is worth noting that in this example, varying h was done easily by simply moving the control points in the present IGA framework. Note that for geometries like holes, multiple patches with C 1 continuity could be used, as described in [START_REF] Chan | Isogeometric analysis with strong multipatch c1-coupling[END_REF]. The maximum voltage frequency response is defined as the absolute value of voltage on the first resonance frequency at the top right corner of the structure. The convergence of the maximum voltage frequency response with respect to h and p-refinements is presented in Fig. 11. We can appreciate the convergence of the solution using either h or p refinement. We can also observe from Fig. that increasing the order of approximation p may be advantageous to quickly reach convergence, as compared to mesh refinement, which converges more slowly (see Fig. 11a.b). This constitutes an advantage over classical FEM, as increasing the order in FEM, especially considering C 1 continuity, introduces an intractable complexity. We can note from Fig. 11a that the curves do not show an obvious convergence with respect to the mesh refinement, even though the differences between the response values for the different meshes are small. To extract the maximum voltage frequency response, it is required to solve the problem for different frequencies, and then interpolate to find the maximum value. We believe that this process might induce additional errors that could explain this low convergence with respect to the mesh.

Conclusions

In this work, we developed an isogeometric analysis (IGA) framework to solve the dynamic response of flexoelectric energy harvesters for arbitrary geometries, resistive loads in the close-circuits. We also observe that the dynamic length parameter related to the gradient inertial term has only a small influence on the numerical results. Then, we could conclude that creating large holes in a beam-like structure made of a flexoelectric material can significantly increase voltage, power 

Table 3: Control points B i, j and weights w i, j for the geometry shown in Fig. 10 and displacement responses in a dynamic energy harvester. Finally, the advantages of IGA for hand p-refinement in the present flexoelectric context with applications to dynamic loads have been demonstrated for complex geometries. 
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 2 Static flexoelectricity The equations governing the static flexoelectric equilibrium are first reviewed. An open domain Ω ⊂ R 2 is considered, with boundary ∂ Ω . The boundary is composed of Dirichlet and Neumann parts, which are denoted by ∂ Ω u and ∂ Ω t for the displacement problem, respectively, and ∂ Ω φ and ∂ Ω D for the electric problem, respectively, such as
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 51 Fig. 1: Electromechanical coupling cantilever beam with (a) open circuit boundary
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 59 ) where χ is electric susceptibility, α = α 33 is dielectric coefficient, Y is the Young's modulus, e = e 31 is the transversal piezoelectric coefficient, and µ = µ 12 is the transversal flexoelectric coefficient. Then the analytical expression of the normalized effective piezoelectric constant (NEPC) d * for this problem was provided as[
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 2 Fig. 2: Normalized effective piezoelectric coefficient (NEPC) with respect to nomalized thickness h ′ .

Fig. 3 :

 3 Fig. 3: Natural frequency of an elastic beam: comparison between exact and

  [START_REF] Askes | Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results[END_REF], Askes et al. suggested the heuristic rule for the dynamic length parameter ℓ d > ℓ. In their work, they employed a gradient elasticity model to fit wave dispersion results of carbon nanotubes based on molecular dynamics (MD) obtained by Wang et al.[START_REF] Wang | Flexural wave propagation in single-walled carbon nanotubes[END_REF], and found a good agreement with the MD results when ℓ d is in the range 3ℓ -35ℓ.
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 4 Fig. 4: (a) Voltage, (b) displacement and(c) power frequency responses for varying
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 567 Fig. 5: (a) Voltage and (b) displacement frequency responses for varying values of the micro inertial ℓ d in the open circuit conditions.
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 7 Fig. 7: (a) Voltage and (b) displacement frequency responses with respect to the
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 89 Fig. 8: (a) Voltage, (b) displacement and (c) power frequency responses with respect to resistor R for a fixed radius h = 50 nm in the close-circuit conditions.
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 10 Fig. 10: Flexoelectric beam with complex geometry: (a) geometry and boundary

Fig. 11 : 1

 111 Fig. 11: Voltage frequency response on the first resonance with respect to (a) h-

Table 1 :

 1 Material parameters.

	1 and 2 correspond to piezo-flexoelectric effects and only piezoelectric effects,

  8, voltage, y-displacement and power frequency responses are presented for the close-circuit, for different values of resistor R and fixed value of the parameter h = 50 nm. We can note that in this configuration, the voltage and dis-

	i	B i,1 (nm)	w i,1	B i,2 (nm)	w i,2
	1	(0,0)	1	(0 300)	1
	2	(100-6h/5,0)	1	(100-6h/5,300)	1
	3	(100-h,0)	1	(100-h,300)	1
	4	(100-4h/5,h)	√ 2/2	(100-4h/5,300-h)	√ 2/2
	5	(100,h)	1	(100,300-h)	1
	6	(100+4h/5,h)	√ 2/2	(100+4h/5,300-h)	√ 2/2
	7	(100+h,0)	1	(100+h,300)	1
	8	(100+6h/5h,0)	1	(100+6h/5,300)	1
	9	(200,0)	1	(200,300)	1