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Aeroacoustic Liner Impedance Metamodel from Simulation and
Experimental Data Using Probabilistic Learning

Amritesh Sinha ∗, Christian Soize † and Christophe Desceliers ‡

Gustave Eiffel University, MSME UMR 8208 (Marne-la-Vallée, France)

Guilherme Cunha§

Airbus Operations SAS (Toulouse, France)

In order to be able to calculate a parameterized aeroacoustic liner impedance, a robust

statistical metamodel is constructed as a function of the frequency and of the control parameters

that are the percentage of open area and the sound pressure level. This construction is based

on the use of simulated data generated with a computationally expensive aeroacoustic model,

which translates to a very small training dataset. This means that the learning process has to be

used and the probabilistic learning on manifolds algorithm is chosen. Although the aeroacoustic

simulation is conducted on a large aeroacoustic computational model, some approximations

are introduced, generating model errors that are taken into account by a probability model

in the constructed training dataset. This probability model is calibrated using dimensionless

experiments available from the open literature. Despite the fact that only a small amount of data

is available, a novel statistical metamodel is successfully developed for which the predictions

are consistent. This statistical framework allows for exhibiting a confidence region of the

parameterized aeroacoustic liner impedance, which gives an information about the level of

uncertainties as a function of the frequency and the control parameters.

I. Introduction

Air traffic has significantly grown over the past decade. With ever increasing environmental concerns, green

aviation has come into prominence. In particular, aircraft noise is of significant interest to the aviation community,

whether it be the question of external or internal noise relative to the aircraft. This has led to increasingly stringent

requirements by the certification authorities. In modern turbofan engines (UHBR - Ultra high bypass ratio), fan noise is

one of the main contributors to the overall aircraft noise. Fan noise can be characterized by broadband and tonal noise

components. Acoustic liners (acoustic treatments) can be designed to tackle both the components. Tonal noise is mainly
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attenuated by resonance effects while viscous dissipation acts on both tonal and broadband noise. Noise attenuation

by acoustic treatments is tuned for the blade passing frequency (BPF), whereas dissipating as much as possible the

broadband component, by modifying the liner geometry or intrinsic properties. In order to be effective in absorbing

fan noise, liners have to be studied in their operating environment i.e. in different flight conditions. In the past, many

experiments have been carried out for identifying uncertainties related to liner impedance (see for instance [1–4]).

High-fidelity computational models have also been developed for predicting the liner performances (see for instance

[5–10]). The design of liners is of prime interest and many works have been published on this subject (see for instance

[11–17]). Statistical inference such as Bayesian approaches have recently been used for statistical inverse problems

related to liner impedances (see for instance [18, 19]). The acoustic performance of a liner depends on the quantities

that are highly related to the operating conditions, such that velocity, mean pressure, and fluid density. Any external

variation directly impacts the environment of the liners and thus the acoustic performance of the liners system. This

requires to take into account uncertainties in the high-fidelity computational model of the liners system. An uncertain

computational model of the liners system is presented by Dangla [16], which allows for quantifying uncertainties in

aeroacoustic models of liner performance.

A. Objective of the Paper

A liner is characterized by its acoustic absorption, which will be modeled by its (local) acoustic impedance adapted

to the low-frequency tonal noise. In this work, the liner acoustic impedance is estimated using an aeroacoustic

computational model (ACM) applied to a simplified configuration of the liner (see Section II.B). One evaluation with

such an ACM is computationally expensive and consequently, the ACM cannot be used a large number of times for

constructing a parameterized aeroacoustic liner impedance. This is the reason why we propose to develop a statistical

metamodel of the impedance whose parameterization is frequency 𝜔, percentage of open area (POA), and sound pressure

level (SPL). The Mach number has been set to zero to minimize the number of parameters that need to be considered

for the metamodel. In fact, including a non-zero Mach number would require analyzing how the impedance changes

with respect to various boundary layer properties (such as friction velocity, boundary layer thickness, local Reynolds

number, bulk Mach number, and so on), which is beyond the scope of this study. Further investigations on this topic are

currently underway and will be addressed in future work. Due to the use of a simplified configuration, it is of prime

importance to take into account model uncertainties induced by modeling errors in the construction of the impedance

model. These uncertainties on the impedance model will be introduced in the statistical metamodel of the impedance

and the level of uncertainties will be identified with experiments. We thus propose to develop a statistical metamodel of

the parameterized liner impedance, which is robust with respect to uncertainties. The objective of the paper is therefore

to present a useful methodology to build a robust statistical metamodel of the aeroacoustic liner impedance as a function

of the control parameters. The property of robustness is necessary with respect to uncertainties but also to the small
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amount of data available. A methodology is thus presented to circumvent the prohibitive computational cost of building

a parameterized model of the aeroacoustic liner impedance. Such a statistical metamodel can, for example, be used to

carry out a parametric analysis of the impedance, to perform its acoustic performance, and can also be included in an

optimization loop. Such possible applications are beyond the scope of the paper.

B. Why POA is chosen as a design parameter

Let 𝑡, 𝑑, and 𝐿 be the perforated plate thickness, the hole diameter, and the length from the perforated plate to the

rigid backing sheet, respectively. Parameters 𝑡, 𝑑, and 𝐿 have been held constant and equal to 1.0 mm, 0.8 mm, and 9.6

mm, respectively. It is important to note that the POA is the most important parameter when considering liner design. If

POA was kept with a constant value and if diameter 𝑑 was chosen as a design variable, then almost no impact would be

observed on the effects of attenuation. For the range of liners considered, height 𝐿 of the cavity mainly influences the

reactance, and has a negligible impact on the resistance (which is mainly a function of the geometric parameters of the

resistive layer). However, it is possible to separate the reactance contribution of the cavity from that of the resistive sheet,

by subtracting the cotangent term from the reactance value obtained. This is done in Eq.(3). This makes the presented

results independent of 𝐿. Regarding thickness 𝑡, its value has been set at 1.0 mm. This value is representative of what is

used in the aeronautical industry. It should be noted that, for the design, this parameter is less important than the POA.

It should also be noted that the integration constraints make the chosen thickness value a very representative value.

C. Sources of uncertainties and variabilities, and their consideration in the development of the metamodel

There are two types of uncertainties: the uncertainties on the model parameters called the “model-parameter

uncertainties” and the “model uncertainties” induced by the modeling errors. In addition, there are some “variabilities”

in the real system, due to manufacturing process and due to small differences in the configurations: an experimental

configuration of a complex system differs from the designed system and is never perfectly known. When a computational

model of a complex system is developed, model-parameter uncertainties, model uncertainties, and variabilities have to

be taken into account. When experiments are available, the probability model of uncertainties has to be identified by

solving a statistical inverse problem. If information is not available for the construction of an informative probability

model of model-parameter uncertainties (that is the case for the considered problem), model-parameter uncertainties

and model uncertainties can simultaneously be taken into account using a nonparametric probability model or the

output-predictive-error method as explained in [20]. The latter consists in introducing an additive or multiplicative

noise on the quantities of interest of the computational model and in identifying the hyperparameters that control the

probabilistic model of the noise using the experiments. It is the latter method that is proposed in this work.
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D. Proposed Methodology

The development of the statistical metamodel (surrogate model) of the aeroacoustic liner impedance is based on

the use of a probabilistic learning tool and a training dataset made up of a small number of points. Experimental

data is directly integrated in the proposed statistical metamodel in order to take into account model uncertainties (see

Section I.A). Note that there is no direct connection between the experimental values and ACM that is constructed

independently of the experimental values. The experimental values are only used to calibrate the level of the noise that

is added in the model to take into account uncertainties. The learning tool is the probabilistic learning on manifolds

(PLoM) [21–23]. The training dataset is generated using experimental data [24] and Lavieille’s work [5] for numerical

predictions of acoustic impedance. It should be noted that the development of the metamodel is not performed by using

a proper experimental dataset because such dataset would require to carry out a complete experimental campaign that is

currently not available. In addition, it would be a challenge to be able to transfer the statistical fluctuations from different

dataset (using different experimental cases) to a given computational model. The main limitation regarding third-party

experimental datasets is that we do not have any information about the liners manufacturing process. This makes it

difficult to compare directly any experimental data with numerical ones, unless we have quality check information on

manufactured liners. For instance, it is known that the nominal geometrical parameters and the ones that are effectively

manufactured might greatly differ (by more than 20%, depending solely on the manufacturing process). This means

that any direct comparison would be biased, unless it is made via statistical quantities. Experimental means varies

from one research/industrial institution to another and, unless we compare numerical data to experimental ones after a

careful quality check, it would be rather difficult to make a quantitative comparison of all data. In this context, we have

used the available experimental database from [24] for which the experimental results are presented in a dimensionless

form, covering a large family of liners. As explained, such a database does not permit to carry out a direct probabilistic

inference because the experimental statistical mean values cannot be used, as it does not correspond to the case being

analyzed in this paper. Only the experimental statistical fluctuations around the experimental statistical mean will

be used to calibrate the noise that models uncertainties. Therefore, physics-based constraints cannot be used for the

learning step. In order to circumvent this difficulty, the experimental information is integrated in the training dataset

using the output predictive error model [20].

E. Organization of the Paper

Section II deals with the definition of the aeroacoustic liner system and with the aeroacoustic computational model

that is used to generate the simulated data. In Section III, the experimental dimensional data are derived from the

experimental dimensionless data, extracted from the open literature. A comparison of the aeroacoustic computation

model predictions with the dimensional experiments is presented. Section IV is devoted to the construction of the

probability model of the model uncertainties, which is calibrated using the experimental dimensional data. Then the
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training dataset including model uncertainties is constructed. In Section V we present the construction of the statistical

metamodel of the parameterized random liner impedance and then introduce conditional statistics and the methodology

to estimate it on the basis of probabilistic learning. Finally Section VI deals with the presentation of the results and its

discussion.

A summary of the probabilistic learning on manifolds (PLoM) algorithm, its parameterization, and the algebraic

expressions of the conditional statistics are given in Supplemental Material of this paper.

II. Defining the Liner System and its Aeroacoustic Computational Model

A. Definition of the liner system

We consider a perforated liner system whose scheme is shown in Fig. 1. It is constituted of a perforated plate, a

rigid backing sheet, and a honeycomb constituting drainage holes. As explained above, the parameters used to control

the liner system are the POA and the SPL. We then define the control parameter as w = (𝑤1, 𝑤2) in which 𝑤1 is POA

and 𝑤2 is SPL. The control parameter will be modeled by a R2-valued random variable W = (𝑊1,𝑊2) whose prior

probability distribution will allow for generating samples of W.

B. Computation of the impedance using an aeroacoustic computational model

The domain decomposition used for the aeroacoustic computational model is the one proposed in [5] and is shown

in Fig. 2. The left figure displays the scheme of elementary period 𝑑1. The central figure shows the domain that is

constituted of three subdomains: the outside domain, the resistive sheet domain, and the resonator domain of elementary

period 𝑑1. The right figure represents the reduced resonator domain of period 𝛿1. In the outside domain, the acoustic

field is described by the sum of incident and diffracted plane waves in order to compute sound pressure level (SPL) at the

upper face of the resistive sheet that allows an equivalent reduced impedance 𝑧 acm (𝜔; w) = r acm (𝜔; w) + 𝜄 v acm (𝜔; w)

that depends on the frequency 𝜔 and on the control parameter w, in which 𝜄 =
√
−1, r acm (𝜔; w) is the resistance, and

where v acm (𝜔; w) is the reactance. In the reduced resonator domain, which belongs to the resistive sheet domain, the

nonlinear Navier-Stokes equations are solved in order to well capture the viscous effects and the nonlinear phenomena

at higher SPL. The period 𝛿1 is chosen so that the corresponding POA is verified at the resistive sheet level. Then, a

bi-periodic condition is imposed. This means that any generated vortex can cross the lateral boundaries and still be

correctly taken into account. Consequently, the third domain (see Fig. 2) is sufficiently wide to capture this motion. We

refer the reader to the paper [5] for the details concerning this aeroacoustic computational model. It should be noted that

such a simplified aeroacoustic model yields large computational cost for exploring the flight and design configurations.

Nevertheless, it demonstrates the interest of the proposed methodology for constructing a robust statistical metamodel.

More complex aeroacoustic computational models can be found in [25–27]. For each value of the POA and SPL, and

for each sampled frequency 𝜔𝑘 ∈ C𝜔 = {𝜔1, . . . , 𝜔𝑛𝜔
}, the aeroacoustic computational model computes r acm (𝜔𝑘),
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v acm (𝜔𝑘), and the hole-orifice velocity v acm
or (𝜔𝑘). In the computational method used, only the reduced resonator domain

is meshed for Navier-Stokes computation. For the considered liner, the mesh is made up of 41 781 vertices, 206 560

elements, and 278 514 degrees of freedom. The mesh in the refinement zone (see Fig. 3) is adapted according to the

POA value. For each value of the POA and SPL, and for the seven sampled frequencies, the CPU time is 448 hours

(using a 64 cores computer). The computation has been done by Airbus using the SANUMO software [5] for 𝑛𝜔 = 7

sampled frequencies and for (POA, SPL) ∈ [0.03, 0.1] × [130, 145]. Since the resistance is very sensitive to the values

of POA, in order to not artificially increase the statistical fluctuations in the conditional statistics that will be constructed

using probabilistic learning, interval [0.03, 0.1] is split as [0.03, 0.05] ∪ [0.06, 0.1], the first one containing 3 points

and the second one 5 points. More precisely, the larger the "diameter" of the support (domain of the values of w) of

the probability measure of the control parameter w, the larger the width of the confidence domain of the quantities of

interest. Therefore a compromise has to be made between the choice of the points of the training dataset and its effects

on the amplitude of the statistical fluctuations of the quantities of interest, which control the width of the confidence

domain. An analysis has been conducted to find the partition that is proposed. Note that the SPL interval contain 6

points. In this paper, the presented analysis is performed for each POA-subinterval [𝑎POA, 𝑏POA]. We therefore consider

the values of w belonging to the finite set

C𝑤 = {w 𝑗 , 𝑗 = 1, . . . , 𝑛𝑑} ⊂ S𝑤 , w 𝑗 ∈ R𝑛𝑤 , (1)

in which 𝑛𝑤 = 2 and 𝑛𝑑 = 18 for the first subinterval and 𝑛𝑑 = 30 for the second one, where the points inC𝑤 are considered

as samples of the random variable W = (𝑊1,𝑊2), which belong to the domainS𝑤 = [𝑎POA, 𝑏POA]× [130, 145] ⊂ R𝑛𝑤 (S𝑤

can be viewed as the support of the prior probability distribution of W). We now define the ACM simulation dataset related

to the points of C𝑤 . For 𝑗 ∈ {1, . . . , 𝑛𝑑}, we introduce the vectors r acm, 𝑗 = (r acm, 𝑗 (𝜔1), . . . , r acm, 𝑗 (𝜔𝑛𝜔
)) ∈ R𝑛𝜔 and

v acm, 𝑗 = (v acm, 𝑗 (𝜔1), . . . , v acm, 𝑗 (𝜔𝑛𝜔
)) ∈ R𝑛𝜔 in which r acm, 𝑗 (𝜔𝑘) = r acm (𝜔𝑘 ; w 𝑗 ) and v acm, 𝑗 (𝜔𝑘) = v acm (𝜔𝑘 ; w 𝑗 ).

Finally, for 𝑗 ∈ {1, . . . , 𝑁𝑑}, we introduce the vector q acm, 𝑗 = (r acm, 𝑗 , v acm, 𝑗 ) ∈ R𝑛𝑞 = R𝑛𝜔 × R𝑛𝜔 with 𝑛𝑞 = 2𝑛𝜔 .

The points of the ACM simulation dataset {q acm,1, . . . , q acm,𝑛𝑑 } are the realizations of the R𝑛𝑞 -valued random variable

Q acm.

Fig. 1 Scheme of a perforated liner. [Reprinted from [5] with permission of Maud Lavieille].
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Fig. 2 Domain decomposition of the aeroacoustic computational model. [Reprinted from [5] with permission of
Maud Lavieille].
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Fig. 3 Mesh of reduced resonator domain: part with mesh refinement and part with coarse mesh.

III. Experimental Dimensional Data and Comparison with ACM Simulations

A. Experimental Dimensional Data

As previously mentioned (see Section I.D) experimental data compiled by Panton and Goldman [24] are used to

calibrate the level of uncertainties in the constructed statistical metamodel. The experimental dimensionless impedance

𝑧
exp
dimless (Ω) is presented as a function of dimensionless orifice velocity Ω = Ωr = vor (𝜔; w)/

√
𝜈𝜔 for dimensionless

resistance (see Fig. 4a) and Ω = Ωv = vor (𝜔; w)/(𝜔 𝑑) for dimensionless reactance (see Fig. 4b), in which 𝜔 is the

angular frequency, vor (𝜔; w) is the experimental frequency-dependent dimensional orifice velocity that depends on

control parameter w, 𝜈 is the kinematic viscosity, and 𝑑 is the hole diameter. It should be noted that Ωr and Ωv are

defined using the same frequency-dependent dimensional orifice velocity, vor (𝜔; w). The images shown in Fig. 4 are

digitized and the datapoints are extracted using Plotdigitizer software [28]. It should be noted that the resistance and

reactance are not normalized in the same way in Fig. 4 as described at the beginning of Section III.A. Nevertheless,

the rescaling was properly performed. For each considered value of Ωr and Ωv, the mean of the closest values of the

experimental dimensionless resistance and reactance are extracted, which allows for replacing the cloud of experimental
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dimensionless points into experimental dimensionless curve. In order to use these experimental data for constructing

the statistical metamodel, these dimensionless data are transformed as a function of dimensionless orifice velocity Ω

into dimensional quantities as a function of the frequency, 𝜔. These dimensionless experimental data are transformed
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(b) Graph Ωv ↦→ vexp
dimless (Ωv) of the dimensionless

experimental reactance

Fig. 4 Dimensionless resistance (a) and reactance (b) as a function of dimensionless orifice velocity [Compiled
from [24] with permission. Copyright 1976, Acoustical Society of America].

into dimensional data that are compatible with the ACM simulation data. For the experimental dimensional resistance

and reactance at sampling points 𝜔𝑘 and for given value of control parameter w, these transformations yield

rexp (𝜔𝑘 ; w) = rexp
dimless (Ωr,𝑘 (w)) ×

𝜌
√
𝜈𝜔𝑘

𝑐 × 𝑤1
(2)

vexp (𝜔𝑘 ; w) =
[(

vexp
dimless (Ωv,𝑘 (w)) × 8

3𝜋
+ 𝑡

𝑑

)
𝜌 𝜔𝑘𝑑

𝑐 × 𝑤1

]
− cot

(
𝜔𝑘𝐿

𝑐

)
(3)

in which cot is the cotangent, 𝜔𝑘 is a sampled frequency point, 𝜌 is the air density, 𝑐 is the speed of sound, 𝑤1 is the

percentage of open area (POA), 𝑡 is the perforated plate thickness, and 𝐿 is length from the perforated plate to the

rigid backing sheet. The w-dependent dimensionless frequencies are such that Ωr,𝑘 (w) = v acm
or (𝜔𝑘 ; w)/√𝜈 𝜔𝑘 and

Ωv,𝑘 (w) = v acm
or (𝜔𝑘 ; w)/(𝜔𝑘𝑑), in which v acm

or (𝜔𝑘 ; w) is the orifice velocity computed with ACM for a given 𝜔𝑘 and

w. Eqs. (2) and (3) are used for converting the dimensionless data plotted in Fig.4 to the ones used in the current paper.

The dimensionless factors are the ones proposed by Panton in [24]. These parameters happen to have a link with the

Crandall model, but as well as other models, such as Poiseuille’s, as described in [24]. The dashed curves with diamond

markers represent, in Figs. 5-(a) to (d), the experimental results for the resistance for the considered values of w that is

the pair (POA, SPL), and in Figs. 5-(e) to (h), the reactance for the same values of w.

B. Comparison of the ACM Predictions with Experiments

Fig. 5 shows the comparison between the ACM simulation dataset and the experimental dimensional dataset for the

resistance and for the reactance, for several values of w, the pair (POA, SPL). In Figs. 5-(a) to (d), the solid curves
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500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) (POA,SPL)=(0.1,145)

500 1000 1500 2000 2500 3000 3500
-12

-10

-8

-6

-4

-2

0

2

4

(e) (POA,SPL)=(0.03,130)

500 1000 1500 2000 2500 3000 3500
-12

-10

-8

-6

-4

-2

0

2

4

(f) (POA,SPL)=(0.03,145)

500 1000 1500 2000 2500 3000 3500
-12

-10

-8

-6

-4

-2

0

2

4

(g) (POA,SPL)=(0.1,130)

500 1000 1500 2000 2500 3000 3500
-12

-10

-8

-6

-4

-2

0

2

4

(h) (POA,SPL)=(0.1,145)

Fig. 5 Resistance ((a) to (d)) and reactance ((e) to (h)) versus frequency (Hz) (horizontal axis) for several values
of (POA, SPL): ACM simulation (circles), experiments (diamonds).

with circular markers represent the computational results for the resistance for different values of w that is the pair

(POA,SPL). In Figs. 5-(e) to (h), the reactance is plotted for the same values of w. In these figures, the POA and SPL

values correspond to its minimum and maximum. These comparisons show that the experimental mean is far from the

ACM simulations for the resistance whose good prediction is of prime interest. Consequently, even if the variations are

of the same type for experiments and simulations, these experimental values cannot directly be used for a probabilistic

inference. Nevertheless, it will be assumed that the experimental statistical fluctuations around the experimental mean is

representative of the level of model uncertainties and consequently, will be used for calibrating the level of uncertainties

(see Section IV).

IV. Probability Model of Model Uncertainties and Training Dataset

A. Probability Model of Model Uncertainties

As previously explained, the experimental dimensional dataset only gives a consistent information about the statistical

fluctuations and not about the mean values. Consequently, a probabilistic inference (Bayesian or likelihood methods, or

learning constrained by experiments) cannot be used. Nevertheless, these experimental dimensional data are used for

calibrating an additive noise (model uncertainties) to the ACM simulated data yielding the training dataset used by the
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probabilistic learning. In the proposed construction, the noise level is controlled by a hyperparameter 𝛿exp (that will be a

the coefficient of variation). This hyperparameter has to be estimated for any value of the control parameter w, using

the experimental dimensional dataset. Consequently, conditional statistics have to be used. However, the number of

these experimental points is too small to obtain a good convergence of the estimate of 𝛿exp. We then have to resample

the probability distribution of the experimental points using PLoM followed by conditional statistics. The steps of the

construction are the following.

(i) The first step consists in using the probabilistic learning (the PLoM algorithm summarized in Appendix A of

the Supplemental Material) for which we have to define the random vector Xexp and its training dataset for the

learning process. For all w, we define the vectors in R𝑛𝜔 such that rexp (w) = (rexp (𝜔1; w), . . . , rexp (𝜔𝑛𝜔
; w)) and

vexp = (vexp (𝜔1; w), . . . , vexp (𝜔𝑛𝜔
; w)) related to the experimental dimensional resistance and reactance, in which

rexp (𝜔𝑘 ; w) and vexp (𝜔𝑘 ; w) are defined by Eqs. (2) and (3). Modeling the deterministic vector w by random variable

W yields the R𝑛𝜔 -valued random variables Rexp = rexp (W) and Vexp = vexp (W). Let Qexp = (Rexp,Vexp) be the

R𝑛𝑞 -valued random variable. Let R𝑛 = R𝑛𝑞 × R𝑛𝑤 with 𝑛 = 𝑛𝑞 + 𝑛𝑤 . Let Xexp = (Qexp,W) be the R𝑛-valued

random variable whose independent realizations are xexp, 𝑗 = (qexp, 𝑗 ,w 𝑗 ), 𝑗 = 1, . . . , 𝑛𝑑 with w 𝑗 ∈ C𝑤 , where qexp, 𝑗

is the realization of Qexp, which is calculated by qexp, 𝑗 = (rexp (w 𝑗 ), vexp (w 𝑗 )). The training dataset for Xexp is

represented by the matrix [𝑥exp
𝑑

] = [xexp,1 . . . xexp,𝑛𝑑 ] ∈ M𝑛,𝑛𝑑 . For generating 𝑛ar = 𝑛𝑑 × 𝑛MC learned realizations

xexp,ℓ
ar , ℓ = 1, . . . , 𝑛ar of Xexp with 𝑛MC ≫ 1, the PLoM algorithm is used. We then deduced the 𝑛ar learned real-

izations (qexp,ℓ
ar ,wℓ

ar) = xexp,ℓ
ar for all ℓ in {1, . . . , 𝑛ar}. As explained in Subsection II.B, the database is split in two

parts, one corresponding to 𝑛𝑑 = 18 and the other to 𝑛𝑑 = 30, referred to as D1 and D2, respectively. After the

experimental dataset has been extracted using the methodology described in Subsection III.A a total of 18 + 30

datapoints is obtained corresponding to control parameters of the finite set defined by Eq. (1). This is not sufficient

to have a good convergence of the vector-valued hyperparameter 𝜹exp (w𝑜) that has to be estimated using conditional

statistics. Consequently, a resampling of the probability distribution of each experimental dataset D1 and D2 has

been carried out using PLoM and adequate convergence has been obtained for 𝑛ar = 20 000 and 𝑛ar = 40 000, respectively.

(ii) For 𝑖 in {1, . . . , 𝑛𝑞}, the experimental conditional coefficient of variation 𝛿
exp
𝑖

(w𝑜) of the component 𝑄exp
𝑖

of Qexp,

given W = w𝑜 in S𝑤 , is defined by

𝛿
exp
𝑖

(w𝑜) =
𝜎
𝑄

exp
𝑖

(w𝑜)

𝑚
𝑄

exp
𝑖

(w𝑜)
, (4)

in which 𝑚
𝑄

exp
𝑖

(w𝑜) = 𝐸{𝑄exp
𝑖

|W = w𝑜} and 𝜎2
𝑄

exp
𝑖

(w𝑜) = 𝐸{(𝑄exp
𝑖

)2 |W = w𝑜} − 𝑚2
𝑄

exp
𝑖

(w𝑜) in which the condi-

tional mathematical expectation are estimated using the learned realizations {(qexp,ℓ
ar ,wℓ

ar), ℓ = 1, . . . , 𝑛ar} and the

Gaussian Kernel Density Estimation (KDE) method (the integration being explicitly calculated, see Appendix B of the
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Supplemental Material). We introduce the vector 𝜹exp (w𝑜) = (𝛿exp
1 , . . . , 𝛿

exp
𝑛𝑞 ).

(iii) The random vector Q acm is transformed into a random vector Q whose components {𝑄𝑖 , 𝑖 = 1, . . . , 𝑛𝑞} are written

as

𝑄𝑖 = (1 + 𝐵𝑖)𝑄 acm
𝑖 , 𝑖 ∈ {1, . . . , 𝑛𝑞} , (5)

in which 1 + 𝐵𝑖 is a multiplicative random noise that allows model uncertainties to be taken into account. Vector Q,

which represents the W-parameterized and frequency-dependent random liner impedance, will be named the random

quantity of interest (QoI).

In order to construct the random variables 𝐵1, . . . , 𝐵𝑛𝑞 , we introduce a vector 𝜹(w𝑜) = (𝛿1 (w𝑜), . . . , 𝛿𝑛𝑞 (w𝑜))

in which 𝛿𝑖 (w𝑜) is the coefficient of variation of the conditional random variable 1 + 𝐵𝑖 given W = w𝑜. For the

experiments, the parameters presenting variabilities are 𝑑/Δ, 𝑡/𝑑, vor, 𝜌/𝑐, and 𝐿, in which Δ =
√︁
𝜈/𝜔. It is assumed

that the model uncertainties in the ACM are due to variabilities and uncertainties generated by the same parameters,

which justifies the use of the experiments for generating the modeling errors. It should be noted that the components of

vectors 𝜹(w𝑜) and 𝜹exp (w𝑜) represent the variations with respect to frequency 𝜔 for the resistance and reactance. We

then choose for the frequency variations of 𝜹(w𝑜), the frequency variations of 𝜹exp (w𝑜). If the level of uncertainties

were chosen equal for the experiments and for the model, then we would have 𝜹(w𝑜) = 𝜹exp (w𝑜). However, we are

interested in performing a sensitivity analysis with respect to the level of model uncertainties. We thus introduce a

global parameter 𝑎unc ∈ [0, 1] to quantify the level of uncertainties, and consequently, we write 𝜹(w𝑜) = 𝑎unc 𝜹
exp (w𝑜).

Three values of 𝑎unc will be considered: small uncertainties 𝑎unc = 0.2, medium uncertainties 𝑎unc = 0.5, and large

uncertainties 𝑎unc = 1.0. For all 𝑖 ∈ {1, . . . , 𝑛𝑞}, the real-valued random variable 𝐵𝑖 is thus defined by

𝐵𝑖 = 𝛿𝑖 (W) 2
√

3 (𝑈𝑖 −
1
2
) , (6)

in which 𝑈1, . . . ,𝑈𝑛𝑞 are 𝑛𝑞 independent real-valued random variable uniformly distributed on [0, 1] and independent

of W. It can then be shown that 𝐵𝑖 is a centered random variable and that coefficient of variation of the conditional

random variable 1 + 𝐵𝑖 given W = w𝑜 is 𝛿𝑖 (w𝑜).

B. Training Dataset Including Model Uncertainties

To well represent the statistical fluctuations induced by model uncertainties in the training dataset, for each realization

of W we will assign 𝑀𝑑 realizations of the random variable B. Consequently, for all 𝑖 in {1, . . . , 𝑛𝑞}, the 𝑁𝑑 = 𝑛𝑑 ×𝑀𝑑

realizations {{𝑞1,𝑚
𝑖

, . . . , 𝑞
𝑛𝑑 ,𝑚

𝑖
}, 𝑚 = 1, . . . , 𝑀𝑑} of the random variable 𝑄𝑖 defined by Eq. (5) are computed by the

equation

𝑞
𝑗 ,𝑚

𝑖
= (1 + 𝑏

𝑗 ,𝑚

𝑖
) 𝑞 acm, 𝑗

𝑖
, (7)
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in which 𝑏
𝑗 ,𝑚

𝑖
is the realization of 𝐵𝑖 defined by Eq. (6) and such that

𝑏
𝑗 ,𝑚

𝑖
= 𝛿𝑖 (w 𝑗 ) 2

√
3 (𝑢 𝑗 ,𝑚

𝑖
− 1

2
) , (8)

in which {{𝑢1,𝑚
𝑖

, . . . , 𝑢
𝑛𝑑 ,𝑚

𝑖
}, 𝑚 = 1, . . . , 𝑀𝑑} are 𝑁𝑑 = 𝑛𝑑 × 𝑀𝑑 independent realizations of random variable 𝑈𝑖 .

It should be noted that for 𝑚 fixed {𝑏 𝑗 ,𝑚

𝑖
, 𝑗 = 1, . . . , 𝑛𝑑} are 𝑛𝑑 independent realizations of 𝐵𝑖 , but the realizations

in the couple ( 𝑗 , 𝑚) are dependent. We then define the random vector X = (Q,W) with values in R𝑛, in which

Q is defined by Eq. (5), whose ( 𝑗 , 𝑚)-th realization is x 𝑗 ,𝑚 = (q 𝑗 ,𝑚,w 𝑗 ,𝑚) in which q 𝑗 ,𝑚 is given by Eq. (7) and

where w 𝑗 ,𝑚 = w 𝑗 for all ( 𝑗 , 𝑚). For the probabilistic learning, the training dataset is represented by the matrix

[𝑥𝑑] = [x1,1 . . . x𝑛𝑑 ,1, . . . , x1,𝑀𝑑 . . . x𝑛𝑑 ,𝑀𝑑 ] ∈ M𝑛,𝑁𝑑
.

V. Construction of the Statistical Surrogate Model of the Parameterized Random Liner
Impedance

A. Random Manifold Associated with the Parameterized Random Liner Impedance

The random QoI Q defined in Section IV.B is written as Q = (R,V) in which R = (𝑅1, . . . , 𝑅𝑛𝜔
) and V =

(𝑉1, . . . , 𝑉𝑛𝜔
) are the R𝑛𝜔 -valued random variables representing the frequency-dependent resistance and reactance.

This R𝑛𝑞 -valued random variable Q can be written as Q = f(W,U) in which W is the random control parameter with

values in R𝑛𝑤 , U is the random uncontrolled parameter with values in R𝑛𝑢 with 𝑛𝑢 = 𝑛𝑞 (see Eq. (8)), and where

(w, u) ↦→ f(w, u) is a deterministic implicit mapping from R𝑛𝑤 × R𝑛𝑢 into R𝑛𝑞 . We then define the random mapping

w ↦→ F(w) such that for all w in R𝑛𝑤 , F(w) = f(w,U). The graph {(F(w),w),w ∈ S𝑤 ⊂ R𝑛𝑤 } defines a random

manifold in R𝑛 = R𝑛𝑞 × R𝑛𝑤 , in which 𝑛 = 𝑛𝑞 + 𝑛𝑤 . The random variable X = (Q,W) with values in R𝑛 is related to

this random manifold because X can also be rewritten as X = (F(W),W). In Section IV.B, we have constructed the

training set of X made up of 𝑁𝑑 points x 𝑗 = (q 𝑗 ,w 𝑗 ) ∈ R𝑛, represented by matrix [𝑥𝑑] ∈ M𝑛,𝑁𝑑
.

B. Statistical Surrogate Model

Taking into account the definition of random QoI Q defined in Section V.A, the objective of the statistical

metamodel of the parameterized random linear impedance is to construct the conditional probability distribution

𝑃Q |W (𝑑q|w𝑜) = 𝑝Q |W (q|w𝑜) 𝑑q of Q given W = w𝑜 for any w𝑜 in S𝑤 ⊂ R𝑛𝑤 , in which 𝑝Q |W is the conditional

probability density function on R𝑛𝑞 given W. This conditional probability distribution completely defines the statistical

metamodel. However, we can only estimate this conditional probability distribution using the nonparametric statistics

and sufficiently large set of realizations of X = (Q,W). Since the training dataset of X, represented by matrix [x𝑑], is

constituted of a small number 𝑁𝑑 of realizations, we will perform a resampling of X using a probabilistic learning on

manifolds in order to generate a large number 𝑁ar ≫ 𝑁𝑑 of learned realizations of X (see Section V.C). The connection
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between the probability density function of X = (Q,W) and the conditional probability density function of interest is

the following

𝑝Q |W (q|w𝑜) =
1

𝑝W (w𝑜)
𝑝Q,W (q,w𝑜) , (9)

in which 𝑝Q,W is the joint probability density function on R𝑛𝑞 × R𝑛𝑤 of random variables Q and W, and where

𝑝W (w𝑜) =
∫
R𝑛𝑞

𝑝Q,W (q,w𝑜) 𝑑q is the probability density function of W at point w𝑜 ∈ S𝑤 .

From an engineering point of view, we are interested in deriving conditional statistics from conditional probability

distribution 𝑃Q |W, such as the conditional mean values and the conditional confidence regions. The results presented in

Section VI will be the conditional mathematical expectation,

𝐸{Q|W = w𝑜} =
∫
R𝑛𝑞

q 𝑝Q |W (q|w𝑜) 𝑑q , (10)

for any w𝑜 in S𝑤 . We will also present the conditional confidence region of the frequency-dependent random resistance

𝑅1, . . . , 𝑅𝑛𝜔
and reactance 𝑉1, . . . , 𝑉𝑛𝜔

. For 𝑘 fixed in {1, . . . , 𝑛𝜔}, let 𝑄𝑖 be the component of Q representing either

resistance 𝑅𝑘 or reactance 𝑉𝑘 . Then the lower bound 𝑞−
𝑖

and the upper bound 𝑞+
𝑖

of the conditional confidence interval

of 𝑄𝑖 given W = W𝑜 for a probability level 𝑝𝑐 are defined by

𝑞+𝑖 : Proba{Qi ≤ q+i | W = wo} = pc , (11)

𝑞−𝑖 : Proba{Q−
i ≤ q−

i | W = wo} = 1 − pc , (12)

and where the probability in Eqs. (11) and (12) are calculated with the conditional cumulative distribution function,

Proba{Qi ≤ q∗i | W = wo} =
∫ q∗i

−∞
pQi |W (q∗i | wo) dqi , (13)

in which the conditional pdf 𝑝𝑄𝑖 |W is derived from conditional pdf 𝑝Q |W by an integration on R𝑛𝑞−1.

C. Generation of Learned Realizations to Estimate the Statistical Surrogate Model

In order to estimate the conditional statistics defined by Eqs. (10) to (13) of the statistical metamodel, we need to

generate the learned dataset constituted of a large number 𝑁ar of learned realizations (qℓ
ar,wℓ

ar) of random variable

(Q,W) using the available information defined by the training dataset, represented by matrix [𝑥𝑑], for which the

columns are the 𝑁𝑑 points 𝑥 𝑗 ∈ R𝑛. As previously explained, we need a probabilistic learning algorithm and we propose

to use the probabilistic learning on manifolds (PLoM) [21–23] for which the algorithm is summarized in the Appendix A

of the Supplemental Materials of the paper. Once the learned realizations have been generated, the joint probability

density function 𝑝Q,W of Q and W is estimated using the multivariate Gaussian Kernel Density Estimation method.
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The resulting explicit expression allows for performing exact multiple integration with respect to coordinate vector Q.

We then obtain explicit algebraic expression for the estimate of Eqs. (10) to (13), which only depends on the learned

dataset. These algebraic expressions are given in the Appendix B of the Supplemental Materials of the paper.

VI. Results and Discussion
The conditional statistics defined in Section V.B are estimated using the learned dataset generated as explained

in Section V.C with the following values of the parameters: 𝑛𝑑 defined in Section II.B, 𝑀𝑑 = 15, 𝑁𝑑 = 𝑛𝑑 × 𝑀𝑑 ,

𝑁ar = 𝑁𝑑 × 𝑛MC with 𝑛MC = 6000, and 𝑎unc = 0.5. Two types of results are shown.

(i) The first one is related to the conditional statistics for which the control parameter w belongs to C𝑤 (the training

dataset is based on these values).

(ii) For the second presented analysis, the control parameter does not belong to C𝑤 (and consequently, does not

belong to the training dataset). Recalling that in the training dataset, the 𝑛𝑑 points represent the values of

resistance and the reactance as a function of the frequency and the control-parameters samples. Since 𝑛𝑑 is very

small, all these points have been kept to construct the training set, and it was not possible to keep a part of these

points to perform a quality assessment (or cross-validation). So this second analysis has to be seen as predictions

performed by the statistical metamodel, for which quality can only be evaluated by coherence.

A. Predictions of the statistical metamodel for which the control parameter belongs to the training dataset

For several values of the control parameters (POA, SPL) that belong to the training dataset, Fig. 6 shows the

resistance (figures (a) to (d)) and the reactance (figures (e) to (h)) as a function of frequency. In each plot, it can be seen

the curve corresponding to the ACM simulation data. On the other hand, using the training dataset that includes model

uncertainties, the curve of the learning-based conditional mathematical expectation is plotted and the learning-based

conditional confidence region for a probability level 𝑝𝑐 = 0.98 is plotted.

B. Predictions of the statistical metamodel for which the control parameter does not belong to the training dataset

For this case, the nature of the presented results are the same as those presented in Subsection VI.A but the control

parameters (POA, SPL) do not belong to the training dataset. Fig. 7 shows the resistance (figures (a) to (d)) and the

reactance (figures (e) to (h)) as a function of frequency.

C. Discussion

It can be seen that the dispersion of the resistance is larger than the reactance. This means that the resistance is

more sensitive to statistical fluctuations than the reactance. This dispersion is due to two factors. The first one is

directly correlated to the contents of the training dataset without model uncertainties (the ACM simulation data), which

contributes to the dispersion of the resistance. The second one is due to the model uncertainties that have been included
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(a) (POA,SPL)=(0.03,130) (b) (POA,SPL)=(0.03,145) (c) (POA,SPL)=(0.1,130) (d) (POA,SPL)=(0.1,145)

(e) (POA,SPL)=(0.03,130) (f) (POA,SPL)=(0.03,145) (g) (POA,SPL)=(0.1,130) (h) (POA,SPL)=(0.1,145)

Fig. 6 Statistical metamodel for (POA, SPL) belonging to the training dataset. Resistance ((a) to (d)) and
reactance ((e) to (h)) versus frequency (Hz) (horizontal axis): ACM simulation (circles), learning-based conditional
mean (diamonds) and conditional confidence region (shaded domain).
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(a) (POA,SPL)=(0.045,133) (b) (POA,SPL)=(0.045,141) (c) (POA,SPL)=(0.075,133) (d) (POA,SPL)=(0.075,141)

(e) (POA,SPL)=(0.045,133) (f) (POA,SPL)=(0.045,141) (g) (POA,SPL)=(0.075,133) (h) (POA,SPL)=(0.075,141)

Fig. 7 Statistical metamodel for (POA, SPL) not belonging to the training dataset. Resistance ((a) to (d))
and reactance ((e) to (h)) versus frequency (Hz) (horizontal axis): ACM simulation (circles), learning-based
conditional mean (diamonds) and conditional confidence region (shaded domain).
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in the training dataset. The analyses performed have shown that the contributions of the statistical fluctuations in the

ACM simulation data is more dominant than those induced by the model uncertainties. For the considered values of the

control parameters the dispersion of the reactance always stays small, while, the dispersion of the resistance strongly

depends on the control-parameters values. It should be noted that, for each given value of the control parameter, the

estimated conditional expectation of the resistance and reactance is close to the ACM simulation data. This proximity is

due to the fact the random variable B related to the model uncertainties is centered and, in addition, in the probabilistic

learning process, the mean value corresponds to the ACM simulation data. Finally, Fig. 7 related to the second analysis,

shows that the predictions performed by the statistical metamodel are coherent with respect to those shown in Fig. 6.

VII. Conclusion
We have presented a methodology for constructing a robust statistical metamodel of the aeroacoustic liner impedance

as a function of the frequency and on the main control parameters, the POA and the SPL. In this work the Mach number

has been chosen to be zero. It corresponds to an important configuration that has to be studied. For nonzero Mach

number, the frequency evolutions and the amplitudes of the aeroacoustic impedance are different and require additional

works, using the presented methodology. This construction is based on computationally expensive aeroacoustic model

to generate simulated data, which yields a small training dataset. This means that a learning process has to be used and

we have chosen the PLoM algorithm. Although the aeroacoustic simulation is conducted with a large aeroacoustic

computational model, some approximations have been introduced, generating model errors. A probability model of

these model errors has been developed to construct the training dataset. In order to calibrate the model errors, we have

used dimensionless experiments available from the open literature. In addition, we have also introduced a sensitivity

parameter to the level of model uncertainties. The results that have been presented correspond to a medium value of

model uncertainties. Despite the fact that we have very small amount of data, we have succeeded in proposing a robust

statistical metamodel that is novel and whose predictions are consistent. This statistical framework allows for exhibiting

a confidence region, which gives an information about the level of uncertainties about the aeroacoustic liner impedance

as a function of the frequency and the control parameters. Finally, it should be noted that the main contribution of

this paper is the methodology presented, which is independent of the choice of the aeroacoustic computational model

(more or less simplified) and of the choice of experiments used to estimate the level of uncertainties. Concerning the

application presented, the experimental data and the aeroacoustic computation could be replaced by others.
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I. Introduction

This Supplemental Material is a companion paper that presents Appendix A entitled: Summary of
the probabilistic learning on manifolds (PLoM) algorithm and its parameterization and Appendix B
entitled: Algebraic expressions of the conditional statistics.

II. Appendix A: Summary of the probabilistic learning on manifolds (PLoM)
algorithm and its parameterization

The PLoM approach [1–3], which has specifically been developed for small data (as opposed to
big data) starts from a training set D𝑑 made up of a relatively small number 𝑁𝑑 of points. It
is assumed that D𝑑 is generated with an underlying stochastic manifold related to a R𝑛-valued
random variable X = (Q,W), defined on a probability space (Θ,T ,P), in which Q is the quantity
of interest that is a R𝑛𝑞 -random variable, where W is the control parameter that is a R𝑛𝑤 -random
variable, and where 𝑛 = 𝑛𝑞 + 𝑛𝑤. Another R𝑛𝑢- valued random variable U defined on (Θ,T ,P)
can also be considered, which is an uncontrolled parameter and/or a noise. Random variable Q
is assumed to be written as Q = f(U,W) in which the measurable mapping f is not explicitly
known. The joint probability distribution 𝑃W,U(𝑑w, 𝑑u) of W and U is assumed to be given. The
non-Gaussian probability measure 𝑃X(x) = 𝑃Q,W(𝑑q, 𝑑w) of X = (Q,W) is concentrated in a
region of R𝑛 for which the only available information is the cloud of the points of training set
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D𝑑 . The PLoM method makes it possible to generate the learned set Dar for X whose 𝑛MC ≫ 𝑁𝑑
points (learned realizations) are generated by the non-Gaussian probability measure that is estimated
using the training set. The concentration of the probability measure is preserved thanks to the
use of a diffusion-maps basis that allows to enrich the available information from the training
set. Using the learned set Dar, PLoM allows for carrying out any conditional statistics such as
w ↦→ 𝐸{𝝃 (Q) |W = w} from C𝑤 in R𝑛𝜉 , in which 𝝃 is a given measurable mapping from R𝑛𝑞 into
R𝑛𝜉 , that is to say to construct statistical surrogate models (metamodels) in a probabilistic framework.

The training dataset D𝑑 is made up of the 𝑁𝑑 independent realizations x 𝑗
𝑑
= (q 𝑗

𝑑
,w 𝑗

𝑑
) in R𝑛 =

R𝑛𝑞 × R𝑛𝑤 for 𝑗 ∈ {1, . . . , 𝑁𝑑} of random variable X = (Q,W). The PLoM method allows for
generating the learned dataset Dar made up of 𝑁ar ≫ 𝑁𝑑 learned realizations {xℓar, ℓ = 1, . . . , 𝑁ar} of
random vector X. As soon as the learned dataset has been constructed, the learned realizations for
Q and W can be extracted as (qℓar,wℓ

ar) = xℓar for ℓ = 1, . . . , 𝑁ar.

(A.1) Reduced representation. The 𝑁𝑑 independent realizations {x 𝑗
𝑑
, 𝑗 = 1, . . . , 𝑁𝑑} are represented

by the matrix [𝑥𝑑] = [x1
𝑑
. . . x𝑁𝑑

𝑑
] inM𝑛,𝑁𝑑

. Let [X] = [X1, . . . ,X𝑁𝑑 ] be the random matrix with
values inM𝑛,𝑁𝑑

, whose columns are 𝑁𝑑 independent copies of random vector X. Using the PCA of
X, random matrix [X] is written as,

[X] = [𝑥] + [𝜑] [𝜇]1/2 [H] , (1)

in which [H] = [H1, . . . , H𝑁𝑑 ] is aM𝜈,𝑁𝑑
-valued random matrix, where 𝜈 ≤ 𝑛, and where [𝜇] is

the (𝜈 × 𝜈) diagonal matrix of the 𝜈 positive eigenvalues of the empirical estimate of the covariance
matrix of X. The (𝑛 × 𝜈) matrix [𝜑] is made up of the associated eigenvectors such [𝜑]𝑇 [𝜑] = [𝐼𝜈].
The matrix [𝑥] in M𝑛,𝑁𝑑

has identical columns, each one being equal to the empirical estimate
x ∈ R𝑛 of the mean value of random vector X. The columns of [H] are 𝑁𝑑 independent copies
of a random vector H with values in R𝜈. The realization [𝜂𝑑] = [𝜼1

𝑑
. . . 𝜼𝑁𝑑

𝑑
] ∈ M𝜈,𝑁𝑑

of [H] is
computed by [𝜂𝑑] = [𝜇]−1/2 [𝜑]𝑇 ( [𝑥𝑑] − [𝑥]). The value 𝜈 is classically calculated in order that
the 𝐿2- error function 𝜈 ↦→ errX(𝜈) defined by

errX(𝜈) = 1 −
∑𝜈
𝛼=1 𝜇𝛼

𝐸{∥X∥2}
, (2)

be smaller than 𝜀PCA. If 𝜈 < 𝑛, then there is a statistical reduction.

(A.2) Construction of a reduced-order diffusion-maps basis. For preserving the concentration of the
learned realizations in the region in which the points of the training dataset are concentrated, the
PLoM relies on the diffusion-maps method [4, 5]. This is an algebraic basis of vector space R𝑁𝑑 ,
which is constructed using the diffusion maps. Let [𝐾] and [𝑏] be the matrices such that, for all 𝑖 and
𝑗 in {1, . . . , 𝑁𝑑}, [𝐾]𝑖 𝑗 = exp{−(4 𝜀DM)−1∥𝜼𝑖

𝑑
− 𝜼 𝑗

𝑑
∥2} and [𝑏]𝑖 𝑗 = 𝛿𝑖 𝑗 𝑏𝑖 with 𝑏𝑖 =

∑𝑁𝑑

𝑗=1 [𝐾]𝑖 𝑗 , in
which 𝜀DM > 0 is a smoothing parameter. The eigenvalues 𝜆1, . . . , 𝜆𝑁𝑑

and the associated eigenvectors
𝝍1, . . . ,𝝍𝑁𝑑 of the right-eigenvalue problem [P] 𝝍𝛼 = 𝜆𝛼 𝝍

𝛼 are such that 1 = 𝜆1 > 𝜆2 ≥ . . . ≥ 𝜆𝑁𝑑

and are computed by solving the generalized eigenvalue problem [𝐾] 𝝍𝛼 = 𝜆𝛼 [𝑏] 𝝍𝛼 with the
normalization < [𝑏] 𝝍𝛼,𝝍𝛽>= 𝛿𝛼𝛽. The eigenvector 𝝍1 associated with 𝜆1 = 1 is a constant vector.
For a given integer 𝜅 ≥ 0, the diffusion-maps basis {g1, . . . , g𝛼, . . . , g𝑁𝑑 } is a vector basis of R𝑁𝑑

defined by g𝛼 = 𝜆𝜅𝛼 𝝍
𝛼. For a given integer 𝑚, the reduced-order diffusion-maps basis of order 𝑚 is
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defined as the family {g1, . . . , g𝑚} that is represented by the matrix [𝑔𝑚] = [g1 . . . g𝑚] ∈ M𝑁𝑑 ,𝑚

with g𝛼 = (𝑔𝛼1 , . . . , 𝑔
𝛼
𝑁𝑑
) and [𝑔𝑚]ℓ𝛼 = 𝑔𝛼

ℓ
. This basis depends on two parameters, 𝜀DM and 𝑚, which

have to be identified. It is proven in [2], that the PLoM method does not depend on 𝜅 that can
therefore be chosen to 0.

We have to find the optimal value 𝑚opt ≤ 𝑁𝑑 of 𝑚 and the smallest value 𝜀opt > 0 of 𝜀DM such
that (see [6])

1 = 𝜆1 > 𝜆2(𝜀opt) ≃ . . . ≃ 𝜆𝑚opt (𝜀opt) ≫ 𝜆𝑚opt+1(𝜀opt) ≥ . . . ≥ 𝜆𝑁𝑑
(𝜀opt) > 0 , (3)

with an amplitude jump equal to an order of magnitude (a factor 10 as demonstrated in [2]) between
𝜆𝑚opt (𝜀opt) and 𝜆𝑚opt+1(𝜀opt). A further in-depth analysis makes it possible to state the following
algorithm to estimate 𝜀opt and 𝑚opt. Let 𝜀DM ↦→ Jump(𝜀DM) be the function on ]0, +∞[ defined by

Jump(𝜀DM) = 𝜆𝑚opt+1(𝜀DM)/𝜆2(𝜀DM) . (4)

The algorithm is the following:
- set the value of 𝑚 to 𝑚opt = 𝜈 + 1;
- identify the smallest possible value 𝜀opt of 𝜀DM in order that Jump(𝜀opt) ≤ 0.1 and such that Equation (3)
be verified.

(A.3) Reduced-order representation of random matrices [H ] and [X ]. The diffusion-maps vectors
g1, . . . , g𝑚 ∈ R𝑁𝑑 span a subspace of R𝑁𝑑 that characterizes, for the optimal values 𝑚opt and 𝜀opt

of 𝑚 and 𝜀DM, the local geometry structure of dataset {𝜼 𝑗
𝑑
, 𝑗 = 1, . . . , 𝑁𝑑}. So the PLoM method

introduces theM𝜈,𝑁𝑑
-valued random matrix [H𝑚] = [Z𝑚] [𝑔𝑚]𝑇 with 𝑚 ≤ 𝑁𝑑 , corresponding to

a data-reduction representation of random matrix [H], in which [Z𝑚] is a M𝜈,𝑚-valued random
matrix. The MCMC generator of random matrix [Z𝑚] belongs to the class of Hamiltonian Monte
Carlo methods, is explicitly described in [1], and is mathematically detailed in Theorem 6.3 of [2].
For generating the learned dataset, the best probability measure of [ H𝑚] is obtained for 𝑚 = 𝑚opt

and using the previously defined [𝑔𝑚opt]. For these optimal quantities 𝑚opt and [𝑔𝑚opt], the generator
allows for computing 𝑛MC realizations {[zℓar], ℓ = 1, . . . , 𝑛MC} of [Z𝑚opt] and therefore, for deducing
the 𝑛MC realizations {[𝜼ℓar], ℓ = 1, . . . , 𝑛MC} of [H𝑚opt]. The reshaping of matrix [𝜼ℓar] ∈ M𝜈,𝑁𝑑

allows for obtaining 𝑁ar = 𝑛MC × 𝑁𝑑 learned realizations {𝜼ℓ′ar , ℓ
′ = 1, . . . , 𝑁ar} of H. These learned

realizations allow for estimating converged statistics on H and then on X, such as pdf, moments,
or conditional expectation of the type 𝐸{𝝃 (Q) | W = w} for w given in R𝑛𝑤 and for any given
vector-valued function 𝝃 defined on R𝑛𝑞 .

(A.4) Criterion for quantifying the concentration of the probability measure of random matrix
[H𝑚opt]. For 𝑚 ≤ 𝑁𝑑 , the concentration of the probability measure of random matrix [H𝑚] is
defined (see [2]) by

𝑑2
𝑁𝑑
(𝑚) = 𝐸{∥[H𝑚] − [𝜂𝑑] ∥2}/∥[𝜂𝑑] ∥2 . (5)

Let Mopt = {𝑚opt, 𝑚opt + 1, . . . , 𝑁𝑑} in which 𝑚opt is the optimal value of 𝑚 previously defined.
Theorem 7.8 of [2] shows that min𝑚∈Mopt 𝑑

2
𝑁𝑑
(𝑚) ≤ 1 + 𝑚opt/(𝑁𝑑 − 1) < 𝑑2

𝑁𝑑
(𝑁𝑑), which means

that the PLoM method, for 𝑚 = 𝑚opt and [𝑔𝑚opt] is a better method than the usual one corresponding
to 𝑑2

𝑁𝑑
(𝑁𝑑) = 1 + 𝑁𝑑/(𝑁𝑑 − 1) ≃ 2. Using the 𝑛MC realizations {[𝜼ℓar], ℓ = 1, . . . , 𝑛MC} of [H𝑚opt],

we have the estimate 𝑑2
𝑁𝑑
(𝑚opt) ≃ (1/𝑛MC)

∑𝑛MC

ℓ=1{∥[𝜼
ℓ
ar] − [𝜂𝑑] ∥2}/∥[𝜂𝑑] ∥2.

3



(A.5) Generation of learned realizations {𝜼ℓ′ar , ℓ
′ = 1, . . . , 𝑁ar} of random vector H. The MCMC

generator is detailed in [1]. Let {([Z(𝑡)], [Y (𝑡)]), 𝑡 ∈ R+} be the unique asymptotic (for 𝑡 → +∞)
stationary diffusion stochastic process with values inM𝜈,𝑚opt ×M𝜈,𝑚opt , of the following reduced-order
ISDE (stochastic nonlinear second-order dissipative Hamiltonian dynamic system), for 𝑡 > 0,

𝑑 [Z(𝑡)] = [Y (𝑡)] 𝑑𝑡 ,

𝑑 [Y (𝑡)] = [L([Z(𝑡)])] 𝑑𝑡 − 1
2
𝑓0 [Y (𝑡)] 𝑑𝑡

+
√︁
𝑓0 [𝑑Wwien(𝑡)] ,

with [Z(0)] = [𝜂𝑑] [𝑎] and [Y (0)] = [N ] [𝑎], in which

[𝑎] = [𝑔𝑚opt] ( [𝑔𝑚opt]𝑇 [𝑔𝑚opt])−1 ∈ M𝑁𝑑 ,𝑚opt .

(1) [L([Z(𝑡)])] = [𝐿 ( [Z(𝑡)] [𝑔𝑚opt]𝑇 )] [𝑎] is a random matrix with values in M𝜈,𝑚opt . For all
[𝑢] = [u1 . . . u𝑁𝑑 ] inM𝜈,𝑁𝑑

with u 𝑗 = (𝑢 𝑗1, . . . , 𝑢
𝑗
𝜈) in R𝜈, the matrix [𝐿 ( [𝑢])] inM𝜈,𝑁𝑑

is defined,
for all 𝑘 = 1, . . . , 𝜈 and for all 𝑗 = 1, . . . , 𝑁𝑑 , by

[𝐿 ( [𝑢])]𝑘 𝑗 =
1

𝑝(u 𝑗 ) {∇u 𝑗 𝑝(u 𝑗 )}𝑘 , (6)

𝑝(u 𝑗 ) = 1
𝑁𝑑

𝑁𝑑∑︁
𝑗 ′=1

exp{− 1
2�̂� 2
𝜈

∥ �̂�𝜈
𝑠𝜈
𝜼 𝑗

′ − u 𝑗 ∥2} ,

∇u 𝑗 𝑝(u 𝑗 )= 1
�̂� 2
𝜈 𝑁𝑑

𝑁𝑑∑︁
𝑗 ′=1

( �̂�𝜈
𝑠𝜈
𝜼 𝑗

′− u 𝑗 ) exp{− 1
2�̂� 2
𝜈

∥ �̂�𝜈
𝑠𝜈
𝜼 𝑗

′− u 𝑗 ∥2} ,

in which �̂�𝜈 is the modified Silverman bandwidth 𝑠𝜈, which has been introduced in [7],

�̂�𝜈 =
𝑠𝜈√︃

𝑠2𝜈 + 𝑁𝑑−1
𝑁𝑑

, 𝑠𝜈 =

{
4

𝑁𝑑 (2 + 𝜈)

}1/(𝜈+4)
.

(2) [Wwien(𝑡)] = [Wwien(𝑡)] [𝑎] where {[Wwien(𝑡)], 𝑡 ∈ R+} is theM𝜈,𝑁𝑑
-valued normalized Wiener

process.
(3) [N ] is theM𝜈,𝑁𝑑

-valued normalized Gaussian random matrix that is independent of process
[Wwien].
(4) The free parameter 𝑓0, such that 0 < 𝑓0 < 4/�̂�𝜈, allows the dissipation term of the nonlinear
second-order dynamic system (dissipative Hamiltonian system) to be controlled in order to kill the
transient part induced by the initial conditions. A common value is 𝑓0 = 4 (note that �̂�𝜈 < 1).
(5) We then have [Z𝑚opt] = lim𝑡→+∞ [Z(𝑡)] in probability distribution. The Störmer-Verlet
scheme is used for solving the reduced-order ISDE, which allows for generating the learned
realizations, [𝑧1ar], . . . , [𝑧𝑛MC

ar ], and then, generating the learned realizations [𝜂1
ar], . . . , [𝜂𝑛MC

ar ] such
that [𝜂ℓar] = [𝑧ℓar] [𝑔𝑚opt]𝑇 .
(6) The learned realizations {xℓ′ar , ℓ

′ = 1, . . . , 𝑁ar} of random vector X are then calculated (see
Eq. (1)) by xℓ′ar = x + [𝜑] [𝜇]1/2 𝜼ℓ

′
ar .
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(A.6) Constraints on the second-order moments of the components of H. In general, the mean
value of H estimated using the 𝑁ar learned realizations {𝜼ℓ′ar , ℓ

′ = 1, . . . , 𝑁ar}, is sufficiently close to
zero. Likewise, the estimate of the covariance matrix of H, which must be the identity matrix, is
sufficiently close to a diagonal matrix. However, sometimes the diagonal entries of the estimated
covariance matrix can be lower than 1. Normalization can be recovered by imposing constraints

{𝐸{(𝐻𝑘 )2} = 1, 𝑘 = 1, . . . , 𝜈} ,

in the algorithm presented in paragraph (v). For that, we use the method and the iterative algorithm
presented in [6] (that is based on Sections 5.5 and 5.6 of [3]). The constraints are imposed by
using the Kullback-Leibler minimum cross-entropy principle. The resulting optimization problem
is formulated using a Lagrange multiplier v = (𝑣1, . . . , 𝑣𝜈) associated with the constraints. The
optimal solution of the Lagrange multiplier is computed using an efficient iterative algorithm. At
each iteration, the MCMC generator detailed in paragraph A.5 is used. The constraints are rewritten
as

𝐸{h(H)} = b ,

in which the function h = (ℎ1, . . . , ℎ𝜈) and the vector b = (𝑏1, . . . , 𝑏𝜈) are such that ℎ𝑘 (H) = (𝐻𝑘 )2

and 𝑏𝑘 = 1 for 𝑘 in {1, . . . , 𝜈}. To take into account the constraints in the algorithm of paragraph A.5,
Eq. (6) is replaced by the following one,

[𝐿𝝀 ( [𝑢])]𝑘 𝑗 =
1

𝑝(u 𝑗 ) {∇u 𝑗 𝑝(u 𝑗 )}𝑘 − 2𝜆𝑘𝑢 𝑗𝑘 .

The iteration algorithm for computing 𝝀𝑖+1 as a function of 𝝀𝑖 is the following,

𝝀𝑖+1 = 𝝀𝑖 − 𝛼𝑖 [Γ′′(𝝀𝑖)]−1 𝚪′(𝝀𝑖) , 𝑖 ≥ 0 ,
𝝀0 = 0𝜈 ,

(7)

in which 𝚪′(𝝀𝑖) = b − 𝐸{h(H𝝀𝑖 )} and [Γ′′(𝝀𝑖)] = [cov{h(H𝝀𝑖 )}] (the covariance matrix), and
where 𝛼𝑖 is a relaxation function (less than 1) that is introduced for controlling the convergence as a
function of iteration number 𝑖. For given 𝑖2 ≥ 2, for given 𝛽1 and 𝛽2 such that 0 < 𝛽1 < 𝛽2 ≤ 1, 𝛼𝑖
can be defined by:
- for 𝑖 ≤ 𝑖2, 𝛼𝑖 = 𝛽1 + (𝛽2 − 𝛽1) (𝑖 − 1)/(𝑖2 − 1);
- for 𝑖 > 𝑖2, 𝛼𝑖 = 𝛽2.
The convergence of the iteration algorithm is controlled by the error function 𝑖 ↦→ err(𝑖) defined by

err(𝑖) = ∥b − 𝐸{h(H𝝀𝑖 )}∥/∥b∥ . (8)

At each iteration 𝑖, 𝐸{h(H𝝀𝑖 )} and [cov{h(H𝝀𝑖 )}] are estimated by using the 𝑁ar learned realizations
of H𝑚opt (𝝀𝑖) obtained by reshaping the learned realizations.
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III. Appendix B: Algebraic expressions of the conditional statistics

The objective is to give the algebraic expressions of the conditional expection,

𝐸{Q|W = w𝑜} =
∫
R𝑛𝑞

q 𝑝Q|W(q|w𝑜) 𝑑q , (9)

and of the conditional cumulative distribution function,

Proba{Qi ≤ q∗i | W = wo} =
∫ q∗i

−∞
pQi |W(q∗i | wo) dqi , (10)

which allows to estimate the confidence region. Let Q̃ = (𝑄1, . . . , 𝑄𝑛𝑞 ) and W̃ = (𝑄1, . . . ,𝑊𝑛𝑤 ) be
the normalized random vector whose components are defined by

𝑄𝑖 = (𝑄𝑖 − 𝑞
𝑖
)/𝜎𝑄𝑖

, 𝑊𝑘 = (𝑊𝑘 − 𝑤𝑘 )/𝜎𝑊𝑘
, (11)

in which 𝑞
𝑖
, 𝑤

𝑘
, and 𝜎𝑄𝑖

, 𝜎𝑊𝑘
are the mean values and the standard deviations of the random

variables 𝑄𝑖 and𝑊𝑘 , which are estimated with the empirical statistical estimators using the learned
realizations {(qℓar,wℓ

ar), ℓ = 1, . . . , 𝑁ar}. The Gaussian KDE estimation of the joint probability
distribution of Q̃ and W̃ is written as,

pQ̃,W̃(q̃, w̃) = 1
𝑁ar

𝑁ar∑︁
ℓ=1

1
(
√

2𝜋𝑠)𝑛𝑞
exp(− 1

2𝑠2
∥q̃ − q̃ℓar∥2) 1

(
√

2𝜋𝑠)𝑛𝑤
exp(− 1

2𝑠2
∥w̃ − w̃ℓ

ar∥2) , (12)

in which 𝑠 is the Silverman bandwidth given by

𝑠 =

{
4

𝑁ar(2 + 𝑛)

}1/(𝑛+4)
, 𝑛 = 𝑛𝑞 + 𝑛𝑤 . (13)

The derived algebraic expression of conditional mathematical expectation of component 𝑄𝑖 given
W = w𝑜 is written as

𝐸{𝑄𝑖 |W = w𝑜} = 𝑞
𝑖
+ 𝜎𝑄𝑖

𝐸{𝑄𝑖 |W̃ = w̃𝑜} , 𝑤𝑜,𝑘 = (𝑤𝑜,𝑘 − 𝑤𝑘 )/𝜎𝑊𝑘
, (14)

𝐸{𝑄𝑖 |W̃ = w̃𝑜} =
∑𝑁ar
ℓ=1 𝑞

ℓ
ar,𝑖 × exp(− 1

2𝑠2 ∥w̃𝑜 − w̃ℓ
ar∥2)∑𝑁ar

ℓ=1 exp(− 1
2𝑠2 ∥w̃𝑜 − w̃ℓ

ar∥2)
. (15)

The conditional cdf 𝐹𝑄𝑖 |W(𝑞∗
𝑖
|w𝑜) = Proba{Qi ≤ q∗i | W = wo} is written as,

𝐹𝑄𝑖 |W(𝑞∗𝑖 |w𝑜) =
∑𝑁ar
ℓ=1 𝐹𝑄ℓ

𝑖
(𝑞∗
𝑖
) × exp(− 1

2𝑠2 ∥w̃𝑜 − w̃ℓ∥2)∑𝑁ar
ℓ=1 exp(− 1

2𝑠2 ∥w̃𝑜 − w̃ℓ∥2)
, 𝑞∗𝑖 = (𝑞∗𝑖 − 𝑞𝑖)/𝜎𝑄𝑖

, (16)

𝐹𝑄𝑖 |W(𝑞∗𝑖 |w𝑜) =
1
2
+ 1

2
erf( 1

√
2 𝑠

(𝑞∗𝑖 − 𝑞ℓar,𝑖)) , erf(𝑦) = 2
√
𝜋

∫ 𝑦

0
𝑒−𝑡

2
𝑑𝑡 . (17)
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