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An overview on uncertainty quantification and probabilistic
learning on manifolds in multiscale mechanics of materials

Christian Soizea,∗

aUniversité Gustave Eiffel, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France

Abstract

An overview of the author works, many of which were carried out in collaboration, is presented. The first part
concerns the quantification of uncertainties for complex engineering science systems for which analyzes are now
carried out using large numerical simulation models. More recently, machine learning methods have appeared in this
field to address certain problems of nonconvex optimization under uncertainties and inverse identification, which are
not affordable with standard computer resources. Thus the second part is relative to the presentation of a method of
probabilistic learning on manifolds recently proposed for the case of small data and which makes it possible to build
statistical surrogate models useful to perform probabilistic inferences. The illustrations are mainly focused on the
multiscale analyzes of microstructures made up of heterogeneous continuous materials, which cannot be described in
terms of constituents and which are modeled with stochastic apparent quantities at mesoscale.

Keywords: Uncertainty quantification, probabilistic learning, stochastic homogenization, heterogeneous material,
multiscale mechanics

1. Introduction

Uncertainty quantification for computational models in science and engineering on the one hand, and probabilistic
learning for the construction of metamodels (surrogate models) on the other hand, are very vast and active research
fields, which remain very current, and which have generated and generate a very large number of published works
for several decades. Consequently, this article cannot be and is not a review of the state of the art, but of course the
author has remained attentive to refer the reader to numerous references, which will be given as developements are
presented.

The author has contributed to the development and to the use of probability theory and mathematical statistics in
Mechanics of complex systems since 1973, in particular to the development of methods for Uncertainty quantification
(UQ) in computational stochastic mechanics since the end of the 1990s, and to the development of probabilistic
learning on manifolds devoted to the construction of statistical surrogate models (metamodels) for large computational
models in engineering science for the last 10 years. The author offers an overview of his work most often carried out
in collaboration, concerning current prospective approaches in the field of uncertain computational models and their
identification with applications to the mechanics of materials whose microstructures are complex mechanical systems.

This overview is mainly an introduction to this field of research, which provides an overview of the main concepts
and methods. However, the use of probability theory and statistics remains a relatively difficult field of mathematics
and it is not possible to give in such a paper the details, the mathematical elements, and even certain foundations,
which would be necessary for that a reader uninitiated to this domain perfectly understands all the aspects. Inevitably
deadlocks must be made and this lack will be overcome by referring to published articles and books. However, the
author goal is to help readers to understand the concepts, methods of analysis, and fields of application. Concerning
Uncertainty Quantification and the principal probability and statistical tools useful for probabilistic learning, we refer
the reader to Section 2.4 devoted to bibliographical complements.

∗Corresponding author: C. Soize, christian.soize@univ-eiffel.fr
Email address: christian.soize@univ-eiffel.fr (Christian Soize )

Published in Mathematics and Mechanics of Complex Systems, 11(1), 87-174 (2023). October 24, 2023



1.1. Organization of the paper

Sections 1 to 6 are devoted to the first aspect of proposed overview, namely the uncertainty quantification prin-
cipally oriented towards multiscale mechanics of materials. Section 2 presents a very brief overview on the main
concepts in stochastic modeling for Uncertainty Quantification (UQ) and ends with bibliographical complements.
Section 3 is devoted to the construction of prior stochastic models of uncertainties. The types of representation for
stochastic modeling are presented. We introduce the Maximum Entropy (MaxEnt) principle from Information Theory,
which is a fundamental statistical tools to construct an informative prior probability distribution using the available
information. We also show how MaxEnt can be used as a general numerical tool for constructing a probability dis-
tribution in any dimension. Section 4 deals with Random Matrix Theory that is an important probability tool for the
probability modeling of uncertainties in computational mechanics. It is use for nonparametric probabilistic modeling
of model errors in the computational models and also to construct prior probability models of tensor-valued random
fields such as fourth-order elasticity fields of heterogeneous materials. We show how the ensembles of random matri-
ces are constructed using MaxEnt for symmetric real random matrices. Three ensembles of random matrices that are
used in uncertainty quantification are presented: ensemble SG+0 of positive-definite random matrices with a unit mean
value; ensemble SG+ε of positive-definite random matrices with a unit mean value and a positive-definite lower bound;
ensemble SE+ε of positive-definite random matrices with a given mean value and a positive-definite lower bound. Sec-
tion 5 is central to construct informative prior probability models of elasticity random fields of elastic media. We
present algebraic prior probability models for heterogeneous anisotropic elastic media and for heterogeneous elastic
media with statistical fluctuations in a symmetry class and with anisotropic statistical fluctuations. In Section 6, two
illustrations are presented. The first illustration concerns stochastic homogenization of heterogeneous materials at
microscale in the context of a probabilistic analysis of the representative volume element size in stochastic homog-
enization of a heterogeneous complex microstructure. The second illustration deals with the stochastic continuum
modeling of the random interphase of a polymer nanocomposite using atomistic simulations and a statistical inverse
problem.

Sections 7 and 8 are devoted to the second aspect of the proposed overview and concerns the use of probabilistic
learning in computational science and engineering, in particular in multiscale mechanics of materials. In Section 7,
we present the methodology and the algorithms of the Probabilistic Learning on Manifolds (PLoM). This is a machine
learning tool that has specifically been developed for small datasets. Some illustrations are given and show the capa-
bility of the PLoM algorithm. In particular we present the nonconvex optimization under uncertainties for which the
number of function evaluations is limited. Next we summarize the methodology and the algorithms of the probabilis-
tic learning under constraints based on the Kullback-Leibler divergence minimization principle. This methodology
allows the probabilistic inference to be carried out to identify the probability model using targets. Finally, Section 8 is
devoted to an illustration of the probabilistic learning inference for 3D stochastic homogenization of a heterogeneous
linear elastic microstructure with random spectrum and without scale separation.

1.2. Convention for the variables, vectors, and matrices

x, η: lower-case Latin or Greek letters are deterministic real variables.
x, η: boldface lower-case Latin or Greek letters are deterministic vectors.
X: upper-case Latin letters are real-valued random variables.
X: boldface upper-case Latin letters are vector-valued random variables.
[x]: lower-case Latin letters between brackets are deterministic matrices.
[X]: boldface upper-case letters between brackets are matrix-valued random variables.

1.3. Notations for sets of matrices and their norm

Rn: Euclidean vector space.
Mn,m: set of the (n × m) real matrices.
Mn: set of the square (n × n) real matrices.
MS

n : set of the symmetric square (n × n) real matrices.
M+n : set of the positive-definite (n × n) real matrices.
M+0

n : set of the positive (n × n) real matrices.
[In]: identity matrix in Mn.
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x: for x ∈ Rm, x = (x1, . . . , xm).
xT : transpose of the column matrix made up of the components of x ∈ Rm.
[x]T : transpose of matrix [x].
tr[x]: trace of matrix [x].
⟨x , y⟩: Euclidean inner product of x and y in Rn, equal to x1y1 + . . . xmym.
∥x∥: Euclidean norm of x in Rn, equal to ⟨x , x⟩1/2.
∥ [x] ∥ = sup ∥ y ∥=1 ∥ [x] y ∥.
∥ [x] ∥F : Frobenius norm of matrix [x], equal to (tr{[x]T [x]})1/2.
1B: indicatrix function of set B.

1.4. Convention used for random variables and random fields

(i) Random variable. In this paper, for any finite integer m ≥ 1, the Euclidean space Rm is equipped with the σ-algebra
BRm . If Y is a Rm-valued random variable defined on the probability space (Θ,T ,P), Y is a mapping θ 7→ Y(θ) from
Θ into Rm, measurable from (Θ,T ) into (Rm,BRm ), and Y(θ) is a realization (sample) of Y for θ ∈ Θ. The probability
distribution of Y is the probability measure PY(dy) on the measurable set (Rm,BRm ) (we will simply say on Rm). The
Lebesgue measure on Rm is noted dy and when PY(dy) is written as pY(y) dy, pY is the probability density function
(pdf) on Rm of PY(dy) with respect to dy.

If Y and Y′ are Rm- and Rm′ -valued random variables defined on (Θ,T ,P) and if f is a measurable function on
Rm × Rm′ with values in Rn, which means that Z = f(Y,Y′) is a Rn-valued random variable, then we have

E{Z} =
∫

Rn
z PZ(dz) = E{f(Y,Y′)} =

∫
Rm×Rm′

f(y, y′) PY,Y′ (dy, dy′) ,

in which E is the mathematical expectation, PZ(dz) is probability distribution on Rn of Z, where PY,Y′ (dy, dy′) is the
joint probability distribution of Rm × Rm′ of Y and Y′, and where PZ is the image of PY,Y′ by f.

We say that Y is a second-order random variable if E{∥Y∥2} =
∫

Rm ∥y∥2 PY(dy) < +∞. The set of all the second-
order Rm-random variables defined on (Θ,T ,P) is denoted by L2(Θ,Rm) (quotient by the equivalence relation of
almost-surely (a.s.) equal random variables). Equipped with the inner product and the associated norm

⟨⟨Y ,Y′⟩⟩ = E{⟨Y ,Y′⟩} , |||Y||| = ⟨⟨Y ,Y⟩⟩1/2 ,

L2(Θ,Rm) is a Hilbert space.

(ii) Second-order random field. A second-order random field {V(ξ), ξ ∈ Ω}, defined on (Θ,T ,P), indexed by any
uncountable subset Ω of Rd with d ≥ 1 (possibly with Ω = Rd), with values in Rm, is defined by a mapping ξ 7→ V(ξ)
from Ω into L2(Θ,Rm).

For all ξ fixed in Ω, V(ξ) ∈ L2(Θ,Rm), that is to say is the second-order random variable θ 7→ V(ξ, θ) from Θ into
Rm. For all θ fixed in Θ, V(ξ, θ) is a realization of Rm-valued random variable V(ξ) and ξ 7→ V(ξ, θ) is a trajectory (or
sample path) of random field V.

Let oν = {ξ1, . . . , ξν} be a finite subset of Ω and let Voν = (V(ξ1), . . . ,V(ξν)) be the random variable with values
in Rn with n = ν × m. The probability distribution Pn(dv) on Rn of random variable Voν is a marginal probability
distribution of random field V. The system of marginal distributions of random field V is made up of the uncountable
family of all the finite probability distributions Pn(dv) obtained for all the possible finite nonempty and nonordered
subsets oν of Ω.

2. Main concepts in stochastic modeling for Uncertainty Quantification (UQ)

This very brief section is relatively important for the understanding of what is UQ and we refer the reader to [1]
for more details.
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2.1. Aleatory and epistemic uncertainties

The aleatory uncertainties concern physical phenomena, which are random by nature. This is the case, for in-
stance, for the pressure field in a fully developed turbulent boundary layer or for the geometrical distribution of the
inclusions inside the matrix of a biphasic microstructure. The epistemic uncertainties concern a lack of knowledge
about the parameters of a computational model, which is the discretization of a boundary value problem (BVP). They
also concern modeling errors, which cannot be described using the parameters of the computational model. This is
the case, for example, of uncertainties due to the lack of knowledge of the mechanical description of a boundary con-
dition, or to geometric tolerances induced by manufacturing processes, or even to the effective mechanical properties
of materials resulting from a change of scale (without scale separation). These modeling errors are also due to the
existence of hidden degrees of freedom, which are not taken into account and which are related to the use of reduced
kinematics in the computational model (beam theory instead of 3D elasticity) or which are associated with secondary
dynamic subsystems not modeled in the computational model.

In the framework of the probability theory and mathematical statistics of uncertainty quantification, there is no
need to distinguish these two types of uncertainty (and we simply say ”uncertainties”) because the tools are exactly
the same for the stochastic modeling of uncertainties, for the propagation of uncertainties in the computational model,
and for the identification by solving a statistical inverse problem.

2.2. Sources of uncertainties and variabilities

We consider a designed mechanical system (conceptual system), its computational model, and the real mechanical
system. The computational model is constructed by using the finite element approximation of the BVP that is the
mathematical-mechanical model of the designed mechanical system. This BVP is posed on an open bounded domain
Ω of R3, with boundary ∂Ω = Γ0 ∪ Γ1. The manufacturing process of the designed mechanical system yields the real
mechanical system. The BVP depends on a control parameter w (such as mass density, geometrical and mechanical
parameters), on an uncontrolled parameter u (such as the tensor-valued elasticity field of a material), and depends on
the mathematical modeling of the environment of the real mechanical system yielding nonhomogeneous term in Ω
(external body force field), Neuman boundary condition on Γ1 (surface force field), and Dirichlet condition on Γ0.

In general, the errors related to the construction of an approximate solution of the computational model have to be
reduced and controlled, and should not be considered as uncertainties. There are three sources of uncertainties: (i) the
uncertainties on w and u that are defined as the model-parameter uncertainties, (ii) the model uncertainties induced
by modeling errors during the mathematical-mechanical modeling process (which cannot be taken into account by the
model-parameter uncertainties), and (iii) the uncertainties in the real mechanical system due to its variabilities induced
by the manufacturing process and due to small differences in the configurations (an experimental configuration of a
complex real mechanical system differs from the designed mechanical system and is never perfectly known).

2.3. Challenges and role played by probability theory and mathematical statistics

The deterministic model of a complex real mechanical system is generally not sufficient in many cases. The
robustness of the computational model must be improved in taking into account its own uncertainties, the variabilities
of the real mechanical system, and the experimental errors. For complex real mechanical systems, the experimental
errors are mainly due to the lack of knowledge of the experimental configuration that differs from the designed
mechanical system and that is not perfectly known. These experimental errors are also due to measurement noise but
today it is generally negligible compared to the previous one.

The probability theory is a powerful mathematical tool, which allows (i) to construct, in finite or infinite dimension,
a prior stochastic model of uncertainties (random vectors, matrices or tensors, random fields, etc.), (ii) to analyze the
propagation of uncertainties in the computational model using applied mathematics, (iii) to identify the prior and the
posterior stochastic models of uncertainties, in finite or infinite dimension, using available data (experimental data)
and mathematical statistics to solve statistical inverse problems with, if necessary, the help of Machine Learning
tools in a probabilistic/statistics framework. The first challenge is related to the effective construction of stochastic
models such as the construction of informative prior probability distributions using algebraic representations such
as polynomial chaos expansions and random generators such as Markov Chain Monte Carlo (MCMC) generator
for random vectors in high stochastic dimension, random matrices in any stochastic dimension, tensor-valued random
fields in high stochastic dimension. This step is fundamental and is difficult enough. The second challenge is related to
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model uncertainties induced by the modeling errors because this type of stochastic modeling is related to the operators
of the BVP that are uncertain and that cannot be taken into account through the model-parameter uncertainties of the
BVP. If partial and limited data are available, the third challenge is related to the identification and the updating of
the stochastic models by solving statistical inverse problems using the least-square method, the maximum likelihood
approach, or the Bayesian inference. In high stochastic dimension, what is generally the case for the identification
of a random field that is an uncontrolled parameter of the BVP, this can be a very challenging problem. Finally, the
fourth challenge is related to the algorithmic strategy for robust updating, robust optimization, and robust design. It is
also a challenging problem with respect to the computational resources and consequently, the formulations require the
use of reduced-order models, surrogate models (metamodels), and machine learning tools implemented in a statistical
framework.

2.4. Bibliographical complements
Concerning the concepts, the methodologies, and the algorithms to implement Uncertainty Quantification (UQ)

in science and engineering we refer the reader to [1, 2, 3, 4, 5, 6, 7]. The mathematical tools used for uncertainty
quantification are principally based on the probability theory and stochastic processes [8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18], and on mathematical statistics [19] with several important aspects, in computational statistics [20, 21], in
multivariate statistics [22, 23], in nonparametric statistics with smoothing techniques [24, 25, 26, 27, 28, 29, 30, 31],
and in approaches based on the maximum likelihood and the Bayesian methods to solve statistical inverse problems
[32, 33]. It should be noted that the Markov Chain Monte Carlo (MCMC) methods and associated algorithms are
important computational tools for sampling any probability distribution [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44].

Uncertainty quantification requires to construct the probability models of uncertainties. Therefore, tools are nec-
essary to construct informative prior probability distributions, to analyze statistical dependencies between random
quantities, to estimate and formulate the ”proximity” between probability distributions. These tools are given by In-
formation Theory, including important notions such as entropy, cross-entropy, maximum entropy principle, Kullback-
Leibler divergence [45, 46, 47, 48, 49, 50, 51, 52].

To implement UQ in stochastic boundary value problems and computational models, one needs to construct
probability models for random quantities such that random matrices, stochastic processes, and random fields. In
the area of engineering sciences, random matrix theory [53] was used to construct random finite representations of
stochastic operators [1], in particular by introducing ensembles of positive-definite symmetric random matrices to
construct nonparametric probabilistic models of the model errors in computational models, such as those initiated
and proposed in [54, 55, 56, 57, 58, 59]. Random fields theory is necessary for the stochastic modeling of nu-
merous boundary value problems with uncertainties [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70] in particular, the
construction of random fields with values in ensembles of positive symmetric tensors that allow the coefficients of
elliptic partial differential operators to be modeled [71, 72, 73, 74]. The polynomial chaos expansion of stochas-
tic processes was introduced in [75, 76] and an effective Karhunen-Loève-based construction for random fields
was pioneered in [77, 78]. The Wiener-Askey polynomial chaos expansion was used by [79], the developments
of random fields in polynomial chaos for arbitrary probability measure were introduced in [80], and a compressed
principal component analysis of non-Gaussian vectors using symmetric polynomial chaos has been proposed in
[81]. Polynomial chaos expansions in finite and in infinite dimension have been and is intensively used for uncer-
tainties modeling and propagation of uncertainties [82, 83, 84, 85, 86, 87, 88] (see also hereinafter the stochastic
solvers and the stochastic finite elements). It should be noted that the nonparametric modeling of model uncer-
tainties induced by modeling errors in large computational models has notably been developed in linear dynamics
[54, 55, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98], in vibroacoustics and fluid-structure interactions [92, 99, 100, 101, 102],
in nonlinear dynamics [103, 104, 105, 106, 107, 108, 109, 110, 111], for models updating [112, 113], and for model
errors with probabilistic learning [114, 115].

Once the probabilistic models of uncertainties are built, it is necessary to study the propagation of these uncer-
tainties in the systems. It is therefore necessary to have methods for solving stochastic equations. The first set of
methods is based on the Monte Carlo numerical simulation methods [34, 116, 117, 118, 119, 120, 121, 122]. The
second set is based on spectral projection methods [123, 124, 125, 126, 127, 128], such as those based on polynomial
chaos expansions [77, 78, 3, 129] and called stochastic finite element method when the discretization method of the
boundary value problems are performed using the finite element method [78, 130, 131, 132, 133, 134, 2, 135, 136,
137, 138, 139, 140, 141].
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Most often, the uncertainties probability model is a prior model. If targets are available for observations of the
system, coming from experimental measurements or from more precise numerical simulations, a posterior probability
model of uncertainties can be estimated by solving inverse statistical problems based on the maximum likelihood,
the Bayesian inference, and machine learning. For general overviews on statistical inverse methods, see [142, 143,
144, 145, 146, 147, 148, 149], and for complements, see [150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160].
The statistical identification of the coefficients of polynomial chaos representations of random fields can be found in
[161, 162, 163], in particular in [164, 165, 166] for high dimension, and for representations of random vectors in [167,
168, 169, 170, 171, 172, 173]. The inverse identification of random matrices have been proposed in [174, 175, 176].
Statistical inverse methods are also used to perform model updating [177, 178, 179, 180], model selection [181, 182],
and to construct surrogate models (or metamodels) [183, 184, 185, 186, 187, 188, 189].

Within the framework of the methodologies described above to implement UQ, an important question concerns
the optimization problems under uncertainties (OUU) such as the stochastic optimization [190], the computational
methods devoted to optimization and robust design [191, 192, 193, 100], the multidisciplinary optimization [194,
195, 196, 197], the multicriteria and multiobjective optimization [198, 199, 200], and the multiscale optimization
[201, 202]. The OUU problems often require the use of stochastic expansion [203], the use of surrogate models
[204, 205, 206], and those of machine learning and probabilistic learning algorithms [207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220].

Finally, the machine learning tools and artificial intelligence [221, 222, 223, 224], such as the probabilistic and
statistical learning [225, 226, 227, 228], are used in UQ for problems that would require computer resources that are
not available with the most usual approaches.Thus methods have emerged in the field of engineering sciences, such as
the learning on manifolds [229, 230, 231, 232, 233, 234, 235, 236, 237, 238] and the physics-informed probabilistic
learning [239, 240, 241, 242, 243].

3. Prior stochastic modeling of uncertainties

3.1. Types of representation for stochastic modeling
Let us consider a computational model for which the control parameter w is a vector in Rnw . The quantity of

interest (QoI), q ∈ Rnq , is a system observation that is written as q = h(w) in which h is a measurable mapping
from Rnw into Rnq . This mapping is implicit and is defined through the solution of the BVP whose approximation
is constructed via the computational model. Presently, there is no uncontrolled parameter and therefore h is a de-
terministic mapping. Control parameter w is assumed to be uncertain and is modeled by a Rnw -random variable W
defined on a probability space (Θ,T ,P), with probability distribution PW(dw; s) whose support is the set Cw ⊂ Rnw

and where s is a hyperparameter that belongs to an admissible set Cs ⊂ Rns . Consequently, QoI q is modeled by a
Rnq -valued random variable Q = h(W) whose probability distribution PQ(dq; s) is the image (transport) of PW by h.
It can then be seen the existence of two main steps. The first step is the stochastic modeling of uncertainties, that is
to say, the construction of a prior probability distribution PW(dw; s) of uncertain parameter W; this is the purpose of
this Section 3. The second step is the analysis of the propagation of uncertainties, that is to say, the construction of
PQ(dq; s) that is carried out by using an adapted stochastic solver (as explained in Section 2.4). This methodological
description clearly shows the impact of the use of an arbitrary stochastic modeling of W. Even if the stochastic solver
is ”perfect” (estimation of PQ(dq; s)), if PW(dw; s) is arbitrarily chosen (thus probably wrong, such that a Gaussian
distribution for a positive-valued random variable), its nonlinear transformation by h will yield a probability distribu-
tion PQ(dq; s) perfectly estimated, but which will be arbitrary (thus probably wrong). This means that the first step is
absolutely fundamental in UQ.

For stochastic modeling of uncertainties, two cases have to be considered. The case for which there is no available
experimental data and the one for which experimental data are available. However, even if experimental data are not
available, it is important to consider UQ in order to make robust analyzes with respect to uncertainties. This enables
robust predictions with the computational model as well as robust optimization and design. If big data are available,
then nonparametric statistics can be used to estimate PW(dw; s). If only small/limited data are available, then an
informative prior probability distribution P prior

W (dw; s) of W has to be constructed. Parametric statistics such as the
least-square and maximum likelihood methods have to be used to estimate s or, the Bayesian inference can be used to
construct a posterior probability distribution P post

W (dw) of W (note that, for high stochastic dimension, a high quality
of the informative prior probability distribution is needed to make the Bayesian inference approach feasible).
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Two fundamental approaches can be considered to construct a probability distribution PW of uncertain parameter
W: the direct and the indirect approaches.

Direct approach. (i) If a large amount of data is available such as nd independent realizations of W with a
large value of nd, then the probability distribution PW of W can directly be estimated using the Kernel Density
Estimation (KDE) method from the nonparametric statistics. (ii) If there is no data or if only a small amount of data
is available (small value of nd), then the construction of an informative prior probability distribution P prior

W (dw; s) =
pprior

W (w; s) dw, represented by a pdf pprior
W on Rnw , can be constructed by using the Maximum Entropy principle (MaxEnt)

from Information Theory. In such a case, s appears as a hyperparameter that is related to the available information
introduced as constraints in the MaxEnt principle. Often, s describes some statistical properties of uncertainties, such
as the level of uncertainties, and a sensitivity analysis can be performed with respect to the values of s. If a small
dataset is available then hyperparameter s can be estimated by solving a statistical inverse problem.

Indirect approach. It consists in introducing a representation W = f(G; s) in which g 7→ f(g; s) is a deterministic
nonlinear (measurable) mapping, where G is a given Rng -valued random variable whose pdf pG(g) with respect to
dg is given on Rng , and where s is the hyperparameter. Therefore, P prior

W (dw; s) is the image of pG(g) dg by mapping
f(.; s). Two main representations can be used for construction mapping f. The first one is the use of a truncated
Polynomial Chaos Expansion (PCE) that is written as W =

∑K
k=0 ak Ψα(k) (G) in which α(k) is a value of the multi-

index α = (α1, . . . , αng ) ∈ Nng , where {Ψα(g),α ∈ Nng } is the family of orthogonal polynomials with respect to the
measure pG(g) dg, that is to say

∫
Rng Ψα(g)Ψβ(g) pG(g) dg = δαβ, and where s = {a0, . . . , aK}. The second one consists

in constructing a prior algebraic representation, W = f(G; s) of W in which hyperparameter s has a small dimension
ns and where g 7→ f(g; s) is a given nonlinear mapping (such an approach will be used in Section 5 for constructing a
prior probability model of tensor-valued random fields).

3.2. Maximum Entropy principle from Information Theory as a direct approach to construct an informative prior
probability distribution

This statistical tool is presented for a random vector but can be applied to any random quantities (for instance to
random matrices, see Section 4).

(i) Entropy as a measure of uncertainties for a vector-valued random variable. Let W be the Rnw -valued random
variable, defined on (Θ,T ,P), whose probability distribution is written as PW(dw) = pW(w) dw in which pW is an
unknown pdf on Rnw but for which its support is known and such that supp pW = Cw ⊂ Rnw . The Shannon entropy [45]
(see also [49, 50, 51]) of pW, measuring uncertainty, is the real number defined by

E (pW) = −
∫

Rnw

pW(w) log(pW(w)) dw = −E{log(pW(W))} ∈ R . (3.1)

For a uniform pdf on a compact set κ ⊆ Cw ⊂ Rnw , that is to say pW(w) = (1/|κ|) 1κ(w), we have E (pW) = log |κ|.
More the Shannon entropy is large, and more uncertainty is high. The limit, E = −∞, corresponds to no uncertainty
(deterministic case).

(ii) Maximum entropy principle (MaxEnt). Introduced by Jaynes [47, 48], the MaxEnt consists in constructing the
pdf pW that corresponds to the largest uncertainty on the set of all the possible pdfs on Rnw with given support Cw,
which satisfy the constraints defined by the available information. In addition to the support property, the available
information is made up of statistical properties on W defined as a mathematical expectation,

E{gc(W)} =
∫

Rnw

gc(w) pW(w) dw = bc ∈ Rnc , (3.2)

in which nc ≥ 1 is a finite integer, where w 7→ gc(w) is a given (measurable) mapping from Rnw into Rnc , and where
bc is a given vector in Rnc . The definition of MaxEnt allows the following optimization problem to be defined for
constructing pW,

pW = arg max
p∈Cad

E (p) , (3.3)
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in which the admissible set Cad is the subset of Cfree = {p ∈ L1(Rnw ,R+) , supp p = Cw} such that

Cad = {p ∈ Cfree ,

∫
Rnw

p(w) dw = 1 ,
∫

Rnw

gc(w) p(w) dw = bc} . (3.4)

Existence and uniqueness of this optimization problem has to be studied as a function of the defined information
represented by gc and bc (see paragraph (iv)).

(iii) Reformulation of the optimization problem by using Lagrange’s multipliers. To solve the optimization problem
defined by Eq. (3.3), the problem is reformulated on set Cfree instead of Cad by introducing the Lagrange multipliers
λ0 ∈ R+ associated with the normalization condition

∫
Rnw p(w) dw − 1 = 0 and λ ∈ Cλ ⊂ Rnc associated with the

constraint
∫

Rnw gc(w) p(w) dw − bc = 0 in which Cλ is the admissible set for λ, defined by

Cλ = {λ ∈ Rnc ,

∫
Rnc

exp(−⟨λ , gc(w)⟩) dw < +∞} . (3.5)

The Lagrangian is defined, for all λ0 in R+, λ in Cλ, and p in Cfree, by

Lag(p; λ0, λ) = E (p) − (λ0 − 1)(
∫

Rnw

p(w) dw − 1) − ⟨λ,
∫

Rnw

gc(w)p(w) dw − bc⟩ . (3.6)

(iv) Existence and uniqueness of MaxEnt. If the constraints are algebraically independent, then there exists a unique
solution [244, 1], which corresponds to the stationary point of the Lagrangian and which is written as

pW(w) = 1Cw (w) csol
0 exp(−⟨λsol, gc(w)⟩) , ∀w ∈ Rnw , (3.7)

in which the constant of normalization csol
0 = exp(−λsol

0 ) can be written as csol
0 = (

∫
Cw

exp(−⟨λsol, gc(w)⟩) dw)−1 and
where (λsol

0 , λ
sol) ∈ R+ × Cλ is the unique solution in (λ0, λ) of the following equations,∫

Cw

exp(−λ0 − ⟨λ , gc(w)⟩) dw = 1 ,

∫
Cw

gc(w) exp(−λ0 − ⟨λ , gc(w)⟩) dw = bc . (3.8)

(v) Analytical examples of classical probability distributions deduced from MaxEnt and a few properties. Appendix
A gives explicit algebraic expressions of classical probability density functions, obtained using MaxEnt. These are
Uniform, Gamma, and Gaussian distributions for a real-valued random variable, and multivariate Exponential and
Gaussian distributions for a random vector. What is interesting is to see the available information that leads to each of
these distributions and also to see some properties of these random variables.

3.3. MaxEnt as a numerical tool for constructing a probability distribution in any dimension

Such a numerical tool is necessary, because in general, Eq. (3.8) cannot explicitly be solved. An adapted numerical
algorithm must be used to circumvent the difficulties that appear in high dimension. The constant of normalization
c0 = exp(−λ0) goes to zero as R−nw in which R is a ”radius” of Cw, which is directly involved in the numerical cal-
culations, what cannot be computed in high dimension. In addition, integrals in high dimension have to be computed
for calculating the Lagrange multipliers (see Eq. (3.8)). An algorithm to compute the Lagrange multipliers and to
construct a generator of realizations of W are given in Appendix B.

4. Random Matrix Theory for uncertainty quantification in computational mechanics

The random matrix theory was intensively studied by physicists and mathematicians in the context of nuclear
physics. The developments began with Wigner in the 1950s, important efforts were performed in the 1960s by Wigner
(1962), Dyson (1962), Mehta and others. In 1967 Mehta published an excellent book concerning a synthesis of the
random matrix theory [53] (second edition in 1991). For physical applications, an important ensemble is the Gaussian
Orthogonal Ensemble (GOE) such that any random matrix in GOE is a real symmetric random matrix whose entries
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are mutually independent, and which is invariant under orthogonal linear transformations. Applying MaxEnt with this
information yields a probability distribution of a MS

n -valued random matrix with respect to the volume element dSG
on Euclidean space MS

n (R) (see Section 4.1), which is written as

p[G]([G]) = cG exp(−
n+1
4δ2 tr{[G]2}) , Gk j = G jk , 1 ≤ j ≤ k ≤ n , (4.1)

in which cG is the constant of normalization and where δ is a hyperparameter defined in [1] (pp.98-99).
The random matrix theory is an important tool to construct prior probability distributions of system-parameter un-

certainties and model uncertainties induced by modeling errors in computational mechanics. The GOE can be viewed
as a generalization of the Gaussian real random variables to the Gaussian symmetric real random matrices. A random
matrix G whose pdf is given by Eq. (4.1) is not positive almost surely or negative almost surely (no signature), and in
addition, E{∥[G]−1∥2F} = +∞. Consequently, this ensemble cannot be used for stochastic modeling of a symmetric real
matrix for which a positiveness property and an integrability of its inverse are required. Such a situation is similar to
the one that we have presented in Section Appendix A.1-(iii) or Appendix A.2-(ii). Consequently, new ensembles of
random matrices are necessary to develop uncertainty quantification in computational mechanics. A first ensemble of
positive-definite random matrices has been introduced by the author [54] when he proposed the novel nonparametric
probabilistic approach of model uncertainties induced by the modeling errors in computational dynamics, and later,
other ensembles of random matrices derived from the first ensemble to take into account different types of random
operators [55, 56, 90, 57, 104, 245, 99, 94] encountered in computational mechanics, computational fluid mechanics,
fluid-structure interaction including vibroacoustics. For complete developments on this subject, we refer the reader to
[1, 59]. Below, we will limit the presentation to the fundamental ensemble SG+0 of positive-definite random matrices,
which are the ”germs” of two other useful ensembles, SG+ε and SE+ε , that we will be used for constructing the prior
probability model of tensor-valued random elasticity fields (see Section 5).

4.1. Prerequisites to construct ensembles of random matrices by MaxEnt

The Euclidean space Mn is equipped with the inner product ≪[G] , [H]≫= tr{[G]T [H]} and with the associated
Frobenius norm ∥G∥F =≪ [G] , [G]≫1/2. Induced by the inner product, the volume element on Euclidean space
Mn is dG =

∏n
j,k=1 dG jk and on Euclidean space MS

n is dSG = 2n(n−1)/4 ∏
1≤ j≤k≤n dG jk. Let [G] be a MS

n -valued
random matrix defined on (Θ,T ,P) whose probability distribution P[G] = p[G]([G]) dSG is defined by the pdf
[G] 7→ p[G]([G]) from MS

n (R) into R+ = [0 ,+∞[ with respect to dSG on MS
n . Then this pdf satisfies the normalization

condition, ∫
MS

n

p[G]([G]) dSG = 1 . (4.2)

The support of the probability density function, supp p[G] of pdf p[G] is any subset Sn of MS
n , possibly with Sn = MS

n
(example: Sn = M+n ⊂ MS

n ).

4.2. The Shannon entropy as a measure of uncertainties for a symmetric real random matrix and MaxEnt principle

Similarly to the vector case presented in Section 3.2, the Shannon entropy of p[G], which measures the level of
uncertainty, is the real number,

E (p[G]) = −
∫

Sn

p[G]([G]) log
(

p[G]([G])
)

dSG = −E{log
(

p[G]([G])
)
} . (4.3)

For this random matrix case, MaxEnt is then applied similarly to the random vector case.

4.3. Ensemble SG+0 of positive-definite random matrices with a unit mean value

This is a fundamental ensemble [1, 54] that is used to construct many derived ensembles of random matrices (see
Sections 4.4 and 4.5) and which is important for the nonparametric probabilistic approach of model uncertainties and
for the construction of prior probability model of elasticity random fields (see Section 5).
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(i) Definition of SG+0 by the MaxEnt principle and pdf. The set SG+0 is the set of all the random matrices [G0] with
values in M+n , defined on (Θ,T ,P), and constructed using MaxEnt with the following available information,

E{[G0]} = [In] , E{log(det[G0])} = νG0 , |νG0 | < +∞ . (4.4)

The support Sn of the pdf [G] 7→ p[G0]([G]) : MS
n → R+ with respect to the dSG is Sn = M+n ⊂ MS

n and we have

p[G0]([G]) = 1Sn ([G]) cG0

(
det [G]

)(n+1) (1−δ2)
2δ2 exp(−

n + 1
2δ2 tr[G]) . (4.5)

The hyperparameter δ, which is such that 0 < δ < (n + 1)1/2(n + 5)−1/2, allows for controlling the level of statistical
fluctuations of [G0], and is such that

δ =

{
E{∥ [G0] − E{[G0]} ∥2F}

∥ E{[G0]} ∥2F

}1/2

=

{
1
n

E{∥ [G0] − [In] ∥2F}
}1/2

. (4.6)

It should be noted that constant νG0 has been eliminated for the benefit of δ in order to perform a reparameterization
in δ instead of keeping νG0 that has no physical meaning.

(ii) Invertibility and convergence property when dimension goes to infinity. It is proven in [54] that

E{∥[G0]−1∥2} ≤ E{∥[G0]−1∥2F} < +∞ , (4.7)

and in [55] that ∀n ≥ 2, E{∥[G0]−1∥2} ≤ cδ < +∞ in which cδ is a positive finite constant that is independent of n but
that depends on hyperparameter δ. This invertibility property, which is due to the constraint E{log(det[G0])} = νG0

with |νG0 | < +∞, is important for the nonparametric probabilistic approach of model uncertainties and for the con-
struction of prior probability model of elasticity random field (see Section 5). This is the reason why the truncated
Gaussian distribution restricted to M+n and the GOE do not satisfy this invertibility condition that is absolutely required
for stochastic modeling of uncertainties in many cases.

(iii) Algebraic representation and generator of realizations. Any random matrix [G0] in SG+0 can be written as
[G0] = [L]T [L] in which [L] is the upper triangular random matrix with values in Mn such that:

(a) random variables {[L] j j′ , 1 ≤ j ≤ j′ ≤ n} are statistically independent.
(b) for 1 ≤ j < j′ ≤ n, [L] j j′ = σn U j j′ in which σn = δ (n + 1)−1/2 and where U j j′ is a real-valued Gaussian

random variable with zero mean and variance equal to 1.
(c) for 1 ≤ j ≤ n, [L] j j = σn

√
2V j where V j is a positive-valued Gamma random variable whose probability

density function with respect to dv is

pV j (v) = 1[0,+∞](v)
1

Γ
(

n+1
2δ2 +

1− j
2

) v
n+1
2δ2
−

1+ j
2 e−v . (4.8)

With realizations {U(θ) j j′ , 1 ≤ j ≤ j′ ≤ n} and {V j(θ), 1 ≤ j ≤ n} for θ ∈ Θ (that are very easy to generate),
the corresponding realization [G0(θ)] ∈ M+n of random matrix [G0] is easily constructed using the above algebraic
expressions.

4.4. Ensemble SG+ε of positive-definite random matrices with a unit mean value and a positive-definite lower bound
This ensemble is derived from ensemble SG+0 (see [1]).

(i) Construction of ensemble SG+ε . A M+n -valued random matrix [G] in ensemble SG+ε has a mean value that is the
unit matrix and has a lower bound that is a positive-definite matrix controlled by an arbitrary positive number ε. Any
random matrix in SG+ε is written as

[G] =
1

1 + ε
{[G0] + ε [In]} , [G0] ∈ SG+0 , ε > 0 . (4.9)

10



We have 0 < [Gℓ] < [G] a.s., in which the lower bound is the positive-definite matrix [Gℓ] = cε[In] ∈ M+n with
cε = ε/(1 + ε).

(ii) Properties and hyperparameter for controlling the level of statistical fluctuations. For all ε > 0, we have

E{[G]} = [In] , E{log(det([G] − [Gℓ]))} = νGε
, (4.10)

in which νGε
= νG0 − n log(1 + ε). The hyperparameter δG of a random matrix [G] belonging to SG+ε in is defined as

its coefficient of variation,

δG =

{
E{∥ [G] − E{[G]} ∥2F}
∥ E{[G]} ∥2F

}1/2

=

{
1
n

E{∥ [G] − [In] ∥2F}
}1/2

. (4.11)

Consequently, δG = δ/(1 + ε) in which δ is the hyperparameter defined for ensemble SG+0 .

4.5. Ensemble SE+ε of positive-definite random matrices with a given mean value and a positive-definite lower bound

This ensemble is derived from ensemble SG+ε (see [1] and [54]).

(i) Construction of ensemble SE+ε . Let [A] be a given matrix in M+n for which the Cholesky factorization is written as
[A] = [LA]T [LA] with [LA] an upper triangular matrix in Mn. Below, [LA] could be replaced by the square root [A]1/2

of [A]. A M+n -valued random matrix [A] in ensemble SE+ε has a mean value that is the matrix [A] given in M+n and has
a lower bound [Aℓ] = cε[A] ∈ M+n with cε = ε/(1 + ε), and is defined by

[A] = [LA]T [G] [LA] , [G] ∈ SG+ε , 0 < [Aℓ] < [A] a.s. . (4.12)

(ii) Second-order properties and invertibility. It can be seen that any [A] in SE+ε is such that

E{[A]} = [A] ∈ M+n , E{∥ [A] ∥2} ≤ E{∥ [A] ∥2F} < +∞ . (4.13)

We have the following invertibility property, which shows that a random matrix in SE+ε can be used for modelling
the coefficient of a random elliptic differential operator. For all X ∈ L2(Θ,Rn), the quadratic form bA(X,X) =
E{⟨[A] X,X⟩} is such that bA(X,X) ≥ cε E{∥ [LA] X∥2}, random matrix [A] is thus invertible a.s., and [A]−1 is a
second-order random variable,

E{∥ [A]−1∥2} ≤ E{∥ [A]−1∥2F} < +∞ . (4.14)

5. Algebraic prior probability model for heterogeneous elastic media

In this section, the developments are devoted to the algebraic prior probability models of random fields, which
are presented in the context of continuum mechanics of heterogeneous materials for 3D linear elasticity of complex
microstructures. These results will be used to build the stochastic homogenized models that will be presented later. In
continuum mechanics, a simple heterogeneous microstructure can be described in terms of constituents, for instance,
a polymer matrix with long carbon fibers. A complex heterogeneous microstructure cannot be described in terms
of constituents, for instance, a live tissue such as a cortical bone. In such a case the random elasticity field cannot
be defined at microscale. Therefore, a random apparent elasticity field is defined at mesoscale and the stochastic
homogenization consists in performing the change of scale from the mesoscale to the macroscale that is characterized
by effective mechanical properties. These effective properties are quasi-deterministic if there is a scale separation,
and are random if not. In this last case, the stochastic homogenization yields random apparent mechanical properties
at macroscale. This section deals with the construction of a prior probability model of the mesoscale apparent random
elasticity field for a 3D linear complex heterogeneous microstructure.

11



5.1. Voigt notation of the tensor-valued random elasticity field

Let Ω be bounded open domain of R3 with generic point ξ = (ξ1, ξ2, ξ3). For all ξ fixed in Ω, the random fourth-
order elasticity tensor C(ξ) = {Ci jkh(ξ)}i jkh is represented in Voigt notation by the random (6 × 6) matrix [C(ξ)] such
that

[C(ξ)]ij = Ci jkh(ξ) with i = (i, j) and j = (k, h) , (5.1)

with i, j, k, and h in {1, 2, 3}, and i and j in {1, . . . , 6}. Random elasticity field [C] = {[C(ξ)], ξ ∈ Ω} is a non-Gaussian
random field, defined on the probability space (Θ,T ,P), indexed by Ω, with values in M+6 . As we have explained in
Section 4, the M+6 -valued random field [C] cannot be Gaussian. Consequently, the only description of second-order
quantities, that is to say, its mean function and its covariance function, are not sufficient. The probability distribution
of the field, that is to say its system of marginal distributions, must be constructed. For this, we will use the algebraic
prior representation of the indirect approach presented in Section 3.1, which will be based on the use of the random
matrix theory presented in Section 4.

5.2. Algebraic prior probability model for heterogeneous anisotropic elastic media

This section deals with the construction of an algebraic prior model of the random elasticity field {[C(ξ)] , ξ ∈ Ω}
defined in Section 5.1, for heterogeneous anisotropic elastic media that exhibit anisotropic statistical fluctuations.
This model was initially introduced in [71, 72], was completed in [246] by introducing lower and upper bounds,
is detailed/summarized in [1, 68], and for which an extension has recently been proposed in [74, 247] to take into
account an uncertain spectrum. For this construction, the developments presented in Sections 4.3 to 4.5 are used.
We have limited the presentation to an algebraic square-type representation. The reader will find also an algebraic
exponential-type representation of the random elasticity field in [1, 73].

(i) Representation of random field [C] with a lower bound and a random germ field with values in ensemble SG+0 of
random matrices. It is assumed that {[C(ξ)] , ξ ∈ Ω} ia a homogeneous and second-order random field. Let [Cℓ] be the
given deterministic M+6 -valued lower bound and let [C] ∈ M+6 the mean value, independent of ξ, of random field [C].
The matrices [Cℓ] and [C] are assumed to be such that the matrix [A] = [C] − [Cℓ] belongs to M+6 . The algebraic prior
probability representation of [C] is defined by

[C(ξ)] = [Cℓ] + [A]1/2 [G0(ξ)] [A]1/2 , ∀ξ ∈ Ω , (5.2)

in which [A]1/2 is the square root of [A, ]. In Eq. (5.2) {[G0(ξ)], ξ ∈ R3} is the non-Gaussian second-order random
field, defined on (Θ,T ,P), indexed by R3, with values in M+6 , homogeneous on R3, such that

E{[G0(ξ)]} = [I6] , E{log(det[G0(ξ)])} = νG0
, |νG0

|<+∞ , ∀ξ ∈ R3 , (5.3)

in which the real constant νG0
is independent of ξ because random field [G0] is homogeneous. For all ξ in Ω, we then

have the properties
E{[C(ξ)]} = [C] ∈ M+6 , [C(ξ)] − [Cℓ] > 0 a.s. (5.4)

(ii) Construction of the random field {[G0(ξ)], ξ ∈ R3} and its generator of realization. The non-Gaussian random
field [G0] is constructed as a nonlinear mapping of 6 × (6 + 1)/2 independent, second-order, centered, homogeneous,
Gaussian, and normalized random fields {U jk(ξ), ξ ∈ R3}1≤ j≤k≤6 defined on (Θ,T ,P), indexed by R3, with values in
R. We then have

E{U jk(ξ)} = 0 , E{U jk(ξ)2} = 1 , 1 ≤ j ≤ k ≤ 6 . (5.5)

The centered Gaussian random fields {U jk(ξ), ξ ∈ R3}1≤ j≤k≤6 are defined by 6 × (6 + 1)/2 autocorrelation functions
ζ = (ζ1, ζ2, ζ3) 7→ R jk(ζ) = E{U jk(ξ + ζ) U jk(ξ)} from R3 into R, such that R jk(0) = 1. The spatial-correlation lengths
of U jk are defined by

L jk
α =

∫ +∞
0
|R jk(ζ(α))| dζα , ζ(α)

β = ζαδαβ , α = 1, 2, 3 , (5.6)
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and are chosen as hyperparameters. For instance, a possible autocorrelation function is written as

R jk(ζ) = Π3
α=1 ρ

jk
α (ζα) , ρ jk

α (ζα) =
4(L jk

α )2

π2ζ2
α

sin2
(
πζα

2L jk
α

)
, (5.7)

which shows that U jk is a mean-square continuous random field on R3, whose power spectral density function on R3

has the compact support, Π3
α=1[−π/L jk

α , π/L
jk
α ]. Such a model has 3 × 6 × (6 + 1)/2 real hyperparameters. Random

field {[G0(ξ)], ξ ∈ R3} and its generator of realizations are constructed following Section 4.3-(iii). For all ξ in R3, we
have [G0(ξ)] = [L(ξ)]T [L(ξ)] in which [L(ξ)] is an upper (6 × 6) real triangular random matrix such that:

(a) random fields {[L(ξ)] jk, ξ ∈ Ω}, 1 ≤ j ≤ k ≤ 6, are statistically independent.
(b) for 1 ≤ j < k ≤ 6, [L(ξ)] jk = σ6 U jk(ξ) in which σ6 = δ/

√
6 + 1.

(c) for 1 ≤ j ≤ 6, [L(ξ)] j j = σ6
√

2 γ(a j,U j j(ξ)) in which a j = (6 + 1)/(2δ2) + (1 − j)/2 and where function
u 7→ γ(α, u) is such that Γα = γ(α,U) is a gamma random variable with parameter α and where U is a
normalized Gaussian random variable.

The realizations of {U jk(ξ), ξ ∈ R3} for 1 ≤ j ≤ k ≤ 6 are constructed using a generator of Gaussian homogeneous
random fields [60, 62, 71]. From the above algebraic expressions, it can then be deduced the realizations of random
field {[G0(ξ)], ξ ∈ R3}.

(iii) Hyperparameter s of the algebraic prior probability model of random anisotropic elastic field [C]. The components
of hyperparameter s, which belongs to the admissible set Cs ⊂ Rns , of the algebraic prior probability model of random
anisotropic elastic field {[C(ξ; s)], ξ ∈ Ω} are made up of the reshaping of [Cℓ] ∈ M+6 (lower bound) and [C] ∈ M+6
(mean value), the 3×6× (6+1)/2 spatial-correlation lengths {L jk

1 , L
jk
2 , L

jk
3 }1≤ j≤k≤6, and the dispersion parameter δ with

0 < δ <
√

(6 + 1)/(6 + 5) that controls the level of anisotropic statistical fluctuations.

(iv) Case of an uncertain spectrum. The power spectral density functions on R3 associated with the autocorrelation
functions of random fields {U jk(ξ), ξ ∈ R3}1≤ j≤k≤6 are deterministic. In [74], an extension is proposed for stochastic
elliptic operators defined by non-Gaussian random fields with uncertain spectrum. An application is also presented,
which is devoted to the computational stochastic homogenization of heterogeneous media for which the elasticity
random field has an uncertain spectral measure.

5.3. Algebraic prior stochastic model for heterogeneous elastic media with statistical fluctuations in a symmetry class
and with anisotropic statistical fluctuations

This section deals with the construction of an algebraic prior model of random elasticity field {[C(ξ)] , ξ ∈ Ω}
defined in Section 5.1, for a heterogeneous elastic medium, which exhibits both statistical fluctuations in a given
symmetry class (corresponding to a material symmetry) and anisotropic statistical fluctuations around this symmetry
class, the two statistical fluctuations being controlled independently. This model has been introduced in [248, 249]
following a first version proposed in [250] on the base of [251]. For this construction, the developments presented in
Section 5.2 are used. It should be noted that a survey on the second-order description of mean-square homogeneous
random fields can be found in [70] (but this paper does not consider the construction of probability measures that are
required for non-Gaussian random fields).

(i) Hypotheses on the statistical fluctuations. We consider a 3D heterogeneous elastic medium with random elasticity
field {[C(ξ)] , ξ ∈ Ω}. For all ξ fixed in Ω, elasticity random matrix [C(ξ)]:

(a) is, in mean, close to a given symmetry class (independent of ξ), corresponding to a material symmetry.
(b) exhibits more or less anisotropic statistical fluctuations around this symmetry class.
(c) exhibits a level of statistical fluctuations in the symmetry class, which must be controlled independently of the

level of anisotropic statistical fluctuations.
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(ii) Notation and properties for positive matrices with symmetry classes. A given symmetry class is defined by a subset
Msym

6 ⊂ M+6 such that, any matrix [M] in Msym
6 exhibits the given symmetry and can be written as

[M] =
nsym∑
j=1

m j [Esym
j ] , [Esym

j ] ∈ MS
6 , (5.8)

in which {[Esym
j ], j = 1, . . . , nsym} is a matrix algebraic basis of Msym

6 (see the Walpole tensor basis in [252, 253]), where
nsym ≤ 6 × (6 + 1)/2, and where m = (m1, . . . ,mnsym ) ∈ Cm ⊂ Rnsym , in which the admissible subset Cm of Rnsym is
defined by

Cm = {m ∈ Rnsym |

nsym∑
j=1

m j[E
sym
j ] ∈ M+6 } . (5.9)

The matrices [Esym
j ] are symmetric (belong to MS

6 ), but are not positive definite (do not belong to M+6 ). The dimension
nsym of the symmetry class is equal to: 2 for isotropic, 3 for cubic, 5 for transversely isotropic, 6 or 7 for trigonal, 6
or 7 for tetragonal, 9 for orthotropic, 13 for monoclinic, and 21 for anisotropic symmetry. If [M] and [M′] belong to
Msym

6 , then it can be proven that

[M] [M′] ∈ Msym
6 , [M]−1 ∈ Msym

6 , [M]1/2 ∈ Msym
6 . (5.10)

Any matrix [N] belonging to Msym
6 can be written as

[N] = expM([N ]) , [N ] =
nsym∑
j=1

y j [Esym
j ] , y = (y1, . . . , ynsym ) ∈ Rnsym , (5.11)

in which expM is the matrix exponential from MS
n (R) into M+n (R). It should be noted that matrix [N ] is a symmetric

real matrix but does not belong to Msym
n (R) (because y is in Rnsym and therefore, [N ] is not a positive-definite matrix).

(iii) Algebraic prior stochastic model for the random elasticity field with material symmetries. Let {[Cℓ(ξ)], ξ ∈ Ω} be
the given M+6 -valued lower-bound field and let {[C(ξ)] = E{[C(ξ)]}, ξ ∈ Ω} be the given M+6 -valued mean field. It is
assumed that these two deterministic fields are such that, for all ξ in Ω, [K(ξ)] = [C(ξ)] − [Cℓ(ξ)] belongs to M+6 . The
prior stochastic model is then defined by

[C(ξ)] = [Cℓ(ξ)] + [K(ξ)] , ∀ξ ∈ Ω , (5.12)

in which {[K(ξ)], ξ ∈ Ω} is the M+6 -valued random field with E{[K(ξ)]} = [K(ξ)], defined by

[K(ξ)] = [S (ξ)]T [A(ξ)]1/2[G0(ξ)] [A(ξ)]1/2 [S (ξ)] . (5.13)

In Eq. (5.13), the random field {[A(ξ)], ξ ∈ Ω} and the field {[S (ξ)], ξ ∈ Ω} are defined as follows.

(a) {[G0(ξ)], ξ ∈ Ω} is the M+6 -valued random field defined in Section 5.2-(ii), which is such that E{[G0(ξ)]} = [I6]
and for which the level of statistical fluctuations is controlled by hyperparameter δ.

(b) {[A(ξ)], ξ ∈ Ω} is a Msym
6 -valued random field, which allows for generating statistical fluctuations in the sym-

metry class, and is assumed to be statistically independent of random field [G0]. For all ξ in Ω, E{[A(ξ)]} =
[A(ξ)] = Psym([K(ξ)]) in which Psym is the projection operator in the symmetry class from M+6 in Msym

6 . The
random matrix [A(ξ)] is defined by

[A(ξ)] = [A(ξ)]1/2[N(ξ)] [A(ξ)]1/2 . (5.14)

The non-Gaussian Msym
6 -valued random field {[N(ξ)], ξ ∈ R3} is such that E{[N(ξ)]} = [I6] and is constructed
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such that

[N(ξ)] = expM([N(ξ)]) , [N(ξ)] =
nsym∑
j=1

Y j(ξ)[Esym
j ] , (5.15)

in which {Y(ξ), ξ ∈ R3} is a non-Gaussian, homogeneous, second-order, mean-square continuous random
field indexed by R3, with values in Rnsym , which is constructed using MaxEnt under the available informa-
tion E{[N(ξ)]} = [I6] and E{log(det([N(ξ)]))} = νN (ξ) with |νN (ξ)| < +∞, in which the field νN is supposed to
be known. The hyperparameters of random field [A] are [A], the 3 × nsym spatial correlation lengths, and δA that
controls the level of statistical fluctuations in the symmetry class (the details of this construction can be found
in [248]).

(c) The M6-valued deterministic field {[S (ξ)], ξ ∈ Ω} is constructed as follows. Let us consider the Cholesky fac-
torizations [K(ξ)] = [LK(ξ)]T [LK(ξ)] of [K(ξ)] ∈ M+6 and [A(ξ)] = [LA(ξ)]T [LA(ξ)] of [A(ξ)] = Psym([K(ξ)]) ∈
Msym

6 in which [LK(ξ)] and [LA(ξ)] are upper triangular matrices. Then, we have [S (ξ)] = [LA(ξ)]−1 [LK(ξ)]
yielding [K(ξ)] = [S (ξ)]T [A(ξ)] [S (ξ)].

6. Illustrations in stochastic homogenization of heterogeneous materials at microscale and nanoscale

Two illustrations are presented. The first one deals with a probabilistic analysis of the representative volume
element size in stochastic homogenization of a heterogeneous complex microstructure for which the random medium
at mesoscale has anisotropic statistical fluctuations [72]. The random elasticity field is thus modeled with the algebraic
prior probability model presented in Section 5.2. The second one is devoted to the stochastic modeling of random
interphases from atomistic simulations for a polymer nanocomposite and its identification solving a statistical inverse
problem [254]. An equivalent model in continuum mechanics is considered in interphase region that has a finite
thickness (it is not a perfect interface). In this region, the random elasticity field is modeled using the algebraic prior
stochastic model with statistical fluctuations in a symmetry class, presented in Section 5.3.

6.1. Probabilistic analysis of the representative volume element size in stochastic homogenization of a heterogeneous
complex microstructure

The homogenization of elastic materials with heterogeneous microstructures composed of several phases with well
defined constituents (from a continuum mechanics point of view) and the calculation of the macroscopic properties
(effective properties) have received considerable attention (see for instance [255, 256, 257, 258, 259, 260, 261, 262,
263, 264, 265]), for stochastic homogenization (see [266, 267, 268, 269, 270, 271, 272, 273, 274]). In the field of linear
and nonlinear mechanics, it should also be noted the works devoted to computational multiresolution materials and
multiscale method (see for instance [246, 254, 275, 276, 277, 278, 279, 280, 281]), and more recently, for data-driven
and machine learning approaches applied to heterogeneous materials (see for instance [282, 283, 213, 284, 149, 217,
219, 242]). In linear elasticity, the random microstructure can be homogenized if there exists a Representative Volume
Element (RVE) for which the random fluctuations of the random effective stiffness tensor around its statistical mean
value are ”negligible”. The analysis of the RVE size has received a particular attention (see for instance [285, 286, 287,
288, 289, 290]). Often, the statistics-based bounding techniques only use the lower-order statistics (first- and second-
order moments). The probability distributions, which give the detailed probabilistic information, are not taken into
account. It should be noted that generalized continuum theories have been widely used for describing microstructure-
dependent mechanical effects in granular materials [291, 292, 293] and in metamaterials [294, 295, 296, 297, 298,
299, 300]. Although deterministic models cannot appropriately describe the behavior of such real physical systems,
very few works consider uncertainties in the framework of generalized continua such as [301, 302, 303, 304]. In
[305], uncertainties are taken into account in granular second-gradient models.

For elastic heterogeneous complex microstructures that cannot be described in terms of microscale constituents
(such as living tissues for which constituents/phases cannot be described at the microscale), a stochastic homog-
enization has been proposed in [72] on the base of a stochastic modeling at mesoscale of the apparent elastic-
ity field. This approach is summarized in this section. It should be noted that the hyperparameters of the prior
probabilistic model can be identified from experiments by solving an inverse statistical problem as proposed in
[242, 149, 217, 306, 307, 175, 308, 309, 310, 73]. In this section, we consider a heterogeneous complex elastic
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microstructure that occupies the open bounded domain Ω = (]0, 1[)3 of R3. The notations introduced in Section 5.1
are reused. At mesoscale, the microstructure is modeled as a random continuum medium.

(i) Stochastic elliptic boundary value problem for computational stochastic homogenization. For all m and r in {1, 2, 3}
the unknown random displacement field is the R3-valued random field {Ymr(ξ) = (Ymr

1 (ξ),Ymr
2 (ξ),Ymr

3 (ξ)), ξ ∈ Ω}
defined on (Θ,T ,P), indexed by Ω, such that for i = 1, 2, 3, and almost surely,

−
∂

∂ξ j

(
Ci jpq(ξ) εpq(Ymr(ξ))

)
= 03 , ∀ξ ∈ Ω , (6.1)

Ymr(ξ) = ymr
0 , ∀ξ ∈ ∂Ω , (6.2)

in which the strain tensor is εpq(y) = (∂yp/∂ξq+∂yq/∂ξp)/2 for all y = (y1, y2, y3). For all ξ ∈ ∂Ω, ymr
0 = (ymr

0,1, y
mr
0,2, y

mr
0,3)

is defined by
ymr

0, j = (δ jm ξr + δ jr ξm)/2 , j ∈ {1, 2, 3} , (6.3)

in which δ jm is the Kronecker symbol. At mesoscale, the linear elastic heterogeneous medium is described by the
random apparent elasticity field {C(ξ), ξ ∈ R3}, which is a non-Gaussian fourth-order tensor-valued random field
C = {Ci jpq}i jpq with i, j, p, and q in {1, 2, 3}, defined on (Θ,T ,P). The stochastic homogenization consists, for
i, j, m, and r in {1, 2, 3}, in analyzing at macroscale the component Ceff

i jmr of the random effective elasticity tensor
{Ceff

i jmr}i jmr, which is defined [257, 259] by

Ceff
i jmr =

1
|Ω|

∫
Ω

Ci jpq(ξ) εpq(Ymr(ξ)) dξ , (6.4)

in which Ymr is the R3-valued random field that satisfies Eqs. (6.1) to (6.3) and where |Ω| =
∫
Ω

dξ. The random
effective elasticity tensor Ceff is symmetric and positive definite almost surely. Using the Voigt notation defined in
Section 5.1, the tensor-valued random elasticity field {C(ξ), ξ ∈ Ω} is represented by the M+6 -valued random field
{[C(ξ)], ξ ∈ Ω} and the random effective tensor Ceff is represented by a M+6 -valued random matrix [Ceff]. If there is
a scale separation (which means that Ω is effectively a RVE, then [Ceff] is quasi-deterministic and is the effective
elasticity matrix. If not, Ω is not a RVE and [Ceff] is a random matrix with significant statistical fluctuations, which is
an apparent elasticity matrix at macroscale, independent of ξ.

(ii) Prior probabilistic model, computational model, and its strong stochastic solution. The probability model of
random field {[C(ξ)], ξ ∈ Ω} is the algebraic prior probability model for heterogeneous anisotropic elastic media
presented in Section 5.2 for which the hyperparameters (see Section 5.2-(iii)) are defined as follows. The mean value
[C] ∈ M+6 is the elasticity matrix of a homogeneous anisotropic linear elastic microstructure, defined by equation
(70) of [72]. The lower-bound matrix is chosen as [Cℓ] = (ε/(1 + ε))[I6] with ε = 10−6. The dispersion parameter
δ, which allows the level of anisotropic statistical fluctuations to be controlled, is chosen as δ = 0.4. The spatial-
correlation lengths, which are defined by Eq. (5.6), are generated from a value Ld such that L jk

1 = L jk
2 = L jk

3 = Ld for
1 ≤ j ≤ k ≤ 6 and the autocorrelation functions are defined by Eq. (5.7). We then introduce the spatial-correlation
length Lc

d =
∫ +∞

0 |rc(ζ)| dζ, related to the random field [C], in which ζ 7→ rc(ζ) is a correlation function on R,

rc(ζ) =
tr E{([C(ξ + κ(ζ))] − [ C ]) ([C(ξ)] − [ C ])}

E{∥[C(ξ)] − [ C ]∥2F}
, (6.5)

in which κ(ζ) = (ζ, 0, 0) (note that the result would the same if κ(ζ) was equal to (0, ζ, 0) or to (0, 0, ζ)). In such a case,
Lc

d = 1.113 Ld. For Ld = 0.1 and δ = 0.4, Fig. 1-(a) displays the graph of the correlation function ζ 7→ rc(ζ) defined by
Eq. (6.5). Under the introduced hypotheses, it is proven (see Proposition 5.1 in [74] using a deterministic spectrum)
that the weak formulation of the stochastic elliptic boundary value problem admits a unique strong stochastic solution
that is a second-order random field, E{∥Ymr(ξ)∥2} < +∞ ,∀ξ ∈ Ω. The stochastic computational model is obtained by
discretizing the weak formulation of the boundary value problem with the finite element method. The approximation
of the strong stochastic solution is constructed using the Monte Carlo simulation method (see for instance, [311, 120])
for which the mean-square convergence of the operator norm of the random effective elasticity matrix is obtained for
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900 realizations.

(iii) Probabilistic analysis of the RVE size. We introduce the normalized random variable Z = ∥ [Ceff] ∥/E{∥ [Ceff] ∥}.
For δ = 0.4, Fig. 1-(b) displays the graph of the function β 7→ P(β) = Proba{1 − β < Z ≤ 1 + β} that shows
the evolution of the probability distribution of Z as a function of Ld. For instance, for Ld = 0.2, if we consider
β = 0.02, 0.04, and 0.08, this figure shows that Proba{0.98 < Z ≤ 1.02} = 0.36, Proba{0.96 < Z ≤ 1.04} = 0.65, and
Proba{0.92 < Z ≤ 1.08} = 0.95. Clearly, the scales are badly separated for the value 0.2 of Ld. It can also be seen that
the scales are reasonably well separated for Ld = 0.1.
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Figure 1: For δ = 0.4, figure (a) displays the graph of correlation function for Ld = 0.1 (horizontal axis ζ, vertical axis rc(ζ)); figure (b) shows the
graph of function β 7→ P(β) = Proba{1 − β < Z ≤ 1 + β} for Ld = 0.1 (circle), 0.2 (no marker), 0.3 (square), 0.4 (no marker), 0.5 (triangle-up), 0.6
(no marker), 0.7 (triangle-down). [Figure from [72]].

6.2. Stochastic continuum modeling of the random interphase of a polymer nanocomposite using atomistic simula-
tions and a statistical inverse problem

A specificity of nanoreinforced composites is the existence of an interphase region surrounding an inclusion,
which has a finite thickness (not reduced to a perfect interface). Within this region the polymer chains exhibit con-
formational and geometrical properties that are different from those in the bulk polymer phase. A lot of experimental
characterization of these properties have been carried out (see for instance [312, 313, 314, 315, 316]). These observa-
tions are well correlated by atomistic simulations and highlights a preferred orientation of the polymer chain segments
tangentially to the particle surface [317, 318, 319, 320, 321, 322].

The application presented below deals with the continuum mechanics of a polymer system reinforced by a
nanoscopic inclusion of silica [254] and is a complementary and fundamental aspect of model construction and in-
verse calibration based on atomistic simulations. The elastic properties of the interphase is modeled by a non-Gaussian
tensor-valued random field. Molecular dynamics simulations are used to infer some basic properties and to construct
a simulated database devoted to the model calibration. This identification step is subsequently addressed by solving
a statistical inverse problem stating the equivalence of the apparent properties obtained from atomistic computations
and those estimated from stochastic homogenization in a continuum mechanics formulation. Let Ω be the interphase
region between the polymer matrix and a silicon nanoinclusion inserted in the polymer. It is assumed that

(a) the prior stochastic model {[C(ξ)], ξ ∈ Ω} of the random apparent elasticity field in the interphase region Ω with
a given symmetry class is an adaptation (see [254]) of the one presented in Section 5.3.

(b) the molecular dynamics is used to generate atomistic simulated data that are used for identifying random field
{[C(ξ)], ξ ∈ Ω} in the context of continuum mechanics.

(c) the identification of the prior stochastic model is carried out by solving a statistical inverse problem.

Molecular dynamics (MD) modeling and atomistic simulations. The amorphous polymer is made up of long chains
with CH2 sites, represented through a coarse graining with harmonic potentials and the Lennard Jones potential. The
silicon nanoinclusion is made up of amorphous bulk of SiO2 molecules described in terms of Si and O atoms, with
Coulomb potential. The interaction CH2 - SiO2 is modeled by a Lennard Jones potential (see for instance [323]).
The MD simulations [324] is performed with a target volume fraction of 4.7% in the atomistic domain Ωa that is a
cube of 6.8 × 10−9 m side, which contains 10 polymer chains. Each polymer chain is made up of 1 000 CH2 sites
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yielding a total of 10 000 CH2. The SiO2 nanoinclusion is a sphere of 3 × 10−9 m diameter with 275 Si atoms and
644 O atoms. The temperature is 100 oK and the pressure is the control variable. Six mechanical tests in traction and
shear are simulated. A time-spatial averaging is performed for estimating the apparent strain that allows for deducing
realizations of the random apparent elasticity matrix [Capp,MD] related to domain Ωa in the sense of the continuum
mechanics. Figs. 2-(a) and (b) show a visualization of an instantaneous configuration of the polymer chains and of the
atoms of the inclusion. Fig. 2-(c) displays the polymer density ρn in the nanocomposite divided by the pure polymer
density ρp as a function of the distance r from the center of the sphere representing the silicon nanoinclusion. This
figure shows that the interphase thickness, t, is between 2 × 10−9 m and 3 × 10−9 m.

(a) Instantaneous configuration (b) Instantaneous configuration
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(c) Function r 7→ (ρn/ρp)(r)

Figure 2: Figures (a) and (b): visualization of an instantaneous configuration of the polymer chains and of the atoms of the inclusion. Figure (c):
polymer density ρn in the nanocomposite divided by the pure polymer density ρp as a function of the distance r (in nanometer) from the center of
the sphere representing the silicon nanoinclusion. [Figure from [254]].

(a) 3D view of the meshed
continuum model

(b) Realization of identified random
elasticity field [C(ξ)]11

Figure 3: Figure (a): 3D view of the meshed continuum model (the inclusion appears in magenta (or in dark gray), the interphase in white and the
polymer matrix in turquoise (or in gray)). Figure (b): plot of a realization of component (1, 1) of the identified random elasticity field [C(ξ)]11 (in
GPa) in the interphase domain. [Figure from [254]].

(ii) Continuum mechanics model and prior stochastic model of the elasticity field describing the interphase. A con-
tinuum mechanics model is constructed. The finite element method is used for solving the 6 stochastic BVP cor-
responding to the 6 mechanical tests. The stochastic computational model is made up of 190 310 finite elements.
Fig. 3-(a) shows a 3D view of the meshed continuum model. In the interphase region Ω whose thickness is t, the
prior stochastic model of the elasticity field {[C(ξ)], ξ ∈ Ω} is constructed as explained in Section 5.3. There are only
statistical fluctuations in the class of transversally isotropic material symmetries in the spherical coordinates (r, φ, ψ)
in the orthonormal spherical frame (er, eφ, eψ). The hyperparameters are the dispersion parameter δ related to the
statistical fluctuations in the symmetry class, the spatial-correlation length Lr along the radial direction er, and the
spatial-correlation length La along the two directions eφ and eψ (assuming a same value). The Silica inclusion and
the polymer bulk are linear elastic, isotropic, homogeneous, and deterministic media, for which the elastic properties
(bulk and shear moduli) have been estimated from the MD simulations.

(iii) Statistical inverse problem and results. The maximum likelihood method is used for estimating the optimal
values of the hyperparameters of {[C(ξ)], ξ ∈ Ω}. The observed random quantity is the random apparent elasticity
matrix [Capp] related to domain Ωa. The probability density function of [Capp] is estimated by using realizations
that are computed by stochastic homogenization, using the finite element solutions of the 6 stochastic BVP with
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the prior stochastic model {[C(ξ)], ξ ∈ Ω} in the interphase region Ω ⊂ Ωa. The likelihood function is estimated
with the realizations of [Capp,MD] that has been computed with the MD simulations (considered as the experiments).
The optimal values of the hyperparameters are δ = 0.2, Lr = t/4, and La = 3.5 × 10−9 m. Fig. 3-(b) displays a
realization of component (1, 1) of the identified random elasticity field [C(ξ)]11 (in GPa) inside the interphase domain
(relatively close to the exterior boundary surface of the interphase domain) and computed with the optimal values of
the hyperparameters.

7. Probabilistic Learning on Manifolds (PLoM) as a machine learning tool for small dataset and probabilistic
inference

The probabilistic learning is a very active domain of research for constructing surrogate models (see for instance,
[325, 229, 326, 44, 233, 235, 239]). Probabilistic Learning on Manifolds (PLoM) is a tool in computational statistics,
introduced in 2016 [230] and which can be viewed as a tool for scientific machine learning. The PLoM approach
has specifically been developed for the small dataset cases [230, 232, 234, 149, 236]. The method avoids the scat-
tering of learned realizations associated with the probability distribution in order to preserve its concentration in the
neighborhood of the random manifold defined by the parameterized computational model. This method allows for
solving unsupervised and supervised problems under uncertainty for which the training datasets are small. This situ-
ation is encountered in many problems of physics and engineering science with expensive function evaluations. The
exploration of the admissible solution space in these situations is thus hampered by available computational resources.

Several extensions have been proposed to take into account implicit constraints induced by physics, computational
models, and measurements [240, 241, 242], to reduce the stochastic dimension using a statistical partition approach
[238], and to update the prior probability distribution by a target dataset whose points are, for instance, experimental
realizations of the system observations [243]. Consequently, PLoM constrained by a stochastic computational model
and statistical moments or samples/realizations allows performing probabilistic learning inference and constructing
predictive statistical surrogate model for large parameterized stochastic computational models. This last capability
of PLoM can also be viewed as an alternative method to the Bayesian inference for the high dimension [143, 327,
20, 145, 146, 147, 148, 7, 328, 160] and is a complementary approach to existing methods in machine learning for
sampling distributions on manifolds under constraints (although a Bayesian inference methodology has also been
developed using the probabilistic learning on manifolds for the high dimensions [149]).

PLoM has successfully been adapted to tackle these challenges for several related problems including nonconvex
optimization under uncertainty [211, 213, 212, 114, 215, 329, 218, 330], fracture paths in random composites [331],
ultrasonic transmission technique in cortical bone microstructures [149], updating digital twins under uncertainties
[219], updating of under observed dynamical system [220], calculation of the Sobol indices [332], dynamic monitoring
[333], surrogate modeling of structural seismic response [334].

In this section, we present a brief overview of this method and we will present an application to the homogenization
of heterogeneous microstructures in continuum mechanics.

7.1. Setting the problem of the probabilistic learning on manifolds

The probabilistic learning on manifolds in presented in the context of the supervised learning, which is adapted to
the framework of computational mechanics and engineering science.

(i) Statistical surrogate model of a parameterized solution of a stochastic computational model. We consider the
following equation

Q = f(W,U) , (7.1)

associated with a parameterized stochastic computational model, obtained by the discretization of a parameterized
stochastic BVP. In this equation,

(a) W is a control parameter that is a Rnw -valued random variable defined on the probability space (Θ,T ,P) with
a given prior probability distribution PW(dw) whose support is Cw ⊂ Rnw .

(b) U is an uncontrolled parameter that is a Rnu -valued random variable defined on (Θ,T ,P) with a given prior
probability distribution PU(du), which is assumed statistically independent of W.
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(c) Q is the quantity of interest (QoI) related to system observations, which is a Rnq -valued random variable defined
on (Θ,T ,P) and depending on W and U, as formulated by Eq. (7.1).

(d) (w,u) 7→ f(w,u) is a measurable mapping from Rnw× Rnu into Rnq , which is not explicitly known and which is
indirectly constructed by solving the parameterized stochastic computational model.

(e) We define the stochastic mapping F on (Θ,T ,P) such that, for all w in Rnw , F(w) = f(w,U). The stochasticity
of F comes from the randomness of the uncontrolled parameter U. The random graph {(w,F(w)),w ∈ Rnw }

defined a random manifold in Rnx with nx = nw + nq, which can be viewed as a statistical surrogate model
associated with the parameterized stochastic computational model, and which is completely defined by the joint
probability distribution PW,Q(dw, dq) on Rnw × Rnq . Consequently, PW,Q(dw, dq) is concentrated in a subset of
Rnw × Rnq located in the region of the random manifold. It should be noted that, in this context, the surrogate
model is defined in a statistical framework and not using any algebraic representation.

Let X = (W,Q) be the random variable, defined on (Θ,T ,P), with values in Rnx = Rnw × Rnq , whose probability
distribution PX(dx) on Rnx is concentrated in a subset of Rnx due to the random manifold defined by the random graph
{(w,F(w)),w ∈ Rnw }. In the following, we will assume that PX(dx) is written as PX(dx) = pX(x) dx in which pX is the
pdf on Rnx , which is concentrated in a region of Rnx .

(ii) Training dataset for random vector X. A generator of the prior probability distributions PW(dw) and PU(du) has
to be constructed (based on the direct or the indirect approach as explained in Section 3.1) and is used for constructing
nd independent realizations w j

d = W(θ j) ∈ Rnw and u j
d = U(θ j) ∈ Rnq , θ j ∈ Θ, of the random variables W and U.

For each realization (w j
d,u

j
d) of (W,U), the computational model is used for calculating the corresponding realization

q j
d = Q(θ j) ∈ Rnq such that q j

d = f(w j
d,u

j
d). The corresponding realization x j

d = X(θ j) ∈ Rnx of X is then written
as x j

d = (w j
d,q

j
d). For each realization θ j, a deterministic calculation is thus carried out with the computational

model. Often, the nd realizations are performed using parallel calculation. The training dataset Dnd (x), made up of
nd independent realizations x j

d ∈ Rnx of the Rnx -valued random variable X whose probability distribution is PX(dx) on
Rnx , is then defined by

Dnd (x) = {x j
d = (w j

d,q
j
d), j = 1, . . . , nd} . (7.2)

It is assumed that the calculation of a single realization with the computational model is expensive and consequently,
the number nd is small, which means that Dnd (x) is a small dataset and not a big dataset. Under this assumption,
PLoM will be an adapted machine learning tool.

(iii) Role played by the learned dataset generated by the probabilistic learning on manifolds for the construction of
statistical surrogate models. The construction of a statistical surrogate model can be defined as follows. From the nd

realizations of the training dataset, we have to estimate the joint probability distribution PW,Q(dw, dq) on Rnw ×Rnq of
(W,Q) and more particularly, the conditional statistics such as the conditional probability distribution P(dq; w) of Q
given W = w, for any w given in Cw,

P(dq; w) = PQ|W(dq |w) , w ∈ Cw (7.3)

or to estimate the conditional expectation h(w) of H(Q) given W = w, in which q 7→ H(q) a given measurable
mapping from Rnq in Rnh ,

h(w) = E{H(Q)|W = w} =
∫

Rnq
H(q) PQ|W(dq |w) , w ∈ Cw . (7.4)

Note that the non-Gaussian probability distribution PX(dx) of X = (W,Q), which is concentrated in an unknown
region of Rnx , is unknown but can be estimated with nonparametric statistics using the training dataset, Dnd (x) =
{x j

d, j = 1, . . . , nd} of length nd.
Under the introduced hypothesis, the training dataset is small due to a high numerical cost of a single evaluation

q j
d = f(w j

d,u
j
d) using the computational model. Therefore, nd will be, in general, not sufficiently large for obtaining a

good convergence of the estimate P(nd)(dq; w) towards P(dq; w) or the estimate h(nd)(w) towards h(w) for all w in Cw.
For circumventing this difficulty, one way is the use of the probabilistic learning on manifolds. It allows to generate a
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learned dataset Dlearn(x) constituted of nlearn ≫ nd learned realizations (resampling) of X,

Dlearn(x) = {xℓlearn, ℓ = 1, . . . , nlearn} , (7.5)

keeping the concentration (for illustration, see Fig. 4-(b)), that is to say by avoiding the scattering of the learned
realizations for which the concentration is lost (see Fig. 4-(c)). Then, the convergence of the conditional statistics are
obtained in estimating those with Dlearn(x) instead of Dnd (x), that is to say, using the learned realizations wℓ

learn and
qℓlearn of random variables W and Q, such that

(wℓ
learn,q

ℓ
learn) = xℓlearn , ℓ = 1, . . . , nlearn . (7.6)

7.2. Methodology and algorithm of the probabilistic learning on manifolds (PLoM)

In this section we summarized the methodology and the algorithm of the probabilistic learning on manifolds
[230, 236]. We will present some illustrations showing the capability of the PLoM algorithm. In particular, we
will show how a general nonconvex optimization under uncertainties (OUU) and under nonlinear constraints can be
solved with a limited number of function evaluations of the parameterized stochastic computational model by using
the PLoM approach. For certain challenging applications, we will also present how the normalization can be preserved
by introducing constraints and we will also introduce the extension of PLoM with partition [238]. The algorithm with
constraints that is useful for the probabilistic learning inference will be presented in Section 7.3.

7.2.1. Summary of the methodology and algorithm
The methodology is described by the following steps, each one participating to the PLoM algorithm.

(i) Defining the random matrix [X], its realization [xd] from the training dataset, and the estimates-based second-
order moments. Let [X] = [X1, . . . ,Xnd ] be the random matrix defined on (Θ,T ,P), with values in Mnx,nd such that
[X] = [X1, . . . ,Xnd ] whose columns are nd independent copies of random vector X. Let [xd] be the matrix defined by

[xd] = [x1
d . . . x

nd
d ] ∈ Mnx,nd , (7.7)

whose columns are the nd realizations of the training dataset Dnd (x). Consequently, [xd] is a realization of [X]. Let
[x] be the matrix in Mnx,nd , whose columns are identical and equal to the empirical estimate x ∈ Rnx of the mean value
mX = E{X} ∈ Rnx of random vector X. We then have,

[x] = [x . . . x] ∈ Mnx,nd , x =
1
nd

nd∑
j=1

x j
d ∈ Rnx . (7.8)

The empirical estimate [ĈX] ∈ M+0
nx

of the covariance matrix [CX] = E{(X −mX) (X −mX)T } ∈ M+0
nx

of X is,

[ĈX] =
1

nd − 1
[xc] [xc]T ∈ M+0

nx
, [xc] = [xd] − [x] ∈ Mnx,nd , (7.9)

in which [xc] is the matrix of the centered realizations of the training dataset.

(ii) Reduced normalized random matrix [H] and its realization [ηd] constructed by using the principal component
analysis (PCA). Let [µ] be the (ν × ν) diagonal matrix of the ν positive eigenvalues µ1 ≥ . . . ≥ µν > 0 of matrix
[ĈX] ∈ M+0

nx
defined by Eq. (7.9) and let [φ] ∈ Mnx,ν be the matrix whose columns are the associated eigenvectors

φ1, . . . ,φν, which are such that [ĈX]φα = µα φα with [φ]T [φ] = [Iν]. The reduced normalized representation [X(ν)] of
[X] of order ν ≤ nx − 1, is constructed using the training-dataset-based PCA of X and is written as

[X(ν)] = [x] + [φ] [µ]1/2 [H] , (7.10)
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in which [H] = [H1, . . . , Hnd ] is a Mν,nd -valued random matrix,

[H] = [µ]−1/2[φ]T ([X] − [x]) . (7.11)

whose columns are nd independent copies of a random vector H with values in Rν. The realization [ηd] = [η1
d . . . η

nd
d ] ∈

Mν,nd of [H] is then computed by,
[ηd] = [µ]−1/2[φ]T [xc] . (7.12)

Consequently, the training dataset Dnd (η) of random vector H is made up of the nd independent realizations η j
d ∈ Rν

and we have,
Dnd (η) = {η1

d . . . η
nd
d } . (7.13)

The value ν is classically calculated in order that the L2- error function ν 7→ errX(ν) defined by

errX(ν) = 1 −
∑ν

α=1 µα

tr[ĈX]
, (7.14)

be smaller than εPCA, in which tr[ĈX] = ∥ [xc] ∥2F/(nd −1). The empirical estimates η
d
∈ Rν and [ĈH] ∈ M+ν of the mean

value and the covariance matrix of H, calculated with the independent realizations η1
d, . . . , η

nd
d are such that

η
d
= 0ν , [ĈH] = [Iν] . (7.15)

Consequently, the components of H are centered and orthogonal in L2(Θ,Rν) and therefore uncorrelated. If ν < nx−1,
then there is a normalization and a statistical reduction. If ν = nx − 1, there is only a normalization. It should
be noted that, although the components of H are uncorrelated, they are not statistically independent because H is a
non-Gaussian random variable.

Often, nx is very large and ν < nd. In this condition, matrices [µ] and [φ] are not computed by solving the eigen-
value problem related to [ĈX] but are computed by extracting the ν largest singular values s1 ≥ . . . ≥ sν > 0 and the
associated left orthonormal vectors φ1, . . . ,φν of matrix [xc] (without computing matrix [ĈX]). The singular value
decomposition of [xc] is written as [xc] = [φ] [s] [ψ]T and consequently, yields the eigenvalue µα = s2

α/(nd − 1) and
the associated eigenvector φα for α = 1, . . . , ν.

(iii) Estimating the pdf of random matrix [H] with the training dataset Dnd (η) and the nonparametric statistics. The
probability density function [η] 7→ p[H]([η]) defined on Mν,nd with respect to the measure d[η] = Πνα=1Π

nd
j=1 dηα j of

random matrix [H] is estimated using the multidimensional Gaussian kernel-density estimation (KDE) [26] and the
training dataset Dnd (η) defined by Eq. (7.13). The modification proposed in [88] is used for constructing the Gaussian
KDE, which yields

p[H]([η]) = Πnd
ℓ=1 pHℓ (ηℓ) , [η] = [η1 . . . ηnd ] , (7.16)

pHℓ (ηℓ) =
1
nd

nd∑
j=1

1
(
√

2π ŝ)ν
exp(−

1
2ŝ2 ∥

ŝ
sSB

η j
d − η

ℓ ∥2) , ∀ηℓ ∈ Rν , (7.17)

in which ŝ = sSB

(
s2

SB + (nd − 1)/nd
)−1/2 where sSB = (4/(nd(2 + ν)))1/(ν+4) is the Silverman bandwidth. Since

H1, . . . ,Hnd are nd independent copies of H, we have pH = pH1 = . . . = pHnd . Note that with this modification,
the normalization of H is preserved for any value of nd,

E{H} =
∫

Rν

η pH(η) dη =
1

2ŝ2 ηd
= 0ν , (7.18)

E{H HT } =

∫
Rν

η ηT pH(η) dη = ŝ2 [Iν] +
ŝ2

s2

(nd − 1)
nd

[ĈH] = [Iν] . (7.19)

(iv) Construction of a truncated diffusion-maps basis. For preserving the concentration of the learned realizations
in the region in which the points of the training dataset are concentrated, PLoM introduces an algebraic basis of the
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vector space Rnd , derived from the diffusion-maps method [335, 336] that consists in constructing a Markov chain
between the pairs of points of the training dataset. This algebraic basis will allow for integrating a local geometry
information in the learned probability distribution of H for preserving its concentration property. Let [K] and [b] be
the matrices such that, for all i and j in {1, . . . , nd},

[K]i j = exp{−(4 εDM)−1∥ηi
d − η

j
d∥

2} , [b]i j = δi j bi , bi =

nd∑
j=1

[K]i j , (7.20)

in which εDM > 0 is a smoothing parameter. Note that this kernel is well adapted to the Rν-valued random variable
H that is centered and with a covariance matrix that is equal to [Iν]. The eigenvalues κ1, . . . , κnd and the associated
eigenvectors ψ1, . . . ,ψnd of the right-eigenvalue problem [P]ψα = κα ψα are such that 1 = κ1 > κ2 ≥ . . . ≥ κnd and are
computed by solving the generalized eigenvalue problem for symmetric matrices with [b] a positive-definite diagonal
matrix, [K]ψα = κα [b]ψα with ⟨[b]ψα,ψβ⟩ = δαβ. It can easily be seen that the largest eigenvalue is κ1 = 1 and the
associated eigenvector ψ1 is a vector whose all its components are equal. For a given integer ζ ≥ 0, the diffusion-
maps basis {g1, . . . , gα, . . . , gnd } is a vector basis of Rnd defined by gα = κ

ζ
α ψα. For a given integer m, the truncate

diffusion-maps basis of order m is defined as the family {g1, . . . , gm} that is represented by the matrix [gm] such that
[gm] = [g1 . . . gm] ∈ Mnd ,m, with gα = (gα1 , . . . , g

α
nd

) and [gm]ℓα = gαℓ . This basis depends on two parameters, εDM and m,
which have to be identified. It is proven in [236], that the PLoM method does not depend on ζ that can therefore be
chosen to 0. We have to find the optimal value mopt ≤ nd of m and the smallest value εopt > 0 of εDM such that (see
[238])

1 = κ1 > κ2(εopt) ≃ . . . ≃ κmopt (εopt) ≫ κmopt+1(εopt) ≥ . . . ≥ κnd (εopt) > 0 , (7.21)

with an amplitude jump equal to an order of magnitude (a factor 10 as demonstrated in [236]) between κmopt (εopt) and
κmopt+1(εopt). A further in-depth analysis makes it possible to state the following algorithm to estimate εopt and mopt.
Let εDM 7→ Jump(εDM) be the function on ]0,+∞[ defined by Jump(εDM) = κmopt+1(εDM)/κ2(εDM). Finally the last version
of the algorithm proposed in [238] is the following:
- set the value of m to mopt = ν + 1;
- identify the smallest possible value εopt of εDM in order that Jump(εopt) ≤ 0.1 and such that Equation (7.21) be verified.

(v) Generator of learned realizations of random matrix [H]. The algebraically independent vectors g1, . . . , gm ∈ Rnd

span a subspace of Rnd that characterizes, for the optimal values mopt and εopt of m and εDM, the local geometry structure
of dataset {η j

d, j = 1, . . . , nd}. So the PLoM method introduces the Mν,nd -valued random matrix [Hm] = [Zm] [gm]T

with m < nd, corresponding to a data-reduction representation of random matrix [H], in which [Zm] is a Mν,m-valued
random matrix. First of all, a Markov chain Monte Carlo (MCMC) generator for random matrix [H] is constructed
[337] in the class of Hamiltonian Monte Carlo methods [14, 337, 40], by solving a nonlinear Itô stochastic differential
equation (ISDE) that corresponds to a stochastic nonlinear dissipative Hamiltonian dynamical system, for which
the probability distribution p[H]([η]) d[η] of random matrix [H], defined by Eqs. (7.16) and (7.17), is the marginal
probability distribution of the unique invariant measure (see [230, 236]). Note that, due to the dissipation, this ISDE
allows for removing the transient part to rapidly attain the stationary response associated with the invariant measure.
Then, the generator of the learned realizations is obtained by constructing the reduced-order ISDE related to the
random matrix [Zm] by projecting the ISDE on the subspace generated by [gm]T . This generator is defined by the
following Theorem 1 that is proven in [236].

Theorem 1 (MCMC generator for the learned realizations). Let m be fixed to the value mopt < nd and εDM to εopt. Let
{([Z(r)], [Y(r)]), r ∈ R+} be the Mν,m ×Mν,m-valued stochastic process, satisfying, for r > 0 and with initial conditions
for r = 0, the reduced-order ISDE,

d[Z(r)] =[Y(r)] dr , (7.22)

d[Y(r)] =[L ([Z(r)])] dr −
1
2

f0 [Y(r)] dr +
√

f0 [dWwien(r)] [am] , (7.23)

[Y(0)] =[y0] [am] , [Z(0)] = [ηd] [am] , a.s. , (7.24)
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in which [am] = [gm] ([gm]T [gm])−1 ∈ Mnd ,m and where the matrix [y0] ∈ Mν,nd is any realization of a normalized
Gaussian random matrix [Y0], independent of Wwien, whose entries {[Y0]α j}α j are ν × nd independent normalized
Gaussian real-valued random variables. In Eq. (7.23), [L ([Z(r)])] = [L([Z(r)] [gm]T )] [am] such that, ∀ [u] =
[u1 . . . und ] in Mν,nd with uℓ ∈ Rν, matrix [L([u])] ∈ Mν,nd is such that, for k ∈ {1, . . . , ν} and ℓ ∈ {1, . . . , nd},

[L([u])]kℓ =
{∇uℓ p

Hℓ
(uℓ)}k

p
Hℓ

(uℓ)
=

1
ŝ2

∑nd
j=1{

ŝ
sSB
η j

d − uℓ}k exp(− 1
2ŝ2 ∥

ŝ
sSB
η j

d − uℓ ∥2)∑nd
j=1 exp(− 1

2ŝ2 ∥
ŝ

sSB
η j

d − uℓ ∥2)
. (7.25)

Parameter f0, such that 0 < f0 < 4/ŝ, allows the transient part to be controlled (a common value is f0 = 4 knowing that
ŝ < 1) and [Wwien] is the Mν,nd -valued normalized Wiener stochastic process. Then, there is a unique stochastic solution
that is a second-order diffusion stochastic process, which is asymptotic, for r → +∞, to a stationary stochastic process
and we have [Zlearn] = limr→+∞[Z(r)] in probability distribution, which allows for generating nMC ≫ nd learned
realizations [z1

learn], . . . , [z
nMC
learn]. The nMC learned realizations generated by the probability distribution of [Hlearn] =

[Zlearn] [gm]T are then computed by

[ηℓlearn] = [zℓlearn] [gm]T , ℓ = 1, . . . , nMC} , (7.26)

and the nMC learned realizations of the Mnx,nd -valued random variable [Xlearn] are then deduced from Eq. (7.10),

[xℓlearn] = [x] + [φ] [µ]1/2 [ηℓlearn] , ℓ = 1, . . . , nMC} (7.27)

The reshaping of matrix [ηℓlearn] (resp. [xℓlearn] ∈ Mnx,nd ) allows for obtaining nlearn = nMC × nd additional realizations
{ηℓ

′

learn, ℓ
′ = 1, . . . , nlearn} of Hlearn (resp. {xℓ′learn, ℓ

′ = 1, . . . , nlearn} of Xlearn).

The reduced-order ISDE defined by Eqs. (7.22) to (7.24) is solved by using the Störmer-Verlet algorithm [338, 339]
detailed in Appendix C, which yields an efficient and accurate MCMC algorithm. The stationary response of this
reduced-order ISDE is solved in parallel computation, which allows for strongly decreasing the elapsed time on a
multicore computer. Efficient values of the algorithm parameters are given at the end of Appendix C. The PLoM
methodology allows the concentration of the learned probability distribution to be preserved as shown by the following
theorem proven in [236].

Theorem 2 (Concentration of the learned probability distribution). For all m in {1, . . . , nd}, random matrix [Hlearn] is rewrit-
ten as [Hnd

m ]. Let d2
nd

(m) be the square of the L2(Θ,Mν,nd )-distance between random matrix [Hnd
m ] and matrix [ηd] that

is defined by the nd points of the training dataset Dnd (η), such that

d2
nd

(m) = E{∥ [Hnd
m ] − [ηd] ∥2F}/E{∥ [ηd] ∥2F} . (7.28)

Then there exists an optimal value mopt with 1 < mopt < nd such that

min
m∈Mopt

d2
nd

(m) < d2
nd

(nd) = 1 + nd/(nd − 1) , (7.29)

in which Mopt = {mopt, . . . , nd−1}. This result shows that the PLoM method is better than the usual one corresponding
to d2

nd
(nd).

7.2.2. Illustrations showing the capability of the PLoM algorithm
Three illustrations are presented. The first two show how PLoM preserves the concentration of the learned prob-

ability distribution, on the one hand on a very simple example [230] in dimension 3 and on the other hand for ex-
perimental data [212] in dimension 35. The third illustration is devoted to a basic difficult constrained nonconvex
optimization problem with uncertainties [211]. Similar optimization problems have been analyzed with PLoM for
much more complicated engineering problems such as the design optimization under uncertainties of a mesoscale
implant in biological tissues [213], the optimal well-placement [212], the design optimization of a scramjet under
uncertainty [215], the optimization of wake steering in wind farms [329], the probabilistic learning and updating of a
digital twin for composite material systems [219], the detuning optimization of detuned bladed disks with uncertain
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mistuning [218].

(i) Manifolds as a helical in 3D Euclidean space [230]. Using the notation introduced in Section 7.1, we have nw = 2,
nq = 1, nx = nw + nq = 3, ν = nx = 3, and the training dataset has nd = 400 points shown in Fig. 4-(a). The PLoM
algorithm is used with mopt = 4 for generating 8 000 learned realizations that are shown in Fig. 4-(b). Fig. 4-(c)
displays 8 000 points generated with a resampling from the training dataset, using a classical MCMC algorithm. It
can be seen that the PLoM algorithm has preserved the concentration of the learned probability distribution while the
concentration has been lost with a classical MCMC algorithm.

(a) Training dataset (b) PLoM algorithm (c) Classical MCMC algorithm

Figure 4: Concentration-loss analysis: 400 blue points of the training dataset (a), (b) and (c); 8 000 red points for the learned realizations with the
PLoM algorithm (b), and for the resampling with a classical MCMC algorithm (c). [From [230]].

(ii) Analysis of a petro-physics experimental database [212]. We have nx = 35, ν = 32. Fig. 5 is relative to coordinates
x30, x32, and x33. The training dataset has nd = 13 056 points shown in Fig. 5-(a). The PLoM algorithm is used with
mopt = 33 for generating 39 168 learned realizations that are shown in Fig. 5-(b). Fig. 5-(c) displays 39 168 points
generated with a resampling from the training dataset, using a classical MCMC algorithm. Again, it can be seen that
the PLoM algorithm has preserved the concentration of the learned probability distribution while the concentration
has been lost with the use of a classical MCMC algorithm.

(a) Training dataset (b) PLoM algorithm (c) Classical MCMC algorithm

Figure 5: Concentration-loss analysis: 13 056 blue points of the training dataset (a), (b) and (c); 39 168 red points for the learned realizations with
the PLoM algorithm (b), and for the resampling with a classical MCMC algorithm (c). [From [230]].

(iii) Optimization under uncertainties (OUU) using a limited number of function evaluations of a stochastic computa-
tional model [211].

(iii-1) OUU formulation in a general framework. We consider the following optimization problem under uncertainties,
related to a stochastic computational model whose parameterization is defined in Section 7.1,

wopt = arg min
w∈Cw ,b(w)< 0

g(w) . (7.30)
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The design parameter, w ∈ Cw ⊂ Rnw , is the control parameter, which is modelled by a Rnw -valued random variable
W for which the support of its prior probability distribution PW(dw) is Cw. The objective function is written as
w 7→ g(w) = E{G (w,U)} from Rnw into R in which (w,u) 7→ G (w,u) is a measurable function from Rnw × Rnu into R
and where the uncontrolled parameter U is a Rnu -valued random variable, independent of W, whose prior probability
distribution PU(du) is given. The nonlinear constraints are defined by the function w 7→ b(w) = E{B(w,U)} from
Rnw into Rnb with nb ≥ 1, in which (w,u) 7→ B(w,u) is a measurable function from Rnw × Rnu into Rnb . Let G
be the real-valued random variable defined by G = G (W,U) and let B be the Rnb valued random variable such that
B = B(W,U). The prior probability distributions of W and U are used for generating nd independent realizations
{(w j,u j), j = 1, . . . , nd}. Let nx be nw + 1 + nb. The parameterized computational model is used for constructing
the training dataset of the Rnx -valued random variable X = (W,G,B). The nd independent realizations of X are
{x j = (w j, g j,b j), j = 1, . . . , nd} with g j = G (w j,u j) and b j = B(w j,u j). The PLoM algorithm allows for generating
the learned dataset (wℓ

learn, g
ℓ
learn,bℓlearn) = xℓlearn, ℓ = 1, . . . ,Nlearn with Nlearn ≫ nd. For all w in Cw, the conditional

statistics
g(w) ≃ E{Glearn |Wlearn = w} , b(w) ≃ E{Blearn |Wlearn = w} , (7.31)

are estimated using explicit algebraic formulas based on the joint probability density functions pGlearn,Wlearn and pBlearn,Wlearn

that are estimated using the Gaussian KDE and the learned realizations (see Section 5 of [211]). The nonconvex opti-
mization problem defined by Eq. (7.30) can be solved using a random search algorithm (such as a genetic algorithm)
and the conditional statistics defined by Eq. (7.31) are estimated for any w without using the parameterized stochastic
computational model. Note that these conditional statistics can be viewed as a statistical surrogate model whose eval-
uations are very fast.

(iii-2) Application. The problem is defined by Fig. 6. We have nw = 2, nb = 4, nu = 4 and nx = nw+1+nb = 7. The 3D
plot of the graph of the reference cost function w 7→ g(w) is shown in Fig. 6-(a) and its 2D contour plot in Fig. 6-(b).
The 3D plot of the graphs of the four components b1, b2, b3 and b4 of function w 7→ b(w) are shown in Figs. 6-(c) to
(f). The additional details of the construction of the stochastic computational model can be found in [211]. Since the
optimal solution of this OUU is not exactly known, a reference optimal solution wopt

ref has been constructed by using
the Monte Carlo simulation method with 10 000 realizations, and yields wopt

ref = (0.74, 0.49), g(wopt
ref ) = −0.123. For this

reference optimal solution, the four constraints are active. In Fig. 6-(b), this reference optimal solution is located in
the white diamond. For the probabilistic learning construction, the training set is generated with nd = 900 independent
realizations. The 2D contour plot of cost function g, estimated with this 900 points, are displayed in Fig. 7-(a). It can
seen that the generated image is very different from the one corresponding to the reference (see Fig. 6-(b)). Moreover,
the solution of the optimization problem constructed with this training set is located in the white square that is located
at the lower edge of the image and which is therefore very far from the optimal reference solution represented by
the white diamond. The image of the objective function synthesized using nlearn = 9 000 learned realizations from
the 900-points training dataset is shown in Fig. 7-(b). This result is quite remarkable and the quality obtained for
the learned objective function as well as for the learned constraints functions makes it possible to build a very good
approximation of the optimal solution wopt = (0.70, 0.49), g(wopt

ref ) = −0.112 (white disc). compared to the optimal
reference solution wopt

ref (white diamond). The results obtained for nlearn = 90 000 learned realizations (see Fig. 7-(c))
confirms this analysis.

7.2.3. Normalization by constraining the second-order moments of the components of H
The normalization conditions defined by Eqs. (7.18) and (7.19) should be preserved for Hlearn although these

conditions have not been introduced as constraints in the PLoM algorithm presented in Section 7.2. Referring to
the applications that have been addressed, in general, the mean value of Hlearn, which is estimated using the learned
realizations {ηℓlearn, ℓ = 1, . . . , nlearn}, is sufficiently close to zero (≪ 1) and the estimate of the covariance matrix of
Hlearn is sufficiently close to [Iν]. However, sometimes, although this covariance matrix stays close to a diagonal
matrix, its diagonal entries can be lower than 1. This situation has been encountered for small values of ν, a few units,
even ten, but has never been encountered for larger values of ν, a few tens, even hundreds. In the case where the
diagonal entries of this estimated covariance matrix become smaller than 1, some constraints can be imposed into the
PLoM algorithm by using the Kullback-Leibler divergence minimum principle as proposed in [240], which we briefly
summarize below.
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Figure 6: Reference: graph of the objective function w 7→ g(w) in 3D (a) and in 2D contour plot (b). The reference optimal solution wopt
ref is the

white diamond plotted in (b). Graphs of the constraint functions w 7→ b1(w) in (c), b2(w) in (d), b3(w) in (e), and b4(w) in (f). [From [211]].

(a)   f(w) estimated with 900 training data points
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Figure 7: 2D contour plot of the objective function w 7→ g(w) estimated with nd = 900 points of the training dataset (a), with nlearn = 9 000 learned
realizations (b), and with nlearn = 90 000 learned realizations (c). The white diamond is the reference optimal solution wopt

ref , the white square is
the optimal solution estimated with the training dataset, and, in figures (b) and (c), the white disc is the optimal solution wopt estimated with the
learned realizations. [From [211]].

The constraints {E{(Hk)2} = 1, k = 1, . . . , ν} are rewritten as E{gc(H)} = bc on Rν, in which gc and bc are such that
gc

k(H) = (Hk)2 and bc
k = 1 for k in {1, . . . , ν}. To take into account these constraints in the PLoM algorithm presented

in Section 7.2, Eq. (7.25) is replaced, for k ∈ {1, . . . , ν} and ℓ ∈ {1, . . . , ν}, by the following one,

[L([u])]kℓ =
{∇uℓ p

Hℓ
(uℓ)}k

p
Hℓ

(uℓ)
− 2λk uℓk , [u] = [u1 . . . und ] ∈ Mν,nd . (7.32)

In Eq. (7.32), λ = (λ1, . . . , λν) is a Lagrange multiplier with values in an admissible set Cλ ⊂ Rν, which allows the
constraint E{gc(H)} − bc = 0 to be imposed. This optimal value λsol of Lagrange multiplier λ is computed using
the formulation defined in Section 3.2 and the iterative algorithm given in Appendix B (in which w ∈ Rnw and the
Rnw -valued random variables W and Wλ must be replaced by η ∈ Rν and the Rν-valued random variables H and Hλ,
respectively). Applications using PloM under these constraints can be found in [240, 238].
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7.2.4. Extension to PLoM with partition
Also as part of improving PLoM algorithm, there are some applications for which the number nd of points in the

training dataset is very small and for which the optimal dimension mopt of the diffusion-map basis is very close to this
number, that is to say, mopt = ν + 1 ≲ nd. In this case, PLoM may not be more efficient than a standard MCMC algo-
rithm yielding a loss of concentration of the learned probability distribution. For these challenging cases, one possible
way to improve the PLoM algorithm is to perform a partition of the random vector H , into statistically independent
groups in a non-Gaussian framework (see [238]). In this manner, statistical knowledge about the dataset, beyond its
localization on a manifold, is relied upon to enhance information extraction and representation.

(i) Construction of the optimal partition of H. From the training set {η j
d, j = 1, . . . , nd}, an optimal partition of the

non-Gaussian normalized Rν-valued random variable H = (H1, . . . ,Hν) is performed using the algorithm proposed in
[340]. Such a partition is composed of np groups consisting in np mutually independent random vectors Y1, . . . ,Ynp .
Since H is a normalized random vector (zero mean vector and covariance matrix equal to [Iν]), for i = 1, . . . , np, Yi

is a normalized Rνi -valued random variable Yi = (Y i
1, . . . ,Y

i
νi

) = (Hri
1
, . . . ,Hri

νi
) in which 1 ≤ ri

1 < ri
2 < . . . < ri

νi
≤ ν,

with ν = ν1 + . . .+ νnp , and where Y i
k = Hri

k
. Random vector Yi is non-Gaussian and such that the estimate of its mean

vector and covariance matrix is 0νi and [Iνi ], respectively. We then have H = perm(Y1, . . . ,Ynp ) in which perm is the
permutation operator acting on the components of vector H̃ = (Y1, . . . ,Ynp ) in order to reconstitute H = perm(H̃).
For each group i, the training set is represented by the matrix [ηi

d] ∈ Mνi,nd whose columns are the nd realizations
{ηi, j

d , j = 1, . . . , nd} of the Rνi -valued random variable Yi, which are deduced from an adapted extraction (due to
the permutations) of the components of vectors {η j

d, j = 1, . . . , nd}. The partition is identified by constructing the
function iref 7→ τν(iref) of the mutual information and then by deducing the optimal level i opt

ref . The mutual information
iν(Y1, . . . ,Ynp ) between the random vectors Y1, . . . , Ynp is defined (see for instance [50, 51]) by

iν(Y1, . . . ,Ynp ) = −E

{
log(

p
Y1 (Y1) × . . . × p

Ynp (Ynp )
p

Y1 ,...,Ynp (Y1, . . . ,Ynp )
)

}
,

in which the conventions 0 log(0/a) = 0 for a ≥ 0 and b log(b/0) = +∞ for b > 0 are used, where p
Yi is the pdf of

Yi, and where p
Y1 ,...,Ynp is the joint pdf of Y1, . . . ,Ynp . Let G be the Gaussian second-order centered Rν-valued random

vector for which its covariance matrix is [Iν]. Consequently, the components of G are mutually independent. Applying
to G the same partition that the one defined for Y, we can write G = (G1, . . . ,Gnp ), and its mutual information is
iν(G1, . . . ,Gnp ). Let iref ≥ 0 be any fixed real value of the mutual information for two real-valued random variables
(see Section 3.5.3 of [340]). Let τν(iref) be the mutual information defined by

τν(iref) = 1 −
iν(Y1, . . . ,Ynp )
iν(G1, . . . ,Gnp )

.

The optimal level i opt
ref is such that

i opt
ref = inf

i∗ref

{ i∗ref = arg max
iref≥0

τν(iref) } .

For calculating the mutual information, the pdf are estimated by using the multidimensional Gaussian KDE method
with the points of the training set. For each given iref, the partition is constructed using a graph theory algorithm (see
[340]).

(ii) Use of the PLoM for each independent group. Let i be fixed in {1, . . . , np}. The PLoM algorithm presented in Sec-
tion 7.2) is applied to the Rνi -valued random variable Yi of the optimal partition Y1, . . . ,Ynp of H = perm(Y1, . . . ,Ynp )
and allows for generating nMC learned realizations {[ηi,ℓ

learn], ℓ = 1, . . . , nMC} for each random variable [Yi
learn] with

mi,opt = νi + 1 and εi,opt calculated as explained in Section 7.2.1-(iv). When νi is very small, it can be necessary
to apply Section 7.2.3 to preserve the normalization of Yi by constraining the second-order moments of its compo-
nents.

(iii) Illustration. This illustration is Application 1 from [238]. We consider the normalized non-Gaussian Rν-valued
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random variable H = (H1, . . . ,Hν) with ν = 60. The training dataset his generated with nd = 1 200 independent
realizations {η j

d, j = 1, . . . , nd}. Using the training dataset, the partition algorithm presented in (i) above is applied and
yields np = 3 groups with Y1 = (H1, . . . ,H10), Y2 = (H11, . . . ,H30), and Y3 = (H31, . . . , H60) (consequently, ν1 = 10,
ν2 = 20, and ν3 = 30). The learned dataset is generated (1) with a classical MCMC algorithm (no PLoM), (2) with the
PLoM algorithm without partition, and (3) with the PLoM algorithm with partition. For these three cases, nMC = 1 000
yielding nlearn = 1 200 000 realizations {ηℓ

′

learn, ℓ
′ = 1, . . . , nlearn} (nlearn = nMC × nd). The concentration of the learned

probability distribution is quantified by using Theorem 2 and yields d2
nd

(nd) ≃ 2 for case (1), d2
nd

(mopt) = 0.094 with
mopt = 61 for case (2), and d2

wg,nd
(mopt) = 0.016 with mopt = (11, 21, 31) for case (3). Figure 8 shows the clouds of

the learned realizations {ηℓ
′

learn, ℓ
′ = 1, . . . , nlearn} for the first three components (H1,H2,H3) of the 60 components of

H, which have been generated by cases (1), (2), and (3). It can be seen that the classical MCMC yields a scattering
of the learned realizations with a loss of the concentration. The PLoM algorithm better preserves the concentration
of the learned realizations for this challenging case. The PLoM algorithm with partition allows for retrieving the
concentration that corresponds to the reference (which is known for this, see [238]).

(a) Classical MCMC algorithm (b) PLoM without partition (c) PLoM with partition

Figure 8: Clouds of the nlearn = 1 200 000 realizations of (H1,H2,H3) generated with a classical MCMC algorithm (a), generated with PLoM
algorithm without partition (b), and generated with PLoM algorithm with partition, coinciding with the reference (c). [From [238]].

7.3. Probabilistic learning under constraints

In Section 7.2, we have presented the PLoM algorithm that allows statistical surrogate models of complex systems
to be constructed from small training datasets. When data are available, coming either from experimental measure-
ments or from expensive numerical simulations carried out with large computational models implemented on very
high performance computers, it becomes interesting, even necessary, to integrate these data into the learning process.
In addition to data integration, we also want to be able to constrain the learned probability distribution by physics,
for example, by constraining with nonlinear partial differential equations that underlie the stochastic computational
model, in order to minimize the stochastic residual generated by the learned realizations. Such learning process is
used to build statistical surrogate models for the parameterized stochastic computational models that are used for
generating the small training datasets. Always placing ourselves in the framework for which the available training
dataset is small, the objective of this section is to extend probabilistic learning on manifolds to the case of proba-
bilistic learning inference on manifolds in order to perform the data integration, i.e. to extend PLoM to PLoM under
constraints. From a general point of view, in the case of a small learning dataset and for high stochastic dimensions,
this problem remains difficult. To cover these aspects, several methodologies based on theoretical developments have
been proposed and validated through relatively complex applications. It is

(a) the physics-constrained probabilistic learning on manifolds [240] for which the constraints are defined by given
statistical moments.

(b) the probabilistic learning that is constrained by nonlinear partial differential equations of stochastic boundary
value problems [241], which has especially been developed for applications in stochastic nonlinear solid and
fluid computational dynamics.

(c) the case for which the constraints are defined by realizations of system observations, the methodology being
based on a weak formulation of Fourier transform of probability measures [243];

(d) the probabilistic learning inference under implicit constraints [242].
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To validate these methodologies, several applications of PLoM under constraints have been performed. The applica-
tion presented in [240] is related to a probabilistic learning inference consisting in a statistical inverse problem for a
stochastic elliptic BVP related to linear elasticity of a heterogeneous anisotropic medium occupying a 3D bounded
domain. The target dataset is constituted of experimental second-order statistical moments of the random displace-
ment field given on the boundary. The inverse problem consists in identifying the tensor-valued random elasticity
field using the target dataset. To construct the training dataset, the algebraic prior probability model of the random
elasticity field for heterogeneous anisotropic elastic media, presented in Section 5.2, is used. The probabilistic learn-
ing on manifolds, constrained by given statistical moments is then used for integrating the experimental data. This
application is revisited in [243] for which the target dataset of the second-order moments are replaced by a target
dataset made up of experimental realizations of the displacement field on the boundary. In that case, the constraints
are defined by the weak formulation of the Fourier transform of the learned probability distribution. If in addition to
prescribed second-order statistical moments, the second-order moment of the random residue of the stochastic equa-
tions of the computational model has to be controlled during the learning process, then the constraints are defined by
an implicit vector-valued mapping. This case has been analyzed in the application presented in [242], which deals
with the 3D stochastic homogenization of heterogeneous elastic microstructure for which the prior probability model
of the random tensor-valued elasticity field at mesoscale is the one presented in Section 5.2, which has been extended
to the case of a random spectrum following the model presented in [74, 247]. A brief summary of this application will
be presented in Section 8. In [241] devoted to PLoM constrained by nonlinear partial differential equations for small
training datasets, two applications are presented for high-dimensional nonlinear stochastic dynamical systems: one is
in computational fluid dynamics for unsteady 2D Navier-Stokes equation for incompressible fluid and another is in
nonlinear elastodynamics for a 3D silicon MEMS accelerometer. In this section, the presented overview is limited to
methodology (d).

7.3.1. Formulation of the probabilistic learning inference using the Kullback-Leibler divergence
The probabilistic learning inference based on a formulation of PLoM under constraints is an important question

related to probabilistic learning algorithm that allows for integrating data (target dataset) into predictive models for
which the training dataset is constituted of a small number of points and for which the target dataset is made up of
statistical moments of some quantities of interest (QoI). The considered constraints are thus implicit. It is assumed
that these statistical moments such as mean values, second-order moments, have been estimated with realizations
(samples) that are no longer available. This situation occurs quite frequently when the data (the realizations/samples)
have been lost, or deteriorated, or not commented on, or no longer exist, or are not accessible, but for which the
values of some statistical moments have been published or are given in technical reports. As previously explained,
physics-based constraints can simultaneously considered. This is the case if we want the learning process to be also
controlled by the model, for instance, that the mean-square norm of the random normalized residue of the stochastic
partial differential equation of the BVP be controlled. this type of constraint is thus also implicit. This section is
mainly based on [242].

(i) Stochastic boundary value problem. In Sections 7.1-(i) and (ii), we have presented the PLoM formulation in finite
dimension in order to facilitate the reading. In this section, we briefly introduce the formulation in infinite dimension.
All the random quantities are defined on a probability space (Θ,T ,P). Let us consider a stochastic elliptic BVP
on an open bounded domain Ω ⊂ Rd (for instance, d = 3), whose partial differential equation (PDE) is written as
N(Y,G,W) = 0 a.s. The unknown is the non-Gaussian vector-valued field {Y(ξ), ξ ∈ Ω} that satisfies the boundary
conditions. The coefficients of the stochastic elliptic operator depend on a non-Gaussian second-order vector-valued
random field G and on a random vector-valued control parameter W. It is assumed that the weak formulation of this
stochastic BVP admits a unique strong stochastic solution Y = f(G,W) that is a second-order random field. It is well
known that the nonlinear operator f is not exactly known. Only an approximation can be constructed, for instance,
using the finite element method to discretize the weak formulation and then using the Monte Carlo numerical method
to approximate the strong stochastic solution. The observation (quantity of interest) is, for instance, a second-order
vector-valued random variable Q = O(Y,G,W) in which the observation operator,O, is a given measurable mapping.

(ii) Probabilistic learning inference. The probabilistic learning inference belongs to the class of the statistical inverse
problems. A prior probability model of {G,W} is given. We are interested in estimating a posterior model {Gc,Wc} of
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{G,W} in order that some statistical moments of the posterior observations Qc = O(Yc,Gc,Wc) with Yc = f(Gc,Wc)
be equal to some given targets. The superscript ”c” is introduced to designate the solution with the constraints, which
corresponds to the posterior model. The statistical moments of Qc are globally written as E{Mc(Qc)} = bc in which
bc ∈ Rnc is the target, q 7→Mc(q) is a given measurable mapping.

(iii) Small training dataset. As previously, subscript ”d” designates the quantities related to the training dataset.
Let {g1

d, . . . , g
nd
d } and {w1

d, . . . ,w
nd
d } be nd independent realizations of random variable {G,W}, generated by using the

prior probability model of {G,W}. Each realization y j
d is computed by solving the weak formulation of the PDE

N(y j
d, g

j
d,w

j
d) = 0 with the boundary conditions. Consequently, nd independent realizations {y j

d, j = 1, . . . , nd} of
random field Y are computed and are such that y j

d = f(g j
d,w

j
d). The nd independent realizations {q j

d, j = 1, . . . , nd} of
random observation Q are thus deduced and such that q j

d = O(y j
d, g

j
d,w

j
d). The training dataset is then made up of a

small number nd of points x j
d = {y

j
d, g

j
d,w

j
d} for j = 1, . . . , nd, which are nd independent realizations of X = {Y,G,W}.

It is assumed that the BVP can only be solved a small number of times. This means that the training set is a small data
set (as opposed to a big data set). Therefore, the posterior model is constructed using a learning tool for generating
the constrained learned realizations of X without solving the BVP, but using only the training dataset.

(iv) Finite reduced-order representation and training dataset Dnd (η). Similarly to the methodology of PLoM presented
in Section 7.2.1, a finite reduced representation of X is constructed. The second-order random variable X = {Y,G,W},
defined on (Θ,T ,P), is assumed to be with values in a real Hilbert space X equipped with the inner product ⟨X ,X′⟩X
and its associated norm ∥X ∥X = ⟨X ,X⟩1/2X . Consequently, X belongs the Hilbert space L2(Θ,X), equipped with
the inner product ⟨⟨X ,X′⟩⟩ = E{⟨X ,X′⟩X} for which the square of the associated norm is |||X |||2 = E{∥X ∥2X} =∫
Θ
∥X(θ) ∥2X d P(θ). Since the problem is in infinite dimension, in order to implement the probabilistic learning

inference, we need to introduce a finite representation X(ν) of dimension ν of random variable X in L2(Θ,X). Assuming
that the covariance operator is a symmetric, positive, trace operator in X [341], X(ν) can be represented using the
truncated Karhunen-Loève expansion [342, 8] of X,

X(ν) = x +
ν∑

α=1

√
κα φ

α Hα , (7.33)

in which the eigenvalues of the covariance operator are κ1 ≥ . . . ≥ κν ≥ . . . = 0 with
∑+∞

α=1 κα < +∞, where the family
of the eigenfunctions {φα}α is a Hilbertian basis of X, where x = E{X}, and where H = (H1, . . . ,Hν) is a second-order
Rν-valued random variable such that,

∀α ∈ {1, . . . , ν} , Hα = κ
−1/2
α ⟨X−x ,φα⟩X and E{H} = 0ν , E{H HT } = [Iν] . (7.34)

The training set Dnd (η) for H is then defined by nd independent realizations η j
d such that

Dnd (η) = {η j
d, j = 1, . . . , nd} , η j

d = κ
−1/2
α ⟨x j

d − x ,φα⟩X . (7.35)

If the context of the probabilistic learning inference, the kernel of the covariance operator of X is not explicitly known.
Therefore, the value of ν can be computed in studying the graph of the function ν 7→ |||X(ν) − x ||| = (

∑ν
α=1 κα)1/2.

(v) Formulation using the Kullback-Leibler divergence minimum principle. Let PH(dη) = pH(η) dη be the prior
probability distribution on Rν of H, for which the pdf η 7→ pH(η) on Rν is estimated using the multidimensional
Gaussian KDE method and the training dataset Dnd (η) defined by Eq. (7.35). Therefore, for all η in Rν, pH(η) is
written as

pH(η) = cν ζ(η) with cν = (
√

2π ŝ)−ν and ζ(η) =
1
nd

nd∑
j=1

exp
{
−

1
2ŝ2 ∥

ŝ
s
η j

d − η ∥
2
}
, (7.36)

in which ŝ is the modified Silverman bandwidth defined in Section 7.2.1-(iii). Let Hc = (Hc
1, . . . ,H

c
ν) be the Rν-
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valued random variable whose posterior probability distribution, written as PHc (dη) = pHc (η) dη on Rν, satisfies (see
Section 7.3.1-(ii)) the constraint E{Mc(Qc)} = bc that is rewritten in function of Hc as

E{hc(Hc)} = bc ∈ Rnc , (7.37)

in which η 7→ hc(η) is a function from Rν into Rnc , which satisfies the following hypothesis.

Hypothesis 1 (Concerning function hc). Let nc be the integer such that 1 ≤ nc ≤ ν.
(H1) Given any bounded positive measure P(dη) on Rν with support Rν, there exists a bounded set B in Rν with
P(B) > 0 such that ∀ v ∈ Rnc with ∥ v ∥ , 0, we have

∫
B⟨h

c(η) , v⟩2P(dη) > 0, which means that the constraints are
algebraically independent.
(H2) Function η 7→ hc(η) is in C1(Rν,Rnc ) (continuously differentiable function from Rν into Rnc ).
(H3) There exist constants α > 0, β > 0, cα > 0, and cβ > 0, independent of η, such that for ∥ η ∥ → +∞, we have
∥hc(η) ∥ ≤ cα ∥ η ∥α and ∥ [∇ηhc(η)] ∥F ≤ cβ ∥ η ∥ β in which [∇ηhc(η)] ∈ Mν,nc with [∇ηhc(η)]αk = ∂hc

k(η)/∂ηα.

The Kullback-Leibler divergence between two probability measures p(η) dη and pH(η) dη on Rν is defined [46, 49, 50]
by D(p, pH) =

∫
Rν p(η) log(p(η)/pH(η)) dη, and is such that D(p, pH) ≥ 0 (that can be proven by applying the

Jensen inequality [343, 18]) and D(p, pH) = 0 if and only if p = pH. Note that (p, pH) 7→ D(p, pH) is not a
distance because the symmetry property and the triangle inequality are not verified. It can easily be seen that the cross
entropy S (p, pH) = −

∫
Rν p(η) log(pH(η)) dη and the entropy S (p) = −

∫
Rν p(η) log(p(η)) dη are related to D(p, pH)

by S (p, pH) = S (p) + D(p, pH). Finally, it can be proven (see for instance [50]) that (p, pH) 7→ D(p, pH) is a convex
function in the pair (p, pH). Using the Kullback-Leibler divergence minimum principle [46, 49, 50], the probability
density function pHc on Rν, which satisfies the constraint defined by Eq. (7.37) and which is closest to pH, is the
solution of the optimization problem (see for instance [240, 241]),

pHc = arg min
p∈Cad,p

∫
Rν

p(η) log
(

p(η)
pH(η)

)
dη , (7.38)

in which the admissible set Cad,p is defined by

Cad,p =

{
η 7→ p(η) : Rν → R+ ,

∫
Rν

p(η) dη = 1 ,
∫

Rν

hc(η) p(η) dη = bc
}
. (7.39)

7.3.2. Methodology and algorithm used for solving the optimization problem and MCMC generator
In the optimization problem defined by Eq. (7.38), the constraints are taken into account introducing Lagrange

multipliers.

(i) Lagrange multipliers associated with the constraints. The constraints within the admissible set Cad,p are taken into
account by introducing the Lagrange multipliers λ0 − 1 with λ0 ∈ R+ (associated with the normalization condition)
and λ ∈ Cad,λ ⊂ Rnc (associated with the imposed moments). Under Hypothesis 1, the admissible set Cad,λ of λ is the
open subset of Rnc , assumed to be not reduced to the empty set, such that

Cad,λ =
{
λ ∈ Rnc | 0 < E{ exp{−⟨λ ,hc(H)⟩} < +∞

}
, (7.40)

in which the pdf of the Rν-valued random variable H is defined by Eq. (7.36).

(ii) Construction of the optimal solution. Let us assumed that the optimization problem defined by Eq. (7.38) has
almost one solution pHc and that p = pHc is a regular point of the continuously differentiable functional p 7→∫

Rν hc(η) p(η) dη − bc. For λ0 ∈ R+ and λ ∈ Cad,λ, we define the Lagrangian,

Lag(p, λ0, λ) =
∫

Rν

p(η) log
(

p(η)
pH(η)

)
dη + (λ0 − 1) (

∫
Rν

p(η) dη − 1) + ⟨λ ,
∫

Rν

hc(η) p(η) dη − bc⟩ , (7.41)
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in which pH is defined by Eq. (7.36). Using the calculus of variations, an extremum of functional p 7→ Lag(p, λ0, λ)
is found as the function η 7→ pHλ

(η ; λ) on Rν, indexed by λ, writing as

pHλ
(η ; λ) = c0(λ) ζ(η) exp{−⟨λ ,hc(η)⟩} , ∀ η ∈ Rν , (7.42)

in which c0(λ) is the constant of normalization that depends on λ (note that λ0 is eliminated and we have c0(λ) =
cν exp{−λ0}). Under Hypothesis 1-(H1), there exists (see [344]) λsol in Cad,λ such that the functional (p, λ0, λ) 7→
Lag(p, λ0, λ) is stationary at point p = pHc for λ = λsol and λ0 = − log(c0(λsol)/cν). Therefore, pHc = pHλ sol (. ; λsol) and
Eq. (7.42) yields

pHc (η) = c0(λsol) ζ(η) exp{−⟨λsol,hc(η)⟩} , ∀ η ∈ Rν . (7.43)

Under Hypothesis 1, pHc is the unique solution of the optimization problem defined by Eqs. (7.38) and (7.39), in
which λsol is the unique solution of a convex optimization problem defined by Theorem 3.

Theorem 3 (Construction of the probability distribution of Hλ (from [242])). Under Hypothesis 1, the admissible set Cad,λ

defined by Eq. (7.41) is a convex open subset of Rnc . For all λ in Cad,λ, let pHλ
(η ; λ) be the pdf of Hλ, defined by

Eq. (7.43).
(a) The Rnc -valued random variable hc(Hλ) is of second-order,

E{∥hc(Hλ) ∥2} < +∞ . (7.44)

(b) Let λ 7→ Γ(λ) : Cad,λ → R be defined by

Γ(λ) = ⟨λ ,bc⟩ − log c0(λ) , (7.45)

in which bc is given in Rnc . For all λ in Cad,λ, we have

∇λΓ(λ) = bc − E{hc(Hλ)} ∈ Rnc , (7.46)

[Γ ′′(λ)] = [cov{hc(Hλ)}] ∈ M+nc
, (7.47)

where the Hessian matrix [Γ ′′(λ)] of Γ(λ), which is such that [Γ ′′(λ)]kk′ = ∂2Γ(λ)/∂λk∂λk′ , is the positive-definite
covariance matrix of hc(Hλ).
(c) Γ is a strictly convex function on Cad,λ. There is a unique solution λsol in Cad,λ of the convex optimization problem,

λsol = arg min
λ∈Cad,λ

Γ(λ) . (7.48)

If the following equation in λ,
∇λΓ(λ) = 0nc , (7.49)

has a solution λ̃ that belongs to Cad,λ, then this solution is unique and we have λsol = λ̃.

Although the optimization problem defined by Eq. (7.48) be a convex optimization problem, since the constant
of normalization c0(λ) cannot numerically be estimated, a classical descent algorithm cannot be used and is replaced
by searching the solution of Eq. (7.49). The Newton iterative algorithm is used to solve this equation with an under-
relaxation coefficient similarly to the algorithm detailed in Appendix B.

(iii) MCMC generator of Hc. Using Eq. (7.43), the posterior pdf pHc is constructed as the limit of a sequence
{pHλ
}λ of probability density functions of a Rν-valued random variable Hλ = (Hλ,1, . . . ,Hλ,ν) that depends on λ.

Based on Theorem 3, an algorithm similar to the one presented in Appendix B is used to find λsol. Therefore, the
construction of {pHλ

}λ requires to generate a constrained learned dataset Dnlearn (ηλ) = {η1
λ, . . . η

nlearn
λ } constituted of

nlearn ≫ nd independent realizations {ηℓλ, ℓ = 1, . . . , nlearn} of Hλ. When the convergence is reached with respect to λ,
the constrained learned set DHc = {η1

c , . . . , η
nlearn
c } is generated. This set is made up of nlearn independent realizations

{ηℓc, ℓ = 1, . . . , nlearn} of Hc whose probability distribution pHc (η) dη satisfies the constraint E{hc(Hc)} = bc. The con-
struction of Dnlearn (ηλ) is based on the following Theorem 4 and is carried our using the PLoM algorithm presented in
Section 7.2.

33



Theorem 4 ( MCMC generator of Hλ (from [242])). Let hc be the function satisfying Hypothesis 1. Let λ be fixed in
Cad,λ. Let {(Uλ(r),Vλ(r)), r ∈ R+} be the Rν × Rν-valued stochastic process, satisfying, for r > 0 and with initial
conditions,

dUλ(r) = Vλ(r) dr , (7.50)

dVλ(r) = Lλ(Uλ(r)) dr −
1
2

f0 Vλ(r) dr +
√

f0 dWwien(r) , (7.51)

Uλ(0) = u0 , Vλ(0) = v0 a.s. (7.52)

(a) As previously, f0 allows the transient part to be controlled and is such that 0 < f0 < 4/ŝ and Wwien is the Rν-valued
normalized Wiener stochastic process independent of H.
(b) The initial condition u0 ∈ Rν is chosen from the points of the training set Dnd (η) = {η1

d, . . . , η
nd
d } while the initial

condition v0 is any realization of a normalized Gaussian Rν-valued random variable VG, independent of Wwien.
(c) For all u = (u1, . . . , uν) in Rν, the vector Lλ(u) in Rν is written as

Lλ(u) =
1
ζ(u)
∇uζ(u) − [∇uhc(u)] λ , (7.53)

in which function ζ is defined by Eq. (7.36).
(d) The stochastic solution {(Uλ(r),Vλ(r)), r ≥ 0} of the ISDE defined by Eqs. (7.50) to (7.52) is unique, has almost-
surely continuous trajectories, and is a second-order diffusion stochastic process. For r → +∞, this diffusion process
converges to a stationary second-order diffusion stochastic process {(Ust

λ (τ),Vst
λ (τ)), τ ≥ 0} associated with the unique

invariant probability measure on Rν × Rν,

pHλ,VG (η, v ; λ) dη ⊗ dv = (pHλ
(η ; λ) dη) ⊗ (pVG (v) dv) , (7.54)

in which pHλ
(η ; λ) is the pdf defined by Eq. (7.42).

(e) For rs sufficiently large, we can choose Hλ as Uλ(rs). The generation of the constrained learned dataset Dnlearn (ηλ)
is constructed by solving Eqs. (7.50) to (7.52) for r ∈ [0 , rs] and then using the realizations of Uλ(rs).

It should be noted that the PLoM algorithm for Hλ can easily be derived from Theorem 4, by introducing the random
matrix [Hλ] whose columns are nd independent copies of Hλ and then by projecting Eqs. (7.50) to (7.52) on the
truncated diffusion-maps basis represented by matrix [gm]T yielding the reduced-order ISDE that is similar to the one
given in Theorem 1.

It can be seen that Lλ(u) defined by Eq. (7.53) involves the matrix [∇ηhc(η)] ∈ Mν,nc (the transpose of the Jacobian
matrix of hc). In general, function η 7→ hc(η) from Rν into Rnc is not explicitly defined by an algebraic expression,
and only aℓ = hc(ηℓ) ∈ Rnc can be computed for any point ηℓ given in Rν (for instance and as previously under-
lined, a component of hc can be related to the square of a norm of the random normalized residue of the stochastic
PDE). The MCMC generator requires the evaluation of [∇ηhc(η)] for a large number of values of η. The construc-
tion of a surrogate model of implicit function hc by using a deterministic approach, such as the meshless methods
[345, 346, 347, 348, 349, 350], is not adapted taking into account a possible high dimension of the space on which
hc is defined. To circumvent this difficulty, the approach proposed in [241] has been generalized in [242], which
consists in constructing a statistical surrogate model ĥnlearn of hc, depending on the number nlearn of points generated in
the constrained learned dataset, for which there is a simple explicit algebraic representation of the gradient function
η 7→ [∇ηĥnlearnη)] from Rν into Mν,nc . Such statistical surrogate model is an approximation whose convergence with
respect to nlearn has to be studied.

(iv) Statistical surrogate model of the implicit function hc and convergence analysis. In this section, we define the
surrogate model ĥnlearn of hc and we study the convergence of the sequences {ĥnlearn (η ; λ)}nlearn and {[∇ηĥnlearn (η ; λ)]}nlearn

as nlearn → +∞. Then, we present the convergence of the sequence of MCMC generator using the statistical surrogate
model. Let λ be fixed in Cad,λ and let Dnlearn (ηλ) = {η1

λ, . . . , η
nlearn
λ } be the constrained learned dataset whose points are

nlearn ≫ nd independent realizations of the Rν-valued random variable Hλ for which the pdf η 7→ pHλ
(η ; λ) is defined

by Eq. (7.42). Let Aλ = hc(Hλ) be the Rnc -valued random variable whose nlearn independent realizations a1
λ, . . . , a

nlearn
λ
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are such that aℓλ = hc(ηℓλ) ∈ Rnc for ℓ = 1, . . . , nlearn. The surrogate model η 7→ ĥnlearn (η ; λ) : Rν → Rnc of hc is defined
[242], for all η in Rν, by

ĥnlearn (η ; λ) =
nlearn∑
ℓ=1

aℓλ
β nlearn
η (ηℓλ)∑nlearn

ℓ′=1 β
nlearn
η (ηℓ′λ )

, (7.55)

in which for all η and η̃ in Rν,

β nlearn
η (η̃) = exp{−

1
2s2

SB

∥ η̃ − η ∥2H} , ∥ η̃ − η ∥2H = ⟨[σHλ
]−2(η̃ − η) , η̃ − η⟩ , (7.56)

in which [σHλ
] is the diagonal positive-definite matrix in M+ν such that [σHλ

]αα is the standard deviation of the real-
valued random variable Hλ,α, estimated using Dnlearn (ηλ), and where sSB is the Silverman bandwidth that depends on
nlearn and written as sSB = (4/{nlearn(2 + nc + ν)})1/(nc+ν+4).

Theorem 5 (Convergence of the sequence of MCMC generator using the statistical surrogate model (from [242])). Let λ be fixed
in Cad,λ and let η be fixed in Rν. Under Hypothesis 1-(H2), ∀ε > 0, there exists a finite integer nε(η, λ) depending on
ε, η, and λ, such that ∀nlearn ≥ nε(η, λ),

∥ ĥnlearn (η ; λ) − hc(η) ∥ ≤ ε , ∥ [∇ηĥnlearn (η ; λ)] − [∇ηhc(η)] ∥F ≤ ε . (7.57)

Let ĥnlearn (η ; λ) be the approximation of hc(η) defined by Eq. (7.55) and let u 7→ L̂λ(u) be the twice continuously
differentiable function on Rν with values in Rν such that, for all u in Rν,

L̂nlearn
λ (u) =

1
ζ(u)
∇uζ(u) − [∇uĥnlearn (u ; λ)] λ , (7.58)

in which ζ is defined by Eq. (7.36) and where [∇uĥnlearn (u ; λ)] is explicitly given by differentiating function u 7→
ĥnlearn (u ; λ) defined by Eq. (7.55). Let {(Unlearn

λ (r),Vnlearn
λ (r)), r ∈ R+} be the stochastic process solution of the ISDE

defined by Eqs. (7.50) to (7.52) in which Lλ is replaced by L̂nlearn
λ ,

dUnlearn
λ (r) = Vnlearn

λ (r) dr , (7.59)

dVnlearn
λ (r) = L̂nlearn

λ (Unlearn
λ (r)) dr −

1
2

f0 Vnlearn
λ (r) dr +

√
f0 dWwien(r) , (7.60)

Unlearn
λ (0) = u0 , Vnlearn

λ (0) = v0 a.s. , (7.61)

and where u0, v0, f0, and Wwien are the quantities defined in Theorem 4. Then the stochastic solution {(Unlearn
λ (r),Vnlearn

λ (r)),
r ∈ R+} of Eqs. (7.59) to (7.61) is unique, has almost-surely continuous trajectories, and is a second-order diffusion
stochastic process, which converges to a stationary second-order diffusion stochastic process for r → +∞, associated
with the unique invariant probability measure on Rν × Rν, p̂nlearn

Hλ,VG
(η, v ; λ) dη ⊗ dv = (p̂nlearn

Hλ
(η ; λ) dη) ⊗ (pVG (v) dv),

in which p̂nlearn
Hλ

(η ; λ) = cnlearn
0 (λ) ζ(η) exp{−⟨λ , ĥnlearn (η)⟩}. Then for all r ∈ [0 , rs] with rs < +∞, the sequence

{Unlearn
λ (r)}nlearn of second-order Rν-valued random variables converges in mean-square to the second-order Rν-valued

random variable Uλ(r) of Theorem 4,

lim
nlearn→+∞

E{∥Unlearn
λ (r) − Uλ(r) ∥2} = 0 , ∀r ∈ [0 , rs] . (7.62)

8. Illustration of probabilistic learning inference for 3D stochastic homogenization of heterogeneous material
with random spectrum and no scale separation

This section is an illustration of the use of the probabilistic learning under constraints presented in Section 7.3
for the 3D stochastic homogenization of an elastic heterogeneous microstructure without scale separation. The de-
tails of this application can be found in [242]. The nonseparation of the mesoscale with the macroscale means that
the macroscale is another mesoscale at larger scale with random effective/apparent elastic properties. The posterior
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probability distribution is constructed using the probabilistic learning inference (PLoM under constraints) in which
the constraints are defined by:

- a target set made up of given ”experimental” statistical moments of the random effective/apparent elasticity
tensor Ceff.

- the second-order moment of the random normalized residue of the random equations of the stochastic compu-
tational model.

These constraints guarantee that the probabilistic learning algorithm seeks to bring the statistical moments closer to
their targets while preserving a small residue of the random equations of the stochastic computational model.

8.1. Formulation

(i) Stochastic elliptic boundary value problem. We consider the stochastic homogenization of a heterogeneous elastic
microstructure occupying the 3D bounded open domain Ω =] 0 , 1 [×] 0 , 1 [×] 0 , 0.1 [⊂ R3 (square thick plate) with
boundary ∂Ω. For all m and r in {1, 2, 3} the R3-valued displacement random field {Y(ξ) = (Y1(ξ),Y2(ξ),Y3(ξ)), ξ
∈ Ω}, defined on (Θ,T ,P), indexed by Ω, satisfies the stochastic BVP associated with the stochastic homogeniza-
tion of a random elastic medium without scale separation, which is defined by Eqs. (6.1) to (6.3). For i, j, m, and
r in {1, 2, 3}, the component Ceff

i jmr of the random effective/apparent elasticity tensor Ceff at macroscale is defined by
Eq. (6.4).

(ii) Prior probability model of the apparent elasticity field C at mesoscale. At mesoscale, the prior probability model
of the random apparent elasticity field {C(ξ), ξ ∈ Ω} is the one for heterogeneous anisotropic elastic media, which is
defined in Section 5.2 and for which the spectrum is uncertain (see Section 5.2-(iv) and [74, 247]). This random field
is the restriction to Ω of a non-Gaussian, homogeneous, anisotropic, fourth-order tensor-valued random field indexed
by R3, with a random spectral measure. The level of uncertainties on the spectrum is controlled by a hyperparameter
δs = 0.1. The spatial correlation lengths at mesoscale are Lc = (L c1, L c2, L c3). The level of statistical fluctuations
of the random medium is controlled by the dispersion coefficient δC = 0.3. At mesoscale, the nominal model is
isotropic with C bulk = 1.09×1011 N/m2 and C shear = 6.85×1010 N/m2. The parameterization of C is written as C(ξ) =
c(G(ξ), z) for ξ ∈ Ω in which c is a tensor-valued function on R21 × R3, where {G(ξ), ξ ∈ R3} is a non-Gaussian
R21-valued random, and where z = (C bulk,C shear, δC).

(iii) Spatial correlation lengths and scale separation. Three cases, SC1, SC2, and SC3 of the correlation lengths
are considered for analyzing the level of scale separation and are defined in Table 1. In comparing the dimensions
1× 1× 0.1 of domain Ω with respect to the values of the spatial correlation lengths, there will not be, a priori, a scale
separation and consequently, the effective/apparent elasticity tensor will exhibit statistical fluctuations.

Table 1: Values of the spatial correlation lengths L c1, L c2, and L c3 for cases SC1, SC2, and SC3 of scale separation.

L c1 L c2 L c3 Level of scale separation
SC1 0.1 0.1 0.1 partial separation in ξ1, ξ2, not in ξ3
SC2 0.3 0.3 0.1 not separated in ξ1, ξ2, and ξ3
SC3 0.5 0.5 0.2 strongly separated in ξ1,ξ2, and ξ3

(iv) Random control parameter for the probabilistic learning inference. The components of the R3-valued random
control parameter W are (log Cbulk, log Cshear, log δC) in which Cbulk and Cshear are Gamma independent random vari-
ables (see [244]) with mean values C bulk, C shear and coefficients of variation δbulk = 0.5, δshear = 0.25, and where δC is
a uniform random variable on [0.1 , 0.5].
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(v) Stochastic computational model. The finite element method is used for discretizing the weak formulation of the
stochastic BVP and yields the stochastic equations on Rny ,

N
mr(Ymr,G,W) = 0ny a.s. , 1 ≤ m ≤ r ≤ 3 , (8.1)

(a) Ymr is a random variable with values in Rny with ny = 52 215, which is the discretization of random field
{Ymr(ξ), ξ ∈ Ω}.

(b) G is a random variable with values in Rng with ng = 3 626 800, which is made up of the values of the random
fourth-order tensor-valued apparent elasticity field {C(ξ), ξ ∈ Ω} at the integration points of the finite elements.

(c) W is the Rnw -valued random conrol parameter with nw = 3.

(vi) Definition of the statistical moments and their targets. Using the Voigt notation defined by Eq. (5.1), let [Ceff]
be the second-order M+6 -valued random variable associated with the random tensor Ceff. The first statistical moment
of interest is the mean value [ Ceff] = E{ [Ceff] } ∈ M+6 of random matrix [Ceff] while its target counterpart is the given
matrix [ Cexp] ∈ M+6 . The corresponding constraint equation, which allows the mean value to be fitted, will then be
written as

E{ [Ceff] } = [ Cexp] . (8.2)

The second statistical moment of interest is the coefficient of dispersion δ eff of random matrix [Ceff] and its target
counterpart δ exp, which allows the level of statistical fluctuations to be fitted. We then introduce the positive-valued
random variable ∆eff

2 ,

∆eff
2 =

1
∥ [ Ceff] ∥2F

∥ [Ceff] − [ Ceff] ∥2F . (8.3)

Let δ eff be defined by δ eff =
(
E{ ∥ [Ceff] − [ Ceff] ∥2F/∥ [ Ceff] ∥2F }

)1/2. The constraint equation to control the statistical
fluctuations are then written as

δ eff = δ exp , δ eff =

√
E{∆eff

2 } , (8.4)

which can be rewritten as
E{ ∥ [Ceff]∥2F } = (1 + δ exp)2 ∥ [ Ceff] ∥2F . (8.5)

It should be noted that, if δ eff goes to zero, then the statistical fluctuations (represented by
√
∆eff

2 ) of [Ceff] around
[ Ceff] goes to zero because, due to the Tchebychev inequality, [Ceff] goes in probability to its mean value [ Ceff] (this
would be the case for a scale separation).

(vii) Training dataset computed with the prior probability model. The stochastic computational model defined by
Eq. (8.1) is used for generating the training set related to the Rnx -valued random variable X defined by

X = ( {Ymr, 1 ≤ m ≤ r ≤ 3},G,W) , Rnx = R6×ny × Rng × Rnw , (8.6)

with nx = 6 ny + ng + nw = 3 942 093. The prior probability models of G and W are used to generate their independent
realizations. The Monte Carlo numerical simulation method is used with nd = 50 independent realizations. We then
obtain the training dataset

{x j
d, j = 1, . . . , nd} , x j

d = ( {ymr, j
d , 1 ≤ m ≤ r ≤ 3}, g j

d,w
j
d) , (8.7)

in which ymr, j
d ∈ Rny is the solution of the deterministic equation

N
mr(ymr, j

d , g j
d,w

j
d) = 0ny . (8.8)

The PCA of X is carried out by computing the SVD of the matrix [x1
d . . . x

nd
d ] ∈ Mnx,nd , which allows the training

dataset Dnd (η) = {η j
d, j = 1, . . . , nd} of the Rν-valued random variable H to be constructed (see Eq. (7.35)) and yields

X(ν) = x + [Φ] [κ]1/2 H . (8.9)
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Since nd = 50, dimension ν is chosen to its maximum value that is ν = nd − 1 = 49.

(viii) Random normalized residue induced by the use of the constrained learned set and its target. For λ fixed in Cad,λ,
let Hλ be the Rν-valued random variable defined in Theorem 3, which is introduced by the learning algorithm under
constraints. Let ηℓλ be a learned realization of Hλ and let (ymr,ℓ

λ , gℓλ,wℓ
λ) be the corresponding learned realization of

(Ymr
λ ,Gλ,Wλ) extracted from xℓλ = x+[Φ] [κ]1/2 ηℓλ. LetRmr,ℓ

λ = Nmr(ymr,ℓ
λ , gℓλ,wℓ

λ) be the realization of the Rny -valued
random residue computed by the computational model equation and let ρ̂ℓλ be defined by

ρ̂ℓλ =
1√
6 ny

( ∑
1≤m≤r≤3

∥R
mr,ℓ
λ ∥2

)1/2

. (8.10)

The random normalized residue is defined as the positive-valued random variable Rλ whose realization ℓ is ρℓλ = ρ̂
ℓ
λ/ρ̂ 0

in which ρ̂
0

is an adapted constant for the normalization (see [242]) such that the constraint equation for the random
residue is defined by

E{R2
λ} = bc

R , bc
R = 1 . (8.11)

(ix) Defining function hc related to the constraints and defining the targets represented by bc. The constraints are defined
by the function η 7→ hc(η) : Rν → Rnc and by the target represented by vector bc given in Rnc . As previously explained,
three constraints are introduced: the second-order moment of the random normalized residue (see Eq. (8.11) and two
statistical moments defined by Eqs. (8.2) and (8.5). As previously, for λ fixed in Cad,λ, let Hλ be the Rν-valued random
variable defined in Theorem 3.

(a) The first constraint is given by Eq. (8.11). The random normalized residue Rλ is an implicit function of Hλ,
which is rewritten as Rλ = r(Hλ). Therefore, Eq. (8.11) is rewritten as E{ hc

R(Hλ)} = bc
R in which hc

R(η) = r(η)2.
(b) The second constraint is given by Eq. (8.2). Transforming the upper triangular part of the matrices that belong

to M+6 as vectors in R21 yields E{hc
C(Hλ)} = bc

C ∈ R21 in which η 7→ hc
C(η) : Rν → R21 is an implicit function

of η.
(c) The last constraint is given by Eq. (8.5), that is also rewritten as E{ hc

δ(Hλ)} = bc
δ ∈ R+ in which η 7→ hc

δ(η) :
Rν → R is a positive-valued implicit function.

For given λ, and in particular for λ = λsol yielding Hc = Hλsol , the constraint E{hc(Hc)} = bc (see Eq. (7.37)) is
defined by the implicit function η 7→ hc(η) = (hc

R(η),hc
C(η), hc

δ(η)) : Rν → Rnc and bc = (bc
R,bc

C, b
c
δ) ∈ Rnc in which

Rnc = R × R21 × R with nc = 23.

8.2. Numerical results and validation

(i) Convergence in nlearn of the iterative sequence {λi}i of the Lagrange multiplier λ. We define an error func-
tion i 7→ err(i) to study the convergence of the iteration algorithm (similar to the one described in Appendix B)
that allows the Lagrange multiplier λsol defined in Theorem 3 to be computed. This error function is defined by
err(i) = {(errC(i) / errC(1))2 + (errδ(i) / errδ(1))2}1/2 in which errC(i) = ∥bc

C − E{hc
C(Hλ i )} ∥ / ∥bc

C∥ and errδ(i) = | bc
δ −

E{ hc
δ(Hλ i )} | / bc

δ. For each one of the three cases of spatial correlation lengths and for nlearn = 1 000, 2 000, 6 000, and
10 000, Fig. 9 displays the graph of the error as a function of iteration number i. It can be seen that convergence is
reached for nlearn = 10 000 and that, at convergence, function i 7→ err(i) is relatively smooth. These graphs show a
good illustration of the convergence of the sequence in nlearn of the MCMC generator using the statistical surrogate
model ĥnlearn of hc (see Theorem 5).

(ii) Posterior pdf of centered statistical fluctuations of the random effective/apparent elasticity matrix estimated with the
constrained learned dataset. For each one of the three cases of spatial correlation lengths, Fig. 10 shows the graph of
the posterior pdf of random variable ∆eff

2 defined by Eq. (8.3), which is estimated with the constrained learned dataset
for nlearn = 10 000 and with the training dataset (prior model).

(iii) Posterior pdf of the random residue of the stochastic equation estimated with the constrained learned set. For
each one of the three cases of spatial correlation lengths, Fig. 11 displays the posterior pdf of the random normalized
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(a) SC1: Lc = (0.1, 0.1, 0.1)
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Figure 9: For each one of the three cases of spatial correlation lengths and for nlearn = 1 000, 2 000, 6 000, and 10 000, graph of the error function
i 7→ err(i) allowing the convergence analysis of the iteration algorithm to computt Lagrange multiplier λsol. [From [242]].
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Figure 10: Posterior pdf of random variable ∆eff
2 , estimated with the constrained learned dataset for nlearn = 10 000 (blue thick line), and estimated

with the training dataset (black thin line). [From [242]].

residue R = Rλ sol estimated with the constrained learned dataset for nlearn = 10 000 and its prior counterpart R = R0
estimated with the training dataset (prior model). It should be noted that the mean value of the random normalized
residue for the constrained dataset remains close to the one estimated with the training dataset, which was expected.
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Figure 11: Posterior pdf of random normalized residue R, estimated with the constrained learned dataset for nlearn = 10 000 (blue thick line), and
its prior counterpart estimated with the training dataset (black thin line). [From [242]].

(iv) Second-order statistics of the random residue and of the effective/apparent elasticity matrix estimated with the
constrained learned dataset. For cases SC1, SC2, and SC3, Table 2 gives the posterior statistics computed with the
constrained learned set for nlearn = 10 000 (subscript ”c”), the prior statistics computed with the training set (subscript
”d”), and the targets (superscript ”exp”). It can be read,

(a) the second-order moment of the random normalized residue E{R2
c} and the corresponding target bc

R.
(b) the Frobenius norm ∥ [ Ceff] ∥F of the mean value of the random effective/apparent elasticity matrix.
(c) the coefficient of dispersion δ eff

ML = {maxδ2 p∆eff
2

(δ2)}1/2 in which p∆eff
2

is the pdf shown in Fig. 10 of random
variable ∆eff

2 defined by Eq. (8.3).
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Table 2: For cases SC1, SC2, and SC3: posterior statistics computed with the constrained learned set for nlearn = 10 000 (subscript ”c”), prior
statistics computed with the training dataset (subscript ”d”), and targets (supercript ”exp”). [From [242]].

SC1 SC2 SC3
E{R2

c} 1.2938 1.2687 1.2413
bc

R 1 1 1
∥ [ Ceff

d ] ∥F × 1011 4.2106 4.1925 4.1943
∥ [ Ceff

c ] ∥F × 1011 4.6294 4.6923 4.6816
∥ [ Cexp] ∥F × 1011 4.6317 4.6549 4.6706

δ eff
d,ML 0.2257 0.2469 0.2701
δ eff

c,ML 0.1329 0.1476 0.1671
δ exp 0.0946 0.1374 0.1825

(v) Posterior mean value of the random effective/apparent elasticity matrix estimated with the constrained learned
dataset. For the same three cases, Table 3 gives the values of the entries of the mean matrices [ Ceff

d ] computed with
the training set, [ Ceff

c ] computed with the constrained learned dataset for nlearn = 10 000, and [ Cexp] for the targets.
Note that entries (4, 5), (4, 6), and (5, 6), which are small with respect to the other entries, are not given.

Table 3: For cases SC1, SC2, and SC3: values of [ Ceff
d ]i j computed with the training dataset, [ Ceff

c ]i j computed with the constrained learned dataset
for nlearn = 10 000, and [ Cexp]i j for the targets. [From [242]].

SC1 SC2 SC3
Entries of

(6 × 6) [ Ceff
d ] [ Ceff

c ] [ Cexp] [ Ceff
d ] [ Ceff

c ] [ Cexp] [ Ceff
d ] [ Ceff

c ] [ Cexp]
matrix
(1, 1) 2.0904 2.2600 2.2652 2.0792 2.2914 2.2810 2.0465 2.2751 2.2946
(1, 2) 0.7427 0.8809 0.8753 0.7269 0.8982 0.8809 0.7140 0.8874 0.8824
(1, 3) 0.7458 0.8804 0.8745 0.7324 0.8983 0.8800 0.7381 0.8999 0.8826
(2, 2) 2.0832 2.2603 2.2668 2.0786 2.2946 2.2846 2.0917 2.2830 2.2822
(2, 3) 0.7451 0.8802 0.8734 0.7486 0.8950 0.8754 0.7471 0.9045 0.8808
(3, 3) 2.0839 2.2647 2.2680 2.0777 2.2841 2.2697 2.1038 2.2928 2.2812
(4, 4) 0.6702 0.6909 0.6958 0.6785 0.6985 0.7003 0.6835 0.6976 0.7027
(5, 5) 0.6714 0.6903 0.6949 0.6732 0.6950 0.6960 0.6726 0.6872 0.6980
(6, 6) 0.6713 0.6924 0.6960 0.6727 0.6958 0.6970 0.6749 0.6933 0.6991

(vi) Posterior probability model of parameters. The prior probability model concerns the Rng -valued random variable
G that corresponds to the spatial discretization of the R21-valued random field G (discretized in a vector of 3 626 800
components) and the R3-valued random variable W with components (Cbulk,Cshear, δC). The random bulk modulus Cbulk

and the random shear modulus Cshear control the elasticity tensor of the nominal (mean) isotropic model at mesoscale.
The dispersion coefficient δC controls the level of anisotropic statistical fluctuations of the random apparent elasticity
field at mesoscale. For cases SC1, SC2, and SC3, Fig. 12 displays the posterior pdf c 7→ pCbulk (c) of Cbulk (figure-a),
c 7→ pCshear (c) of Cshear (figure-b), and c 7→ pδC (c) of δC (figure-c), estimated with the constrained learned dataset for
nlearn = 10 000, and their prior counterparts estimated with the training dataset constructed using the prior probability
model. It should be noted that, each random variable Cbulk, Cshear, or δC, has the same prior probability model for the
three cases and consequently, does not depend on the case, contrary to its posterior probability model that depends on
it.

(vii) Discussion about the presented results. The results obtained with the posterior model (see Tables 2 and 3) show
that the constrained learned dataset significantly improves the prior probability model used for generating the training
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Figure 12: Posterior pdf estimated with the constrained learned set for nlearn = 10 000, for cases, SC1 (green line), SC2 (red line), and SC3 (blue
line), and prior pdf estimated with the training set (black line). [From [242]].

dataset. The comparison of the posterior statistics with the targets are good. The convergence of the sequence of
MCMC generators with respect to the number of points generated in the constrained learned dataset is good as shown
in Figs. 9 in accordance to Theorem 5. As expected, Fig. 11 and Table 2 show that the residue is controlled and
remains close to the reference (the training) for the optimal solution. The target is ”well” reached for the mean value
of the random effective/apparent elasticity matrix (see Table 3). A last comment concerns the effects of no scale
separation. As expected, for the three cases SC1, SC2, and SC3, Table 2 shows that the coefficient of dispersion
is significant and increases with the spatial correlation lengths of the random apparent elasticity field at mesoscale,
inducing statistical fluctuations of the effective/apparent elasticity tensor at macroscale. It should be noted that, even
for the case SC1, for which homogenization in the plane of the plate (domain Ω) is guaranteed (the correlation lengths
LC1 and LC2 being much lower than 1), this is not the case for the correlation length LC3 that is equal to the thickness
of the plate. Consequently, there is no homogenization at the macroscopic scale and the effective/apparent elasticity
tensor remains random and is not deterministic.

Appendix A. Analytical examples of classical probability distributions deduced from MaxEnt and a few asso-
ciated properties

Appendix A.1. Case of a real-valued random variable
Let X be a real-valued random variable, with pdf pW on R, whose support is Cw ⊆ R.

(i) Uniform distribution. If the available information is only the support Cw = [a, b] with −∞ < a < b < +∞, then
MaxEnt yields a uniform distribution on [a, b] whose pdf is written as

pW (w) = (b − a)−11[a,b](w) , ∀w ∈ R . (A.1)

(ii) Gamma distribution. If the available information is made up of the support Cw =]0 ,+∞[, of the mean value
mW = E{W} given in Cw, and of the constraint E{log(W)} = c with |c| < +∞, then MaxEnt yields a Gamma distribution
whose pdf is written as

pW (w) = 1]0 ,+∞[(w)
(δ
−2

)
1
δ2

Γ(δ−2 ) mW

(
w

mW

) 1
δ2
−1

exp
{
−

w
δ

2 mW

}
, ∀w ∈ R , (A.2)

in which δ = σW/mW ∈ [0 , 1/
√

2 [ is the coefficient of variation of W, σW = (E{(W −mW )2})1/2 its standard deviation,
and where Γ(α) is the Gamma function. Constant c has been eliminated for the benefit of δ in order to perform a repa-
rameterization in δ instead of keeping c. It can be seen that W−1, which exists almost surely (a.s.), is a second-order
random variable E{W−2} < +∞ thanks to the constraint |E{log(W)}| < +∞.

(iii) Gaussian distribution. If the available information is made up of the support Cw =] − ∞ ,+∞[= R, of the mean
value mW = E{W} given in Cw, and of the standard deviation σW > 0, then MaxEnt yields a Gaussian distribution
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whose pdf is written as

pW (w) =
1

√
2πσW

exp
{
−

1
2σ2

W
(w − mW )2

}
, ∀w ∈ R . (A.3)

It can be seen that W−1 is not a second-order random variable because E{W−2} = +∞. Since the support of pW is R, a
Gaussian random variable cannot be used for a positive-valued random variable.

Appendix A.2. Case of a vector-valued random variable

Let W be a Rnw -valued random variable with nw > 1 and pdf pW on Rnw , whose support is Cw ⊆ Rnw .

(i) Multivariate exponential distribution. If the available information is made up of the support Cw = {]0 ,+∞[}nw and
of the mean value mW = (m1, . . . ,mnw ) = E{W} given in Cw, then MaxEnt yields the pdf,

pW (w) = pW1 (w1) × . . . × pWnw
(wnw ) , ∀w = (w1, . . . ,wnw ) ∈ Rnw , (A.4)

in which w j 7→ pW j (w j) is the pdf of the positive-valued random variable W j, which is written as

pW j (w j) = 1]0,+∞[(w j)
1

m j
exp
{
−

w j

m j

}
, ∀w j ∈ R . (A.5)

Equation (A.4) shows that the real-valued random variables W1, . . . ,Wnw are mutually independent and, for each j, the
positive-valued random variable W j has an exponential pdf. It should be noted that, although the random variable W−1

j

exists almost surely, this random variable is not a second-order random variable because E{W−2
j } = +∞. It should also

be noted that MaxEnt yields independent random variables W1, . . . ,Wnw because there are no available information
concerning some statistical moments coupling the components.

(ii) Multivariate Gaussian distribution. Let us assume that W is a second-order random variable, E{∥W∥2} < +∞. Let
mW = E{W} ∈ Rnw be its mean vector and let [CW] = E{(W −mW) (W −mW)T } ∈ M+nw

be its covariance matrix. Its
correlation matrix is then [RW] = E{W WT } = [CW] +mWmT

W. If the available information is the support Cw = Rnw ,
the mean value mW given in Rnw , and the correlation matrix [RW] given in M+nw

, then MaxEnt yields a multivariate
Gaussian distribution whose pdf is written as

pW(w) =
1

√
(2π)nw det[CW]

exp
{
−

1
2
⟨[CW]−1(w −mW),(w −mW)⟩

}
, ∀w ∈ Rnw . (A.6)

If the covariance matrix is not the identity matrix, then the real-valued random variables W1, . . . ,Wnw are mutually
dependent, but if [CW] = [Inw ] (uncorrelated random variables), then these real-values random variables are Gaussian
and (note that a random vector with uncorrelated components and which is not a Gaussian vector, has generally
statistically dependent components). Finally, it should be noted that ∥W∥−1 is not a second-order random variable
because E{∥W∥−2} = +∞.

Appendix B. Algorithm for computing the Lagrange multipliers for MaxEnt

Under the hypothesis, Cw = Rnw , an algorithm [1, 351] derived from [352] is presented below for computing
the Lagrange multipliers that are the solution of Eq. (3.8). It is proven that λsol is the unique solution in Cλ of the
optimization problem,

λsol = arg min
λ ∈Cλ⊂Rnc

Γ(λ) , (B.1)

in which Γ(λ) = ⟨λ ,bc⟩− log(c0(λ)) and where the constant of normalization c0(λ) = (
∫

Cw
exp(−⟨λ, gc(w)⟩) dw)−1 will

not be computed. For λ fixed in Cλ, let Wλ be the Rnw -valued random variable with pdf

pWλ
= c0(λ) exp(−⟨λ, gc(w)⟩) , ∀w ∈ Rnw . (B.2)
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Comparing Eq. (B.2) with Eq. (3.7) shows that pdf pW of W is equal to pWλsol . It is then proven that λsol is the unique
solution in λ of

∇Γ(λ) = 0 , ∇Γ(λ) = bc − E{gc(Wλ)} , (B.3)

and the Hessian matrix [Γ′′(λ)] of Γ(λ) is positive definite and written as

[Γ′′(λ)] = E{gc(Wλ) gc(Wλ)T } − E{gc(Wλ)} (E{gc(Wλ)})T ∈ M+nc
, (B.4)

that is to say, is the covariance matrix of the random variable gc(Wλ). Consequently, function Γ is strictly convex.
Since the constant of normalization cannot numerically be estimated, a classical descent algorithm cannot be used and
is replaced by searching the solution of Eq. (B.3). The Newton iterative algorithm is used to solve this equation with
an under-relaxation coefficient αi ∈]0 , 1[, which can depends on iteration number i,

λi+1 = λi − αi [Γ′′(λi)]−1
∇Γ(λi) . (B.5)

For λi given in Cλ ⊂ Rnc , E{gc(Wλi } and E{gc(Wλi ) gc(Wλi )T } are estimated using realizations of Wλi generated with
a MCMC algorithm for which pWλi (w) = c0(λi) exp(−⟨λi, gc(w)⟩) is the density of the invariant measure. It should
be noted that c0(λi) is not used in the MCMC algorithm and consequently, is not calculated. At convergence, the
generated realizations of Wλsol are those of W.

Appendix C. Störmer-Verlet algorithm for solving Eqs. (7.22) to (7.24)

The ISDE defined by Eqs. (7.22) to (7.24) is solved for r ∈ [0, r0] with r0 = M0 × ∆r in which ∆r is the sampling
step and where M0 is chosen in order that the solution is stationary for r ≥ r0. Therefore, the solution at r = r0 is a
random vector that follows the invariant measure. For ℓ = 0, 1, . . . ,M0, we consider the sampling points rℓ = ℓ∆r
and the following notations: [Zℓ] = [Z(rℓ)], [Y ℓ] = [Y(rℓ)], and [Wwien

ℓ ] = [Wwien(rℓ)]. The Störmer-Verlet scheme
is written, for ℓ = 0, 1, . . . ,M0, as

[Zℓ+ 1
2
] = [Zℓ] +

∆r
2

[Y ℓ] ,

[Y ℓ+1] =
1 − β
1 + β

[Y ℓ] +
∆r

1 + β
[Lℓ+ 1

2
] +
√

f0
1 + β

[∆Wwien
ℓ+1 ] [am] ,

[Zℓ+1] = [Zℓ+ 1
2
] +
∆r
2

[Y ℓ+1] ,

with the initial condition defined by Eq. (7.24), where β = f0 ∆r /4, and where [Lℓ+ 1
2
] is the Mν,m-valued random vari-

able such that [Lℓ+ 1
2
] = [L ([Zℓ+ 1

2
])] = [L([Zℓ+ 1

2
] [gm]T )] [am]. In the above equation, [∆Wwien

ℓ+1 ] is a random variable
with values in Mν,nd , in which the increment [∆Wwien

ℓ+1 ] = [Wwien(rℓ+1)] − [Wwien(rℓ)]. The increments are statistically
independent. For all α = 1, . . . , ν and for all j = 1, . . . , nd, the real-valued random variables

{
[∆Wwien

ℓ+1 ]α j
}
α j are inde-

pendent, Gaussian, second-order, and centered random variables such that E
{

[∆Wwien
ℓ+1 ]α j[∆Wwien

ℓ+1 ]α′ j′
}
= ∆r δαα′ δ j j′ .

Efficient values for the algorithm parameters have been found as f0 = 4, M0 = 30, and ∆r = 2πŝ/20 in which ŝ is
defined in Section 7.2.1-(iii).
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incomplete data, Journal of Computational and Graphical Statistics 31 (1) (2022) 113–137. doi:10.1080/10618600.2021.1963263.

[183] J. P. Kleijnen, Kriging metamodeling in simulation: A review, European Journal of Operational Research 192 (3) (2009) 707–716.

48



doi:10.1016/j.ejor.2007.10.013.
[184] P. G. Constantine, E. Dow, Q. Wang, Active subspace methods in theory and practice: applications to kriging surfaces, SIAM Journal on

Scientific Computing 36 (4) (2014) A1500–A1524. doi:10.1137/130916138.
[185] P. Kersaudy, B. Sudret, N. Varsier, O. Picon, J. Wiart, A new surrogate modeling technique combining kriging and polynomial chaos

expansions–application to uncertainty analysis in computational dosimetry, Journal of Computational Physics 286 (2015) 103–117.
[186] J. P. Kleijnen, Regression and kriging metamodels with their experimental designs in simulation: a review, European Journal of Operational

Research 256 (1) (2017) 1–16. doi:10.1016/j.ejor.2016.06.041.
[187] D. G. Giovanis, M. D. Shields, Data-driven surrogates for high dimensional models using Gaussian process regression on the Grassmann

manifold, Computer Methods in Applied Mechanics and Engineering 370 (2020) 113269. doi:10.1016/j.cma.2020.113269.
[188] Z. Liu, D. Lesselier, B. Sudret, J. Wiart, Surrogate modeling based on resampled polynomial chaos expansions, Reliability Engineering &

System Safety 202 (2020) 107008. doi:10.1016/j.ress.2020.107008.
[189] Y. Zhou, Z. Lu, J. Hu, Y. Hu, Surrogate modeling of high-dimensional problems via data-driven polynomial chaos expansions and sparse

partial least square, Computer Methods in Applied Mechanics and Engineering 364 (2020) 112906. doi:10.1016/j.cma.2020.112906.
[190] J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, Vol. 65, John Wiley & Sons, 2005.
[191] E. Capiez-Lernout, C. Soize, Robust design optimization in computational mechanics, Journal of Applied Mechanics 75 (2) (2008) 021001.

doi:10.1115/1.2775493.
[192] G. I. Schueller, H. A. Jensen, Computational methods in optimization considering uncertainties - an overview, Computer Methods in Applied

Mechanics and Engineering 198 (1) (2008) 2–13.
[193] M. S. Pishvaee, M. Rabbani, S. A. Torabi, A robust optimization approach to closed-loop supply chain network design under uncertainty,

Applied Mathematical Modelling 35 (2) (2011) 637–649. doi:10.1016/j.apm.2010.07.013.
[194] X. Gu, J. E. Renaud, S. M. Batill, R. M. Brach, A. S. Budhiraja, Worst case propagated uncertainty of multidisciplinary systems in robust

design optimization, Structural and Multidisciplinary Optimization 20 (3) (2000) 190–213. doi:10.1007/s001580050148.
[195] T. W. Simpson, T. M. Mauery, J. J. Korte, F. Mistree, Kriging models for global approximation in simulation-based multidisciplinary design

optimization, AIAA Journal 39 (12) (2001) 2233–2241. doi:10.2514/2.1234.
[196] H. Agarwal, J. E. Renaud, E. L. Preston, D. Padmanabhan, Uncertainty quantification using evidence theory in multidisciplinary design

optimization, Reliability Engineering & System Safety 85 (1-3) (2004) 281–294. doi:10.1016/j.ress.2004.03.017.
[197] W. Yao, X. Chen, W. Luo, M. vanTooren, J. Guo, Review of uncertainty-based multidisciplinary design optimization methods for aerospace

vehicles, Progress in Aerospace Sciences 47 (6) (2011) 450–479. doi:10.1016/j.paerosci.2011.05.001.
[198] S. Rao, Multiobjective optimization in structural design with uncertain parameters and stochastic processes, AIAA journal 22 (11) (1984)

1670–1678. doi:10.2514/3.8834.
[199] J. Beck, E. Chan, A.Irfanoglu, et al, Multi-criteria optimal structural design under uncertainty, Earthquake Engineering and Structural

Dynamics 28 (7) (1999) 741–761.
[200] M. Li, S. Azarm, Multiobjective collaborative robust optimization with interval uncertainty and interdisciplinary uncertainty propagation,

Journal of Mechanical Design 130 (8) (2008) 081402. doi:10.1115/1.2936898.
[201] W. Chen, X. Yin, S. Lee, W. K. Liu, A multiscale design methodology for hierarchical systems with random field uncertainty, Journal of

Mechanical Design 132 (4) (2010) 041006. doi:10.1115/1.4001210.
[202] N. Hu, Advances in Multiscale Methods with Applications in Optimization, Uncertainty Quantification and Biomechanics, Columbia Uni-

versity, ProQuest Dissertations Publishing, 10151391, 2016.
[203] M. Eldred, Design under uncertainty employing stochastic expansion methods, International Journal for Uncertainty Quantification 1 (2)

(2011) 119–146. doi:10.1615/Int.J.UncertaintyQuantification.v1.i2.20.
[204] N. Queipo, R. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, K. Tucker, Surrogate-based analysis and optimization, Progress in Aerospace

Science 41 (1) (2005) 1–28. doi:10.1016/j.paerosci.2005.02.001.
[205] A. Bhosekar, M. Ierapetritou, Advances in surrogate based modeling, feasibility analysis, and optimization: A review, Computers & Chem-

ical Engineering 108 (2018) 250–267. doi:10.1016/j.compchemeng.2017.09.017.
[206] J. Qian, J. Yi, Y. Cheng, J. Liu, Q. Zhou, A sequential constraints updating approach for kriging surrogate model-assisted engineering

optimization design problem, Engineering with Computers 36 (3) (2020) 993–1009.
[207] R. Byrd, G. Chin, W. Neveitt, J. Nocedal, On the use of stochastic Hessian information in optimization methods for machine learning, SIAM

Journal of Optimization 21 (3) (2011) 977–995. doi:10.1137/10079923X.
[208] R. Calandra, A. Seyfarth, J. Peters, M. P. Deisenroth, Bayesian optimization for learning gaits under uncertainty, Annals of Mathematics

and Artificial Intelligence 76 (1-2) (2016) 5–23. doi:10.1007/s10472-015-9463-9.
[209] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, N. de Freitas, Bayesian optimization in a billion dimensions via random embeddings, Journal

of Artificial Intelligence Research 55 (2016) 361–387. doi:10.1613/jair.4806.
[210] J. Xie, P. Frazier, S. Chick, Bayesian optimization via simulation with pairwise sampling and correlated pair beliefs, Operations Research

64 (2) (2016) 542–559. doi:10.1287/opre.2016.1480.
[211] R. Ghanem, C. Soize, Probabilistic nonconvex constrained optimization with fixed number of function evaluations, International Journal for

Numerical Methods in Engineering 113 (4) (2018) 719–741. doi:10.1002/nme.5632.
[212] R. Ghanem, C. Soize, C. Thimmisetty, Optimal well-placement using probabilistic learning, Data-Enabled Discovery and Applications 2 (1)

(2018) 4,1–16. doi:10.1007/s41688-017-0014-x.
[213] C. Soize, Design optimization under uncertainties of a mesoscale implant in biological tissues using a probabilistic learning algorithm,

Computational Mechanics 62 (3) (2018) 477–497. doi:10.1007/s00466-017-1509-x.
[214] C. Soize, R. Ghanem, C. Safta, X. Huan, Z. P. Vane, J. C. Oefelein, G. Lacaze, H. N. Najm, Enhancing model predictability for a scramjet

using probabilistic learning on manifolds, AIAA Journal 57 (1) (2019) 365–378. doi:10.2514/1.J057069.
[215] R. Ghanem, C. Soize, C. Safta, X. Huan, G. Lacaze, J. C. Oefelein, H. N. Najm, Design optimization of a scramjet under uncertainty using

probabilistic learning on manifolds, Journal of Computational Physics 399 (2019) 108930. doi:10.1016/j.jcp.2019.108930.
[216] M. G. Marmarelis, R. G. Ghanem, Data-driven stochastic optimization on manifolds for additive manufacturing, Computational Materials

49



Science 181 (2020) 109750. doi:10.1016/j.commatsci.2020.109750.
[217] F. Pled, C. Desceliers, T. Zhang, A robust solution of a statistical inverse problem in multiscale computational mechanics using an artificial

neural network, Computer Methods in Applied Mechanics and Engineering 373 (2021) 113540. doi:10.1016/j.cma.2020.113540.
[218] E. Capiez-Lernout, C. Soize, Nonlinear stochastic dynamics of detuned bladed disks with uncertain mistuning and detuning

optimization using a probabilistic machine learning tool, International Journal of Non-Linear Mechanics 143 (2022) 104023.
doi:10.1016/j.ijnonlinmec.2022.104023.

[219] R. Ghanem, C. Soize, L. Mehrez, V. Aitharaju, Probabilistic learning and updating of a digital twin for composite material systems, Inter-
national Journal for Numerical Methods in Engineering 123 (13) (2022) 3004–3020. doi:10.1002/nme.6430.

[220] O. Ezvan, C. Soize, C. Desceliers, R. Ghanem, Updating an uncertain and expensive computational model in structural dynamics based on
one single target frf using a probabilistic learning tool, Computational Mechanics (2023).

[221] K. B. Korb, A. E. Nicholson, Bayesian artificial intelligence, CRC press, Boca Raton, 2010.
[222] K. P. Murphy, Machine Learning: A Probabilistic Perspective, MIT press, 2012.
[223] Z. Ghahramani, Probabilistic machine learning and artificial intelligence, Nature 521 (7553) (2015) 452–459. doi:10.1038/nature14541.
[224] S. Russel, P. Norvig, Artifical Intelligence, A Modern Approach, Third Edition, Pearson, Harlow, 2016.
[225] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 2000. doi:10.1007/978-1-4757-3264-1.
[226] G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning, Vol. 112, Springer, 2013.
[227] J. Taylor, R. J. Tibshirani, Statistical learning and selective inference, Proceedings of the National Academy of Sciences 112 (25) (2015)

7629–7634. doi:10.1073/pnas.1507583112.
[228] R. Swischuk, L. Mainini, B. Peherstorfer, K. Willcox, Projection-based model reduction: Formulations for physics-based machine learning,

Computers & Fluids 179 (2019) 704–717. doi:10.1016/j.compfluid.2018.07.021.
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[343] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Mathematica 30 (1) (1906) 175–193.

doi:10.1007/BF02418571.

53



[344] D. G. Luenberger, Optimization by Vector Space Methods, John Wiley and Sons, New York, 2009.
[345] B. Nayroles, G. Touzot, P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements, Computational

Mechanics 10 (5) (1992) 307–318. doi:10.1007/BF00364252.
[346] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, Meshless methods: an overview and recent developments, Computer Methods

in Applied Mechanics and Engineering 139 (1-4) (1996) 3–47. doi:10.1016/S0045-7825(96)01078-X.
[347] C. A. Duarte, J. T. Oden, H-p clouds, an h-p meshless method, Numerical Methods for Partial Differential Equations: An International

Journal 12 (6) (1996) 673–705. doi:10.1002/(SICI)1098-2426(199611)12:6¡673::AID-NUM3¿3.0.CO;2-P.
[348] P. Breitkopf, A. Rassineux, G. Touzot, P. Villon, Explicit form and efficient computation of MLS shape functions and their derivatives, Inter-

national Journal for Numerical Methods in Engineering 48 (3) (2000) 451–466. doi:10.1002/(SICI)1097-0207(20000530)48:3¡451::AID-
NME892¿3.0.CO;2-1.

[349] A. Rassineux, P. Villon, J.-M. Savignat, O. Stab, Surface remeshing by local Hermite diffuse interpolation, International Journal for numer-
ical methods in Engineering 49 (1-2) (2000) 31–49. doi:10.1002/1097-0207(20000910/20)49:1/23.0.CO;2-6.

[350] X. Zhang, K. Z. Song, M. W. Lu, X. Liu, Meshless methods based on collocation with radial basis functions, Computational mechanics
26 (4) (2000) 333–343. doi:10.1007/s004660000181.

[351] A. Batou, C. Soize, Calculation of Lagrange multipliers in the construction of maximum entropy distributions in high stochastic dimension,
SIAM/ASA Journal on Uncertainty Quantification 1 (1) (2013) 431–451. doi:10.1137/120901386.

[352] N. Agmon, Y. Alhassid, R. D. Levine, An algorithm for finding the distribution of maximal entropy, Journal of Computational Physics 30 (2)
(1979) 250–258. doi:10.1016/0021-9991(79)90102-5.

54


