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Abstract The COVID-19 pandemic caused severe disruptions throughout 

global supply chains. In response to this situation, container carriers had been 

cancelling services and port calls. The reasons behind the cancellations were 

diverse: restoring schedule reliability; coping with sudden demand decreases; or 

with severe port congestion. To fully understand the implications of this practice, it 

is crucial to have a robust measurement method. This paper presents a novel 

method to estimate the incidence of port call cancellations based on AIS data. A 

normal service is first defined, on the basis of the most frequent port call sequence, 

and deviations are measured subsequently. As a first glance at the unique value of 

this method, we apply it to the ports along the Europe-Far East route. A binomial 

logistic model expresses the probability a port is skipped, based on its own 

characteristics, the size of vessels, and the region in which the port is located. We 

find non-trivial effects related to vessel size. At the largest end of the vessel size 

scale, the ports attracting mega vessels (with a capacity above 15K TEUs) were 

less affected by cancellations in 2018-2019. This relationship reversed during 

the 2020-2021 period, and handling mega vessels seemed to have become a 

burden for ports during the pandemic.  Another important result of this study is 

that, before the COVID-19 pandemic, the rate of cancellations was much more 

uneven between world regions than after the COVID-19 outbreak. This study 

provides useful operational insights to port authorities and governments, enabling 

them to anticipate the effects of future crises. 

 
Keywords: Containerization, COVID-19 pandemic, AIS, disruption, vessel schedule 
cancellation. 
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1. Introduction 

The COVID-19 pandemic caused severe disruptions throughout global supply chains. 

Interruptions in port activity triggered by the lockdowns and their relaxation can be 

viewed as a Global Transport Networks experiment. This is a unique opportunity to 

identify the multiple effects of a global shock on transport systems. The insights gained 

from this natural experiment will therefore inform strategies to mitigate the effects of 

similar shocks on supply chains in the future. As a first step in this direction, this paper 

studies the incidence of service cancelations on ports. We show that the incidence is 

higher at certain ports and regions. This result will be useful for shippers, operators 

and policy makers, to identify the most vulnerable ports; anticipate the effects of 

disruptions; and develop suitable interventions to mitigate such disruptions in the 

future. 

 

Vessel schedule cancelations are frequently used by carriers to cope with business 

cycles and with sudden changes in market conditions. They were used during the 

COVID-19 pandemic to reduce capacity, avoid delays, or restore schedule reliability. 

Two main types of vessel schedule cancellations exist: the cancellation of an entire 

string, or the cancellation of a port call within an operating string. The current work 

focuses on the latter.  

 

One of the few studies to have analyzed the incidence of vessel schedule cancellation 

at ports used public notices provided by carriers and official shipping schedules (Dirzka 

and Acciaro 2022). Other works, based on AIS data, have compared the observed 

trajectory of a vessel to its average historical trajectory, in order to identify anomalies 

or to predict the destination (see, for example, Pallotta et al. 2013; Sheng and Yin 

2018; Kim and Lee 2018; Zhang et al. 2022).  

 

Our approach is a combination of the above methodologies. The AIS data we use have 

already undergone a first treatment by the data provider (VesselFinder 2021) to 

transform vessel trajectories into port-to-port sequences. Afterwards, we study the 

most recurrent port sequences and identify deviations from them. Such an approach 

overcomes the drawbacks associated with the use of official shipping schedules, which 

do not systematically reflect the real vessel calls. It also avoids the problems related 

to the lack of information on cancellations, which are not announced publicly by 

carriers (Dirzka and Acciaro 2022). On the other hand, compared to studies based on 

the average trajectory of vessels, this work exclusively focuses on the port call 

sequence, and not on the actual and precise trajectories followed by vessels, which 

may depend on a host of circumstances, such as weather conditions. Our focus is 
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rather on the commercial organization of carriers and not on the detailed routes 

followed by vessels between port pairs. 

 

This paper proposes a data-driven method to measure vessel schedule cancellations 

at the level of ports using Automatic Identification System (AIS) data. It aims to 

understand how the COVID-19 pandemic affected vessel schedule cancellation 

patterns, vis à vis cancellations observed during the previous period. We focus on the 

Europe-Far East shipping route, where the largest vessels are deployed and where the 

incidence of vessel calls cancellation has been argued to be the highest (Notteboom 

et al., 2021). As a preview of the results, this research shows that during the COVID-

19 pandemic, the incidence of call cancellations is higher at intermediate hubs and 

small gateways than in large Asian and European gateways at both ends of the 

pendulum routes. 

 

This research adds to the extant literature in transport geography by analyzing the 

port call annulations separately, and not together with service annulations (Dirzka & 

Acciaro 2022). This distinction is useful since the two types of measures have different 

purposes: When a carrier cancels a full service, it reduces the maritime transport 

supply. This often happens at the start of the year when the demand is low after the 

Christmas peak, or when there is a sudden drop in demand. But when a port is skipped 

within a service, the transport supply changes only locally. Therefore the purpose of 

the carrier is completely different, and it is more related to avoiding delays and 

restoring reliability in vessel schedules. Another distinctive advantage of this paper, 

compared to previous studies, is to take into account a long time period that coincides 

with much of the pandemic, from January 2018 to August 2021, including most of the 

lockdowns. Therefore, it is possible to compare vessel cancellations before and during 

the COVID-19 pandemic, thus avoiding seasonal effects. This is particularly relevant 

for a better understanding of how the COVID-19 pandemic increased uncertainty for 

ports, as suggested by early studies (Notteboom & Haralambides 2020). 

 

The remainder of the paper is organized as follows. Related work on the study of 

vessel route patterns and disruptions is presented in section 2. Section 3 describes 

the methodology for the vessel schedule cancellation prediction and the vessel 

cancellation metrics. The results and discussions can be found in Section 4. Section 5 

presents the conclusions of this research. 
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2. Literature review 

This study aims to contribute to two strands of research. The first is methodological 

and relates to the identification of regularities in vessel trajectories and of departures 

from these regularities. The second strand analyzes the effects of disruptions in 

maritime transport, from a transport geography perspective. 

 

2.1. Vessel trajectory extraction and analysis 

With the spread of AIS data, there has been a number of works in operations research 

that have proposed methods to convert large amounts of raw data into understandable 

information. Two main types of research have been implemented to recognize 

patterns and formulate predictions. Spiliopoulos et al. (2017) proposed a way to 

simplify vessel trajectories by grouping vessel positions displaying similar 

characteristics in terms of time and location. Further improvements included sailing 

speed and the introduction of thresholds for controlling variations in vessel course and 

speed (Wei et al., 2020). Another line of research in vessel trajectory analysis seeks 

to predict the destination of vessels and their expected time of arrival (Pallotta et al. 

2013; Kim and Lee 2018; Alessandrini et al. 2018). Most of the works are based on 

the extraction of turning way points and various advanced methods (for instance, 

Neural networks, Bayes models) to predict destination. The latter provide good 

predictions but seem to require disproportionate computing capacities to be applied 

globally (Zhang et al. 2020). Alternatively, data mining techniques are used to extract 

trajectory data. Within the context of this work, a vessel trajectory is an ordered 

sequence of its geographical positions during a period of time. Stay-point detection, 

for example, extracts the point where the vessel engages in limited movement or 

remains stationary for a while. Another method is trajectory segmentation, to divide 

the historical trajectories of vessels in relevant sub-trajectory patterns based on time, 

turning-points, key-shape points or stay-points (Zhang et al. 2020). Once the 

trajectory of a vessel has been detected and simplified, there are techniques to 

measure the similarity between trajectories, based on their geometry (geographical 

setting) and the time stamps (Magdy et al., 2015). The main types include pure spatial 

similarity measures, purely temporal similarity measures, and spatiotemporal 

similarity measures. 

 

Within the fields of transport geography and maritime economics, there are a few 

works studying vessel trajectories. One of the challenges in this area of study is the 

extraction of relevant economic information, such as decisions regarding maritime 

operations, from vessel movement data. A major advantage of this type of data is 

that they provide comprehensive and consistent information on vessel movements at 

the global scale, even in countries where the information on port throughput and 
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performance is scarce or unavailable. In a global analysis of the container network, 

Ducruet and Notteboom (2012) identified port regions and looked at the ways they 

have changed over time. As pointed out by these authors, one aspect of these changes 

is related to the deployment of larger vessels and the subsequent reorganization of 

services, resulting in a lower number of port calls in pendulum services. More detailed 

studies on individual vessel trajectories come from Li et al. (2020) and Charlier and 

McCalla (2006), highlighting the seasonal complementarities in cruise operations. 

Cruise ships can be moved seasonally from one cruising area to another, so as to 

enjoy best market opportunities throughout the year. 

 

Beyond the studies focusing on cruise operations, there is a dearth of systematic 

analyses of the trajectories of liner vessels from a transport geography and maritime 

economics perspective. In fact, our analysis suggests that liner shipping is not always 

regular and punctual, and that departures from the norm may be useful to understand 

the behavior of carriers. This research seeks to provide a framework for studying the 

movements of individual vessels operating on fixed schedules.  

 
2.2. Disruptions and resilience of maritime transport networks 

In the literature of transport geography, several studies have assessed how major 

shocks have affected maritime transport networks. Rousset and Ducruet (2020) 

studied the effects of three major disruptions caused by hurricane Katrina in New 

Orleans, Louisiana, the World Trade Center terrorist attacks in New York City, and the 

Hanshin earthquake in Kobe, Japan. They showed that the time needed to recover 

from these disruptions was higher in the ports located nearby. Calatayud et al. (2017) 

explored the risks that maritime freight flows are exposed to as a function of the 

structure of liner shipping networks. Countries showed different levels of vulnerability 

to simulated attacks depending on the structure of the networks of the carriers 

providing services. For example, in their analysis, Calatayud et al. (2017) found that 

Jamaica, Argentina and Uruguay proved to be highly vulnerable to disruptions in 

Brazil. Wan et al. (2021) evaluated the resilience of ports in Asia with regard to 

typhoons and tropical cyclones. Their results suggest a higher resilience in South Asian 

ports as compared to East Asian ones, due to a lower recovery time and cost in case 

of disruption. 

 

More recently, a number of studies have evaluated the effects of disruptions caused 

by the COVID-19 pandemic on port networks. Verschuur et al. (2021) estimated the 

effects of COVID-19 containment measures on port calls; their results demonstrate a 

strong geographical and sectoral heterogeneity. In their study on network dynamics 

during the initial phases of the COVID-19 pandemic, Dirzka and Acciaro (2022) 
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showed that suspended services were concentrated in East Asia, before rippling along 

main trade routes. Companies were able to prevent a rate collapse, despite deep 

declines in volumes — very much unlike the situation that unfolded more than a 

decade earlier during the financial crisis (Notteboom et al. 2021; Ferrari and Tei 2020). 

Guerrero et al. (2022) examined how port calls evolved during the first stages of the 

COVID-19 pandemic, compared to the later period. They showed that the mitigation 

policies implemented by governments affected regional port hierarchies differently, 

with a reduction in port concentration in Europe and Africa and an increase in Asia and 

North America. At the global level, their analysis shows that large ports or small but 

densely inter-connected ports were less affected by the crisis than small 

transshipment hubs. 

 

Amongst the former studies, the only one analyzing specifically vessel schedule 

cancellation is Dirzka and Acciaro (2022). However, this study fails to distinguish 

between whole service cancellations and port call cancellations. To fill this void, this 

research proposes a novel methodology to detect vessel call cancellations on the basis 

of AIS data, which are widely available and increasingly used in port studies. 

 
3. Data description and methodology 
3.1. Data description 

The initial dataset comprises 3,254,872 AIS positions of different containerships 

worldwide. The datetime ranges from January 2018 to October 2021. Vessels with 

some port outside the pendulum services, joining East Asia with the European 

Northern Range (Table 1, Figure 1) are not considered, yielding a final operational set 

of 96,645 AIS positions used in the present study. 

Two levels of sample disaggregation are considered to fulfill two complementary 

research goals in this study: 1) to have inputs under alternative conditions for the 

design and implementation of the algorithm measuring the incidence of blank sailings; 

and 2) to find statistically significant results on operational conditions of shipping 

services that would be obscured without that dataset splitting. The first one is an 

obvious consideration of set partition according to the variable of arrival year of each 

vessel: before the COVID-19 outbreak (year<2020) and after the COVID-19 outbreak 

(year ≥2020). 

The second one is to segment the data according to vessel size, expressed in twenty-

foot equivalent units (TEUs); a meaningful criterion given the specific operational 

characteristics of vessels in each size group, and given the complexities of the 

pendulum services operated between Europe and East Asia (multiple regional sub-

market coexisting with services spanning the entire range, mix of ports with diverse 



7 / 22 

nodal properties). Four size classes emerge from this splitting criterion: size≥15,000, 

8,000≤size<15,000, 4,000≤size<8,000, and size<4,000. 

 

Table 1. Sample composition 

  
   

  

    

year<2020 

(pre-

COVID-19) 

year≥2020 

(COVID-

19) 

Total 

Mean 

positions 

per 

vessel 

Max 

positions 

per 

vessel 

#{Positions}   1,730,410 1,524,462 3,254,872     

#{Positions}pendulum   49,835 46,810 96,645     

#{Vessels}       5,546 483 1,625 

#{Vessels}TEUs≥15000       175 316 964 

#{Vessels}8000≤TEUs<15000       885 432 1,145 

#{Vessels}4000≤TEUs<8000       1,162 519 1,177 

#{Vessels}TEUs<4000       3,324 666 3,215 

#{Vessels} 

p
e
n
d
u
lu

m
     406 256 466 

#{Vessels}TEUs≥15000     138 163 279 

#{Vessels}8000≤TEUs<15000     58 232 347 

#{Vessels}4000≤TEUs<8000     77 316 595 

#{Vessels}TEUs<4000     133 313 641 

Source: Own elaboration 
 

 

 

Figure 1. Operational dataset: geographical scope 

Source: Own elaboration 

 

 
3.2. Methodology  

3.3.1 Schedule cancellation estimation 

A new algorithm has been designed and implemented in pgSQL (postgresql.org 
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2012) over the sequence of consecutive AIS positions of each vessel v (Figure 

2), in order to estimate missing positions, if any. An example of vessel trajectory 

is depicted via the space-time diagram of Figure 3, where observed port calls 

and estimated ones are reported. 

The basic idea of the embedded control iteration is to scan the path of each 

vessel and to test, for a given xi-1
v port call, if |xi

v- Xi
v|<e where xi

v is the actual 

next position of vessel v and Xi
v is the theoretical next position, estimated by 

the exploration of the statistical structure of the time frequency series for any 

given port within the complete path of this vessel. In the test above, e is a preset 

cutoff. If the test is not passed, then position i is marked as being skipped on 

the vessel’s path and a new missed call is generated, along with an estimate of 

the timestamp. 

The indicator that best captures the magnitude of blank sailings at the port level 

is the ratio (RBS) of blank sailings (B/S) between the (a) average number of 

B/S by vessel, and (b) the average number of effective calls by vessel. Naturally, 

the RBS ratio can theoretically take a minimum value of 0 and a maximum value 

of 1.  

Figure 2. Mediterranean Club Express service (Example) 

Source: CMA CGM. Retrieved on May 9, 2022 from the company’s website 
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Figure 3. Space-time visualization of a sample vessel trajectory 

Source: Own elaboration 

 

3.3.2 Network description 

According to the standard and currently accepted methods of complex 

networks construction (Ducruet & Notteboom 2012; Pais-Montes et al. 2012; 

Kang and Woo 2017), the whole sample of AIS positions has been grouped by 

the vessel’s IMO number and by ascending order of positions between Europe 

and East Asia in each vessel grouping. This SQL query yields an array structure 

of consecutive positions. By splitting this array by ordered port arrival-

departure pairs, a network, formed of a set of nodes (ports) and edges 

(consecutive positions), is produced for all vessels in the data sample. Other 

networks are derived from the two segmentations of the data indicated in 

Section 3.1. The network can be analyzed using a common software tool for 

directed graph analysis. Gephi, a classic, robust and continuously developing 
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environment for network analytics, was chosen for that purpose (Bastian et al. 

2009). 

A number of local, node-based measures of the containerized service network 

are computed. The purpose is to seek evidence of the possible dependence of 

the incidence of blank sailing (RBS) at the port level on their topological 

properties within the entire network of pendulum services. Table 2 comprises 

the complete list of calculated network estimators and of their meaning. 

 

Table 2. Local network indicators 

  

Indegree Number of inward relational edges  

Outdegree Number of outward relational edges 

Degree Number of relations (edges) of each node 

Weighted 
indegree 

Number of inward links, weighted by edge weights 

Weighted 
outdegree 

Number of outward links, weighted by edge weights 

Weighted degree 
Number of relations (edges) of each node, weighted by 

the weight of each edge 

Eccentricity Maximum distance of one node from other nodes 

Closeness 
centrality 

Reciprocal of the sum of the length of the shortest 

paths between a given node and all other nodes in the 
graph (the more central a node is, the closer it is to all 

other nodes) 
Harmonic 

closeness 
centrality 

Reciprocal of closeness centrality: sum of the length of 

the shortest paths between a given node and all other 
nodes in the graph 

Betweenness 
centrality 

Number of shortest paths that pass through a node 

Clustering 
coefficient 

Ratio of the number of edges between the nodes within 

a node’s neighborhood of immediately connected nodes 
to the number of edges that could possibly exist 

between them 

Source: Own elaboration 

Table 3 presents the main global characteristics of the different networks, 

computed according to the two levels of segmentation; one graph is used to 

depict each time segment (before and after 2019). In a second level of 

disaggregation, we add an additional tier of disaggregation based on the class 

size of the vessels. 

With the indicators computed, a first overview of the network topology of the 

https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Shortest_path_problem
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AIS sample can be obtained. The partitioning of data, based on the inception 

of the COVID-19 pandemic, does not point to great changes in degrees and 

weighted degrees (evidence supporting the robustness of the containerized 

transport network according to the direct connectivity parameter). On the other 

hand, Betweenness Centrality increases in a significant manner on average 

(evidence of a greater concentration of the supply lines after the emergence of 

the COVID-19 pandemic) and decreases in the maximum value (perhaps a 

signal of a clear loss of influence of all ports regarding the global transport 

pattern). 

According to the vessel class, more significant differences can be seen, and 

some hypotheses that deserve further research can be outlined: a) do larger 

vessels tend to have higher direct connectivity? (According to the degree and 

weighted degree parameters); b) do ports serving larger vessels belong to 

more isolated supply sub-structures on the network? (Remarkably decreasing 

eccentricity parameter and increasing Closeness Centrality); c) is port 

competition stronger among smaller vessels? (Continuously decreasing 

Betweenness Centrality). All these preliminary intuitive elaborations will be put 

into context with the blank sailing structure of the vessels analyzed. 

Table 3. Topology measures of networks  

 

  

Pre 

COVID-19 
COVID-19 

TEUs< 

4000 

4000≤ 

TEUs 

<8000 

8000≤ 

TEUs 

<15000 

TEUs≥ 

15000 

#Nodes  1214 1214 1214 1214 1214 1214 

#Edges  49331 46278 19732 9596 5928 11022 

Degree avg 25.48 25.55 21.07 19.03 21.16 24.10 

 max 137 130 85 72 84 71 

Weighted 

Degree 
avg 4.840E+6 4.497E+6 1.319E+6 2.062E+6 4.587E+6 1.552E+7 

 max 5.711E+7 6.060E+7 1.322E+7 1.543E+7 2.790E+7 7.511E+7 

Eccentricity avg 3.90 3.91 6.06 4.15 3.22 2.82 

 max 5 5 8 5 4 3 

Closeness 

Centrality 
avg 0.39 0.38 0.30 0.35 0.44 0.48 

 max 0.60 0.56 0.46 0.51 0.66 0.71 

Betweenness 

Centrality 
avg 386.27 437.43 560.23 346.07 144.76 86.76 

 max 8,208.54 7,810.11 7,114.23 4,522.34 1,751.89 679.94 

Clustering 

Coefficient 
avg 0.62 0.60 0.64 0.59 0.62 0.69 

 max 1.00 1.00 1.00 1.00 1.00 1.00 

Source: Own elaboration based on AIS data 
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3.3.3 Logistic regression 

To study the factors behind cancellation incidences at ports before and after 

the outbreak of the COVID-19 pandemic, we use a binomial logistic 

regression of the RBS measure on several intrinsic and extrinsic port 

attributes (port size, geographic location, position on the logistic networks, 

size of calling vessels). This type of model is appropriate for modeling 

proportions (Orelien, 2003), such as RBS. Technically, this is handled by 

considering possible port calls as trials and a cancellation as a binomial 

event. The logistic model can be used to determine if independent variables 

such as port size or the position of the port in the containerized shipping 

network affect the variation in the number of blank sailings at each port. 

We conduct the statistical analysis using the GENMOD procedure in the 

commercial statistical package SAS with a binomial specification of the 

response variable (SAS Inc. 2019). 

To characterize the positions of ports within the containerized network we 

considered three specific indicators: weighted degree, betweenness 

centrality, and clustering coefficient. The weighted degree tallies shipping 

services calling at ports and weighs them by the number of vessels; it is 

used as a proxy for the capacity of the vessels deployed by carriers at ports. 

The betweenness centrality measures the number of possible shortest 

paths on which the port is positioned (Ducruet 2010). This is usually high 

at hubs and en route ports, and low for the ports served by few services, 

and generally located at the ends of shipping routes. The clustering 

coefficient of a port is a measure of the interconnectedness of its neighbors. 

This is particularly low for hub ports, because these are connected to many 

ports but the latter are poorly connected between themselves. 

Figure 4 maps the network indicators for the ports under study before the 

outbreak of the COVID-19 pandemic. In both maps, the size of the circles 

is proportional to the ports’ weighted degree. In Figure 4A, we show that 

the ports with higher betweenness centrality are large ports, located in 

East and Southeast Asia, as well as in intermediary locations such as Dubai, 

Piraeus and at both ends of the Suez Canal. On the other side of the range 

of values, ports with low levels of betweenness centrality (blue) are 

generally of smaller size, or they are located at the ends of the main East-

West route, or in remote locations with regard to this line. 

Figure 4B shows the level of clustering coefficient, which is generally high 

for small and medium-sized ports, many of which are located away from 

the main East-West shipping route. There are some complementarities 

between the two maps; for example large ports tend to have high levels of 

betweenness centrality and lower levels of clustering coefficient. However, 

there are a number of situations in which both indicators are positively 
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correlated (e.g., small ports at the ends of the Baltic Sea, Black Sea or in 

the Arabian Gulf). Therefore, these two indicators bring different 

information and potentially contribute to the explanation of the 

geographical distribution of cancellations. It is worth noting that although 

these maps reflect the situation of ports before the pandemic, they are 

similar to those obtained during the pandemic. 
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 Figure 4. Network indicators for the ports under study (2018-2019) 

Source: Own elaboration 

To control for regional effects, we consider seven geographical groupings 

that are broadly consistent with the categories generally considered by 

maritime companies (AXS Marine 2022, p.28) (Table 4). To measure 

potential heterogeneity resulting from different sizes of vessels, we 

introduce the share of different sizes of vessels calling at the port: “XL”, for 

the vessels with a capacity greater than or equal to 15K TEUs, and “S” for 

the vessels with a capacity under 4K TEUs. Table 5 contains the descriptive 

statistics of the variables used in the logistic regression. The number of 

trials is given by RBS, which is the dependent variable of interest. Figure 5 

shows the geographical distribution before and during the pandemic.  

Table 4. Ratio of Blank Sailings (RBS) by region 
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 2018-2019  2020-2021 

2018-2019 N Avg StdDev Min Max  N Avg StdDev Min Max 

ASEAN 24 0.06 0.05 0 0.17  25 0.07 0.05 0 0.16 

FAR_EAST 52 0.06 0.05 0 0.19  48 0.05 0.05 0 0.22 

IND_SUBC 16 0.10 0.07 0 0.25  22 0.06 0.05 0 0.20 

MID_EAST 29 0.06 0.05 0 0.19  35 0.06 0.06 0 0.33 

NORTH_EUR 23 0.04 0.04 0 0.17  24 0.05 0.04 0 0.15 

NORTH_MED 15 0.05 0.05 0 0.20  14 0.05 0.03 0 0.10 

SOUTH_MED 34 0.06 0.05 0 0.25  37 0.04 0.04 0 0.14 

TOTAL 193 0.06 0.05 0 0.25  205 0.06 0.05 0 0.33 
Source: Own elaboration 

 

Figure 5 – Ratio of Blank Sailings (RBS) 

Source: Own elaboration 
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Table 5. Descriptive statistics 

2018-2019 period (n=193) Avg Std Dev Min Max 

RBS Ratio of blank sailings 0.06 0.05 0 0.25 

deg Degree 22.33 21.18 1.00 137.00 

ldeg Degree (Log) 2.70 0.94 0 4.92 

wdeg ('000) Weighted degree 4 128 8 754 2 57 111 

lwdeg Weighted degree (Log) 13.56 2.07 7.71 17.86 

clustc Clustering coefficient 0.62 0.23 0.00 1.00 

lclustc Clustering coefficient (Log) -     0.84 1.95 -  11.51 0 

btwc Betweenness centrality 330.70 849.17 0.00 8 208.54 

lbtwc Betweenness centrality (Log) 2.27 5.21 -  11.51 9.01 

wdeg_s_pct % vessels of < 4K TEUs 0.45 0.41 0 1.00 

wdeg_xl_pct % vessels of > 15K TEUs 0.16 0.28 0 1.00 

FAR_EAST Regional dummy 0.27 0.44 0 1 

NORTH_EUR Regional dummy 0.12 0.32 0 1 

SOUTH_MED Regional dummy 0.18 0.38 0 1 

NORTH_MED Regional dummy 0.08 0.27 0 1 

IND_SUBC Regional dummy 0.08 0.28 0 1 

ASEAN Regional dummy 0.12 0.33 0 1 

MID_EAST Regional dummy 0.15 0.36 0 1 

 

    

2020-2021 period (n=205) 
    

RBS Ratio of blank sailings 0.06 0.05 0 0.33 

deg Degree 22.29 20.78 1.00 130.00 

ldeg Degree (Log) 2.70 0.95 - 4.87 

wdeg ('000) Weighted degree 3 793 8 188 4 60 598 

lwdeg Weighted degree (Log) 13.41 2.13 8.39 17.92 

clustc Clustering coefficient 0.62 0.23 0.00 1.00 

lclustc Clustering coefficient (Log) -     0.78 1.74 -  11.51 0 

btwc Betweenness centrality 366.44 882.34 0.00 7 810.11 

lbtwc Betweenness centrality (Log) 2.17 5.60 -  11.51 8.96 

wdeg_s_pct % vessels of < 4K TEUs 0.46 0.42 0 1.00 

wdeg_xl_pct % vessels of > 15K TEUs 0.17 0.30 0 0.96 

FAR_EAST Regional dummy 0.23 0.42 0 1.00 

NORTH_EUR Regional dummy 0.12 0.32 0 1 

SOUTH_MED Regional dummy 0.18 0.38 0 1 

NORTH_MED Regional dummy 0.07 0.25 0 1 

IND_SUBC Regional dummy 0.11 0.31 0 1 

ASEAN Regional dummy 0.12 0.33 0 1 

MID_EAST Regional dummy 0.17 0.38 0 1 

 

Source: Own elaboration 
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4. Results 

Table 6 reports the estimation results of the model, in which the coefficients have 

been standardized to enable comparisons and facilitate interpretation. Overall, its 

explanatory power, measured by the pseudo R2, is similar in the two periods 

(pseudo R2=0.64-0.65). Both clustering coefficient and betweenness centrality 

contributed significantly to the model in both periods. This means that carriers 

cancel vessel calls at very central ports (ex. transshipment hubs which can be easily 

replaced by other hubs such as Gioia Tauro (Italy) or at ports that are more 

peripheral but also part of highly meshed networks such as Izmir in Turkey 

(hinterlands which can eventually be accessed through other ports).  

The results show that, in the period before the pandemic, the share of cancelled 

calls was clearly lower for ports attracting mega vessels. However, during the CO

VID-19 pandemic, the incidence of cancellations affected more the ports attractin

g a large share of mega vessels.   

At the other end of the vessel size scale, ports attracting a high share of vessels of 

less than 4K TEUs were more severely hit by cancellations during the 2020-2021 

period. This means that ports attracting a high share of vessels of “intermediate” 

size (4K-15K TEUs) proved to be more resilient to cancellations during the COVID-

19 pandemic. 

The results also show that cancellations have been less frequent in Northern Europe 

(reference category in the model) and in the Northern Mediterranean, than in the 

rest of the regions under study. En-route regions, such as ASEAN, South Med, 

Middle East and Indian Subcontinent, had particularly large coefficients in 2018-

2019. These regions, where less cargo is sourced, appear less critical to carriers; 

they were therefore more likely than others to experience cancellations. During the 

2020-2021 period, many of the ports of these regions have had substantially higher 

cancellation incidence. The smaller size of the coefficients and the lower statistical 

significance suggest that regional effects were less prominent during the COVID-

19 pandemic. 

Although the weighted degree, when considered alone, was not found to 

significantly affect the share of cancellations, it has indirect influence on results 

through other variables. Figure 5 shows the combined effects of weighted degree 

with other variables. The interactions with the clustering coefficient and with 

betweenness centrality show that the weighted degree substantially mitigates the 

effect of the former variables on the share of cancellations. This means that ports 

with high clustering coefficient or with high betweenness centrality only, have a 

high share of cancellations when their size is rather small. The interactions with the 

vessel size variables are more complex. In the case of large vessels (share of 

vessels with a capacity above 15K TEUs), in 2018-2019, the weighted degree 

mitigates the negative effect of vessel size on cancellations. Namely, the negative 

effect of mega vessels on cancellations, was less important in the largest ports 
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(high weighted degree). During the COVID-19 pandemic (2020-2021), we found 

the opposite effect: the positive impact of large vessel size on cancellations was 

largely mitigated by the size of the port (high weighted degree). Therefore, during 

the COVID-19 pandemic, large ports (high weighted degree) seem to be more 

affected by call cancellations than smaller ones. As it goes against former analyses 

based on port throughput (Fedi et al. 2022), this result appears to be 

counterintuitive; it calls for further investigation into alternative factors.  

For ports attracting large shares of smaller vessels (below 4K TEUs), the weighted 

degree reduces the probability of being skipped, as shown by the negative 

interactions in both periods. 

 

Table 6. Results of the logistic regression model 

Variable  Description  2018-2019  2020-2021  
       

lwdeg Weighted degree (log)  -1.34  -1.03  
lclustc Clustering coefficient (log)  1.97 ** 1.79 * 

lbtwc Betweenness centrality (log)  2.31 ** 2.48 ** 

wdeg_xl_pct Share of vessels >15K TEUs  -2.49 ** 3.52 *** 

wdeg_s_pct Share of vessels <4K TEU  1.49  3.05 *** 

lwdeg*lclustc Interactions  -1.85 * -2.00 ** 

lwdeg*lbtwc Interactions  -2.64 *** -1.95 * 

lwdeg*wdeg_xl_pct Interactions  2.74 *** -3.64 *** 

lwdeg*wdeg_s_pct Interactions  -1.97 ** -3.27 *** 

FAR_EAST Regional dummy  2.61 *** 2.06 ** 

ASEAN Regional dummy  4.19 *** 3.12 *** 

SOUTH_MED Regional dummy  3.71 *** -0.45  
NORTH_MED Regional dummy  -0.84  -1.72 * 

MID_EAST Regional dummy  3.24 *** 0.71  
IND_SUBC Regional dummy  4.12 *** 0.35  

       

N   193  205  

Pseudo R2   0.65  0.64  

Levels of significance: p-value<0.1 (*), p-value<0.05 (**), p-value<0.01 (***)  
Source: Own elaboration 
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Figure 5 – Interactions with weighted degree (port size) 

Source: Own elaboration 

 

5. Conclusions 

In this paper, we have proposed a novel method for identifying vessel schedule 
cancellations at ports. Compared to previous works (e.g., Dirzka and Acciaro 2022), 

the current approach has the advantage of being entirely based on the effective 

movements of vessels (AIS), instead of carrier notices and theoretical schedules. 
Moreover, our approach allows one to analyze call cancellations without the 

interference of service cancellations, whose purpose is different. 

 

As an application of this method, we have analyzed the incidence of vessel schedule 

cancellations along the Europe–Far East route before and during the COVID-19 
pandemic. Our results show that the incidence of vessel schedule cancellations was 

different before and during the COVID-19 pandemic, especially with regard to 
vessel size. In the period before the pandemic, the share of cancelled calls was 

clearly lower for ports attracting mega vessels. However, during the COVID-19 
pandemic, the incidence of cancellations affected more the ports attracting a large 

share of mega vessels. Another important result of this study is that, before the 
COVID-19 pandemic, the rate of vessel schedule cancellations was much more 

uneven between world regions than after the COVID-19 outbreak. These regional 

effects diminished during the pandemic, with less differences in vessel cancellations 
between regions. It is worth noting that, in both periods, European ports were 



20 / 22 

significantly less affected than their counterparts in the other regions under study. 

 

As an exploration on the determinants of high rates of cancellation at ports, we 
have looked at correlations with different network indicators. The share of 

cancellations is generally higher at central ports (betweenness centrality) such as 
Gioia Tauro (Italy) or in ports part of highly meshed networks (clustering degree), 

such as Semarang (Indonesia). This can be interpreted as higher vulnerability of 

hubs, which seem more easily substitutable in case of disruptions. This result is 
interesting and suggests that the centrality of ports for the carriers serving them 

may differ considerably from the theoretical centrality computed through classical 
network analysis. 

 

The method proposed in this paper is just a first step in the identification of 
regularities/irregularities in sailing schedules. An avenue for further research could 

be the improvement of the algorithm for detecting cascading effects, such as same 
vessel shifting from one trade route to another. This may be eventually achieved 

by the automatic detection of highly irregular vessel schedule patterns. Also, the 
present work considered the COVID-19 pandemic period as a whole. A potential 

extension of this work could be the detailed analysis of the different waves of the 
pandemic to identify longitudinal changes in vessel call cancellation to operational 

conditions of the maritime logistics system.  
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