Welcome!

These are my notes on the LSK method for the analysis of the stability and bifurcation(s) of a conservative system. These notes are based on several references: the initial PhD thesis of Warner Tjardus [START_REF] Koiter | The Stability of Elastic Equilibrium[END_REF] as well as some graphical illustrations from his lecture notes (W. T. [START_REF] Koiter | Koiter's Elastic Stability of Solids and Structures[END_REF]. I enjoyed the concise presentation of [START_REF] Nguyen | Stabilité et mécanique non linéaire[END_REF] as well as the lecture notes of [START_REF] Triantafyllidis | Stability of Solids: From Structures to Materials[END_REF]. Finally, the chapter by [START_REF] Potier-Ferry | Foundations of Elastic Postbuckling Theory[END_REF] helped me clear some issues. I used the direct approach presented in Appendix A of the paper by [START_REF] Chakrabarti | Selection of Hexagonal Buckling Patterns by the Elastic Rayleigh-Taylor Instability[END_REF] to derive the bifurcation equations.

When the system under consideration exhibits multiple simultaneous buckling modes, some derivations become a bit tedious. I therefore used the SymPy computer algebra system as much as possible. This required a few "tricks", and I believe that SymPy is now fully part of this work, as reflected by the new title.

I hope the reader will find these notes useful, even though there are still a few points which I do not fully understand (they are clearly indicated in the text). Should you want to report an error or suggest improvements, please do so by creating an issue on the Github repository.

These notes are available in two forms

• as an online website at https://sbrisard.github.io/LSK/ • as a PDF document at ….

The Quarto sources of these notes are available on the Github repo https://github.com/sbris ard/LSK. In particular, all SymPy simulations are available as Jupyter notebooks.

These notes by Sébastien Brisard are licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses /by/4.0/.

Setting-up the mathematical stage

In this chapter, we define the problem mathematically. Symbols and notation are introduced in 2.1, as well as the fundamental assumptions that we make. Then, the kernel of the hessian of the energy is introduced in 2.2 as a subspace of the space of admissible states.

Mathematical setting

The space of admissible states of the system under consideration is denoted 𝑈. It has the structure of a real vector space. The energy of the system is ℰ (𝑢, 𝜆), where 𝜆 denotes a loading parameter. It is assumed that the fundamental branch of the equilibrium diagram, 𝑢 ⋆ (𝜆) is known. Then the energy is stationary with respect to the state 𝑢 along the whole branch. In other words, for all û ∈ 𝑈 ℰ ,𝑢 [𝑢 ⋆ (𝜆), 𝜆; û] = 0, (2.1)

where ℰ ,𝑢 (𝑢, 𝜆; û) denotes the (real) value of the differential of the energy ℰ with respect to the state 𝑢, evaluated at (𝑢, 𝜆), for the test function û. Similarly, evaluation of the second-, third-, etc., order differential of the energy will be denoted ℰ ,𝑢𝑢 (𝑢, 𝜆; û, v ), ℰ ,𝑢𝑢𝑢 (𝑢, 𝜆; û, v , ŵ), etc. It is assumed that a finite value 𝜆 0 > 0 of 𝜆 can be found (critical load), such that 1. ℰ ,𝑢𝑢 [𝑢(𝜆), 𝜆] > 0 for all 0 < 𝜆 < 𝜆 0 , 2. ℰ ,𝑢𝑢 (𝑢 0 , 𝜆 0 ) ≥ 0 but ℰ ,𝑢𝑢 (𝑢 0 , 𝜆 0 ) ≯ 0.

The load 𝜆 0 will be referred to as the critical load; similarly, the state 𝑢 0 of the system at the critical load will be referred to as the critical state; finally, the pair (𝑢 0 , 𝜆 0 ) is the critical point of the system. Assumption 1 implies that equilibria along the fundamental branch are stable below the critical load. Conversely, it results from assumption 3 that equilibrium points on the fundamental branch are unstable above the critical load. Stability at the critical load is yet undetermined.

The goal of these notes is to analyze all equilibrium paths that pass through the critical point (𝑢 0 , 𝜆 0 ).

We introduce the following notations

𝑢 0 = 𝑢 ⋆ (𝜆 0 ), u0 = d𝑢 ⋆ d𝜆 | 𝜆=𝜆 0 , ü0 = d 2 𝑢 ⋆ d𝜆 2 | 𝜆=𝜆 0
, ⃛ 𝑢 0 = … , ⃜ 𝑢 0 = … and ℰ 2 = ℰ ,𝑢𝑢 (𝑢 0 , 𝜆 0 ), ℰ 3 = ℰ ,𝑢𝑢𝑢 (𝑢 0 , 𝜆 0 ), ℰ 4 = ℰ ,𝑢𝑢𝑢𝑢 (𝑢 0 , 𝜆 0 ).

Note that ℰ 2 , ℰ 3 and ℰ 4 thus defined are bi-, tri-and quadrilinear forms, respectively. The following derivatives are also introduced = ℰ ,𝑢𝑢𝑢𝑢 (𝑢 0 , 𝜆 0 ; u0 , u0 , û, v ) + 2ℰ ,𝑢𝑢𝑢𝜆 (𝑢 0 , 𝜆 0 ; u0 , û, v ) + ℰ ,𝑢𝑢𝜆𝜆 (𝑢 0 , 𝜆 0 ; û, v ) + ℰ ,𝑢𝑢𝑢 (𝑢 0 , 𝜆 0 , ü0 ),

and, similarly, Ė 3 , Ë3 , etc.

Kernel of the hessian of the energy

The kernel of the hessian of the energy, ℰ 2 , is defined as follows 𝑉 = 􏿺𝑢 ∈ 𝑈, ℰ 2 (𝑢, 𝑢) = 0􏿽.

Since ℰ 2 is a bilinear, symmetric and positive (but not poitive definite!) form, 𝑉 is a vector subspace of 𝑈.

To prove this result, we must show that, for all 𝑢, 𝑣 ∈ 𝑉 and 𝛼 ∈ ℝ, 𝑤 = 𝑢 + 𝛼 𝑣 ∈ 𝑉. From the bilinearity and symmetry of ℰ 2

ℰ 2 (𝑤, 𝑤) = ℰ 2 (𝑢 + 𝛼 𝑣, 𝑢 + 𝛼 𝑣) = ℰ 2 (𝑢, 𝑢) + 2𝛼 ℰ 2 (𝑢, 𝑣) + 𝛼 2 ℰ 2 (𝑣, 𝑣),
Since 𝑢, 𝑣 ∈ ker ℰ 2 , the first and the last term vanish, and the above identity reduces to ℰ 2 (𝑤, 𝑤) = 2𝛼 ℰ 2 (𝑢, 𝑣)

The bilinear form ℰ 2 is positive, therefore the left-hand side is positive, for all values of 𝛼 ∈ ℝ.

The quantity ℰ 2 (𝑢, 𝑣) = 0 is necessarily null, and ℰ 2 (𝑤, 𝑤) = 0, which proves that 𝑤 ∈ 𝑉 and that 𝑉 is a vector subspace of 𝑈. The following characterization of 𝑉 holds 𝑣 ∈ 𝑉 ⟺ ℰ 2 (𝑣, û) = 0 for all û ∈ 𝑈.

(2.3) Indeed, if for all û ∈ 𝑈, ℰ 2 (𝑣, û) = 0, then in particular ℰ 2 (𝑣, 𝑣) = 0 and 𝑣 ∈ 𝑉. Conversely, let 𝑣 ∈ 𝑉, û ∈ 𝑈 and 𝛼 ∈ ℝ. Similarly to the previous proof, we write that ℰ 2 (𝑤, 𝑤) ≥ 0, with

𝑤 = û + 𝛼 𝑣 ℰ 2 (𝑤, 𝑤) = ℰ 2 ( û, û) + 2𝛼 ℰ 2 ( û, 𝑣) + 𝛼 2 ℰ 2 (𝑣, 𝑣) = 2𝛼 ℰ 2 ( û, 𝑣) + ℰ 2 ( û, û) ≥ 0, (ℰ 2 (𝑣, 𝑣) = 0 since 𝑣 ∈ 𝑉).
The above expression is of degree 1 in 𝛼, with a constant sign. Therefore the linear term in 𝛼 must vanish: ℰ 2 ( û, 𝑣) = 0, which proves the characterization (2.3) of 𝑉.

It will be assumed in the remainder of these notes the dimension of 𝑉 is finite: 𝑚 = dim 𝑉 < +∞; 𝑚 is the multiplicity of the critical point. A (finite) basis (𝑣 1 , … , 𝑣 𝑚 ) of 𝑉 can therefore be introduced, that is orthonormal in the sense of ⟨•, •⟩ ⟨𝑣 𝑖 , 𝑣 𝑗 ⟩ = 𝛿 𝑖𝑗 for all 𝑖, 𝑗 = 1, … , 𝑚.

To close this section, we define the complementary subspace 𝑊, orthogonal to 𝑉 for the scalar product ⟨•, •⟩ 𝑈 = 𝑉 ⟂ ⊗ 𝑊 and ⟨ v , ŵ⟩ = 0 for all v ∈ 𝑉 and ŵ ∈ 𝑊.

On the sign of Ė2

It results from definition (2.2) that, for all v ∈ 𝑉

ℰ ,𝑢𝑢 [𝑢 ⋆ (𝜆), 𝜆; v , v ] = ℰ 2 ( v , v ) + 􏿴𝜆 -𝜆 0 􏿷 Ė 2 ( û, û) + 𝑜(𝜆 -𝜆 0 ) = 􏿴𝜆 -𝜆 0 􏿷 Ė 2 ( v , v ) + 𝑜(𝜆 -𝜆 0 )
For 𝜆 < 𝜆 0 , it has been assumed that the hessian is positive definite along the fundamental branch. From the above equation, it therefore results that Ė 2 ( v , v ) < 0. In other words, Ė 2 is a negative definite form over 𝑉.

Two canonical variational problems

The bilinear form ℰ 2 is elliptic over 𝑊. Therefore, variational problems of the type: find 𝑤 ∈ 𝑊 such that ℰ 2 (𝑤, ŵ) + ℓ( ŵ) = 0 for all ŵ ∈ 𝑊 are well-posed for any linear form ℓ over 𝑊. In particular, for ℓ = 0, the unique solution to the variational problem ℰ 2 (𝑤, ŵ) = 0 for all ŵ ∈ 𝑊 is 𝑤 = 0. For ℓ(•) = Ė 2 (𝑣 𝑖 , •) and ℓ(•) = ℰ 3 (𝑣 𝑖 , 𝑣 𝑗 , •), 𝑤 𝑖 ∈ 𝑊 and 𝑤 𝑖𝑗 ∈ 𝑊 are defined as the unique solutions in 𝑊 of the following variational problems

ℰ 2 (𝑤 𝑖 , ŵ) + Ė 2 (𝑣 𝑖 , ŵ) = 0 (2.4) and ℰ 2 (𝑤 𝑖𝑗 , ŵ) + ℰ 3 (𝑣 𝑖 , 𝑣 𝑗 , ŵ) = 0, (2.5)
for all ŵ ∈ 𝑊. These variational problems (and their solutions) will pop-up recurrently in what follows.

Additional symbols

We will make use of the following symbols wich shows the consistency with definitions (2.7) and (2.9) of Ë𝑖𝑗 and Ė𝑖𝑗𝑘 .

Stability of the critical point

In this chapter, we discuss the stability of the critical point (𝑢 0 , 𝜆 0 ). To this end, we evaluate the potential energy in a neighboring state 𝑢 0 + 𝑢, where 𝑢 ∈ 𝑈 is "small". We have, to the fourth order

ℰ (𝑢 0 + 𝑢, 𝜆 0 ) -ℰ (𝑢 0 , 𝜆 0 ) = 1 2 ℰ 2 (𝑢, 𝑢) + 1 6 ℰ 3 (𝑢, 𝑢, 𝑢) + 1
24 ℰ 4 (𝑢, 𝑢, 𝑢, 𝑢) + 𝑜(⟨𝑢, 𝑢⟩ 2 ), where the linear term has been omitted, 𝑢 0 being a critical point of the energy. We now expand 𝑢 as 𝑢 = 𝜉 𝑣 + 𝜂 𝑤, with 𝜉, 𝜂 ∈ ℝ and 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊 are fixed, orthogonal directions. Since 𝑣 ∈ 𝑉, we have ℰ 2 (𝜆 0 ; 𝑣, •) = 0. Owing to the multi-linearity and symmetry of the successive differential of ℰ , the above expression expands as follows

ℰ (𝑢 0 + 𝑢, 𝜆 0 ) -ℰ (𝑢 0 , 𝜆 0 ) = 1 2 𝜂 2 ℰ 2 (𝑤, 𝑤) + 1 6 𝜉 3 ℰ 3 (𝑣, 𝑣, 𝑣) + 1 2 𝜉 2 𝜂 ℰ 3 (𝑣, 𝑣, 𝑤) + 1 2 𝜉 𝜂 2 ℰ 3 (𝑣, 𝑤, 𝑤) + 1 6 𝜂 3 ℰ 3 (𝑤, 𝑤, 𝑤) + 1 24 𝜉 4 ℰ 4 (𝑣, 𝑣, 𝑣, 𝑣) + 1 6 𝜉 3 𝜂 ℰ 4 (𝑣, 𝑣, 𝑣, 𝑤) + 1 4 𝜉 2 𝜂 2 ℰ 4 (𝑣, 𝑣, 𝑤, 𝑤) + 1 6 𝜉 𝜂 3 ℰ 4 (𝑣, 𝑤, 𝑤, 𝑤) + 1 24 𝜂 4 ℰ 4 (𝑤, 𝑤, 𝑤, 𝑤) + 𝑜􏿮􏿴𝜉 2 + 𝜂 2 􏿷 2 􏿱.
For the equilibrium to be stable, the above expression must be ≥ 0 for all 𝜉 et 𝜂 small enough. Taking first 𝜂 = 0, we get the following necessary conditions ℰ 3 (𝑣, 𝑣, 𝑣) = 0 and ℰ 4 (𝑣, 𝑣, 𝑣, 𝑣) ≥ 0 for all 𝑣 ∈ 𝑉.

(3.1)

Note

Note that the first of these two conditions is equivalent to 𝐸 𝑖𝑗𝑘 = 0, for all 𝑖, 𝑗, 𝑘 = 1, … 𝑚.

In other words, if there exists 𝑣 ∈ 𝑉 such that ℰ 3 (𝑣, 𝑣, 𝑣) ≠ 0 or ℰ 4 (𝑣, 𝑣, 𝑣, 𝑣) < 0, then the equilibrium is unstable at the critical point. The above conditions are not sufficient. Indeed, assuming conditions (3.1) to hold, we now take 𝜂 = 𝜉 2 ℰ (𝑢 0 + 𝑢, 𝜆 0 ) -ℰ (𝑢 0 , 𝜆 0 ) = Note that Eq. (3.2) implies ℰ 4 (𝜆 0 ; 𝑣, 𝑣, 𝑣, 𝑣) ≥ 0, which becomes a redundant necessary condition. Indeed, plugging 𝑤 = 𝜉 𝑖 𝜉 𝑗 𝑤 𝑖𝑗 into Eq. (3.2) cancels the first two terms. To sum up, we have the following necessary conditions for stability 𝐸 𝑖𝑗𝑘 𝜉 𝑖 𝜉 𝑗 𝜉 𝑘 = 0 and 𝐸 𝑖𝑗𝑘𝑙 𝜉 𝑖 𝜉 𝑗 𝜉 𝑘 𝜉 𝑙 ≥ 0 for all 𝜉 𝑚 , … , 𝜉 𝑚 ∈ ℝ.

(3.4)

Warning

It is claimed in W. T. [START_REF] Koiter | Koiter's Elastic Stability of Solids and Structures[END_REF] that the above condition is also sufficient to ensure stability at the critical point. I can't prove this result, though.

Setting-up the computational stage

This chapter lays the ground for all symbolic calculations that are to follow. The SymPy library is imported and initialized in 4.1. Then, the energy of the system is rewritten with a minimum set of parameters.

Importing all necessary modules

We will use the Python library SymPy for symbolic mathematics and rely also on the IPython library (in particular, IPython.display.Math) for pretty LaTeX output. Some useful functions are defined in the lsk.display module, which will be systematically imported. Also, all relevant symbols are defined in the lsk.symbols module (see Chapter 11).

Without loss of generality, it will be assumed in all symbolic calculations that 𝜆 0 = 0 and 𝑢 0 = 0.

The general case 𝜆 0 ≠ 0 and 𝑢 0 ≠ 0 is readily recovered through the substitution 𝜆 ↔ 𝜆 -𝜆 0 and 𝑢 ↔ 𝑢 -𝑢 0 .

The following developments involve the energy (𝑢, 𝜆) ↦ ℰ (𝑢, 𝜆) and its differentials at the critical point (𝑢 0 , 𝜆 0 ), as well as the fundamental path 𝜆 ↦ 𝑢 * (𝜆) and its derivatives at 𝜆 = 𝜆 0 . It will therefore be convenient to express ℰ and 𝑢 ⋆ as Taylor expansions with respect to 𝑢 and 𝜆.

from sympy import * from lsk.display import * from lsk.symbols import *

We start with the Taylor expansion of the energy ℰ . We define its differentials at the critical point. These differentials are stored in a dictionary. Values are indexed with the order of the differentials with respect to 𝑢 and 𝜆.

d = { r"\E_{,\lambda}(u_0, \lambda_0)": E_λ, r"\E_{,uu}(u_0, \lambda_0)": E2, r"\E_{,u\lambda}(u_0, \lambda_0)": E_uλ, r"\E_{,\lambda\lambda}(u_0, \lambda_0)": E_λλ, r"\E_{,uuu}(u_0, \lambda_0)": E3, r"\E_{,uu\lambda}(u_0, \lambda_0)": E_uuλ, r"\E_{,u\lambda\lambda}(u_0, \lambda_0)": E_uλλ, r"\E_{,\lambda\lambda\lambda}(u_0, \lambda_0)": E_λλλ, r"\E_{,uuuu}(u_0, \lambda_0)": E4, r"\E_{,uuu\lambda}(u_0, \lambda_0)": E_uuuλ, r"\E_{,uu\lambda\lambda}(u_0, \lambda_0)": E_uuλλ, r"\E_{,u\lambda\lambda\lambda}(u_0, \lambda_0)": E_uλλλ, r"\E_{,\lambda\lambda\lambda\lambda}(u_0, \lambda_0)": E_λλλλ, } display_latex_dict(d, num_cols=3) 

ℰ ,𝜆 (𝑢 0 , 𝜆 0 ) = ℰ 𝜆 ℰ ,𝑢𝑢 (𝑢 0 , 𝜆 0 ) = ℰ 2 ℰ ,𝑢𝜆 (𝑢 0 , 𝜆 0 ) = ℰ 𝑢𝜆 ℰ ,𝜆𝜆 (𝑢 0 , 𝜆 0 ) = ℰ 𝜆𝜆 ℰ ,𝑢𝑢𝑢 (𝑢 0 , 𝜆 0 ) = ℰ 3 ℰ ,𝑢𝑢𝜆 (𝑢 0 , 𝜆 0 ) = ℰ 𝑢𝑢𝜆 ℰ ,𝑢𝜆𝜆 (𝑢 0 , 𝜆 0 ) = ℰ 𝑢𝜆𝜆 ℰ ,𝜆𝜆𝜆 (𝑢 0 , 𝜆 0 ) = ℰ 𝜆𝜆𝜆 ℰ ,𝑢𝑢𝑢𝑢 (𝑢 0 , 𝜆 0 ) = ℰ 4 ℰ ,𝑢𝑢𝑢𝜆 (𝑢 0 , 𝜆 0 ) = ℰ 𝑢𝑢𝑢𝜆 ℰ ,𝑢𝑢𝜆𝜆 (𝑢 0 , 𝜆 0 ) = ℰ 𝑢𝑢𝜆𝜆 ℰ ,𝑢𝜆𝜆𝜆 (𝑢 0 , 𝜆 0 ) = ℰ 𝑢𝜆𝜆𝜆 ℰ ,𝜆𝜆𝜆𝜆 (𝑢 0 , 𝜆 0 ) = ℰ 𝜆𝜆𝜆𝜆

Important

Note that all these differentials are defined as SymPy scalars. A definition as a SymPy function (e.g. E2 = Function(r"\E_2")) would be more appropriate. However, SymPy would fail to account for multilinearity or symmetry of these forms. Therefore, we use the following trick: all multi-linear forms are defined as scalars, and the standard multiplication operator * means function application. In other words, E2 * (α * u + β * v) * w (resp. E2 * u * v -E2 * v * u) should be understood as E2(α * u + β * v, w) (resp. E2(u, v) -E2(v, u)). In both cases, the expressions would are correctly simplified. Whether the symbols in an expression are true scalars or vectors (elements of 𝑈) should be clear from the context. For example, in the expression: λ * E2 * u * v, the first * is a true multiplication, while the other * refer to function application.

The energy ℰ (𝑢, 𝜆) is now expressed as a Taylor expansion about the critical point. We use the function create_E that is defined in the lsk module. We will get back to the optional parameter simplify_mixed_derivatives later. 

ℰ (𝑢, 𝜆) = ℰ 2 𝑢 2 2 + ℰ 3 𝑢 3 6 + ℰ 4 𝑢 4 24 + ℰ 𝜆𝜆𝜆𝜆 𝜆 4 24 + ℰ 𝜆𝜆𝜆 𝜆 3 6 + ℰ 𝜆𝜆 𝜆 2 2 + ℰ 𝜆 𝜆 + ℰ 𝑢𝜆𝜆𝜆 𝜆 3 𝑢 6 + ℰ 𝑢𝜆𝜆 𝜆 2 𝑢 2 + ℰ 𝑢𝜆 𝜆𝑢 + ℰ 𝑢𝑢𝜆𝜆 𝜆 2 𝑢 2 4 + ℰ 𝑢𝑢𝜆 𝜆𝑢 2 2 + ℰ 𝑢𝑢𝑢𝜆 𝜆𝑢 3 6
The fundamental path 𝜆 ↦ 𝑢 ⋆ (𝜆) is also defined through its Taylor expansion.

u_star = (λ * u0_dot + λ**2 * u0_ddot / 2 + λ**3 * u0_dddot / 6 + λ**4 * u0_ddddot / 24) display_latex_equation(r"u^\star(\lambda)", u_star) 𝑢 ⋆ (𝜆) = ⃜ 𝑢 0 𝜆 4 24 + ⃛ 𝑢 0 𝜆 3 6 + ü0 𝜆 2 2 + u0 𝜆
Where u0 , ü0 , etc denote the derivatives of 𝑢 ⋆ with respect to 𝜆, at 𝜆 = 𝜆 0 .

d = {f"\\frac{{\\D^{k}u^\\star}}{{\\D \\lambda^{k}}}" "\\biggr \\rvert_{{\\lambda=\\lambda_0}}" : x for k, x in enumerate([u0_dot, u0_ddot, u0_dddot, u0_ddddot], start=1)} display_latex_dict(d, num_cols=4) d 1 𝑢 ⋆ d𝜆 1 | 𝜆=𝜆 0 = u0 d 2 𝑢 ⋆ d𝜆 2 | 𝜆=𝜆 0 = ü0 d 3 𝑢 ⋆ d𝜆 3 | 𝜆=𝜆 0 = ⃛ 𝑢 0 d 4 𝑢 ⋆ d𝜆 4 | 𝜆=𝜆 0 = ⃜ 𝑢 0

Elimination of the derivatives of the jacobian w.r.t. 𝜆

Since the fundamental path 𝜆 ↦ 𝑢 ⋆ (𝜆) is an equilibrium path, the various differentials of the energy at the critical point are not linearly independent. To express the relationships between these forms, we define ℛ ⋆ (𝜆; •) as the jacobian of the energy along the fundamental path

𝑢 ⋆ (𝜆) ℛ ⋆ (𝜆; •) = ℰ ,𝑢 [𝑢 ⋆ (𝜆), 𝜆; •].
Combining the expansions of 𝜆 ↦ 𝑢 ⋆ (𝜆) and (𝑢, 𝜆) ↦ ℰ (𝑢, 𝜆) delivers and expansion of ℛ ⋆ with respect to the powers of 𝜆, up to the fourth order.

R_star = (E.diff(u) * u_hat).subs(u, u_star).series(λ, 0, 5).removeO().expand() display_latex_long_equation(r"\mathcal{R}^\ast(\lambda;" + sympy.latex(u_hat) + ")", R_star, terms_per_line=4) 𝜆) is an equilibrium path, we have ℛ * (𝜆; •) = 0 for all 𝜆. Therefore, all coefficients of the above polynomial in 𝜆 are null, which delivers expressions of ℰ 𝑢𝜆 , ℰ 𝑢𝜆𝜆 and ℰ 𝑢𝜆𝜆𝜆 . Each term is analyzed in term below. Expressions of the mixed derivatives are to be stored in the mixed1 dictionary. mixed1 = dict()

ℛ * (𝜆; û) = ℰ 2 u0 û𝜆 + ℰ 𝑢𝜆𝜆𝜆 û𝜆 3 6 + ℰ 𝑢𝜆𝜆 û𝜆 2 2 + ℰ 𝑢𝜆 û𝜆 + ℰ 2 ü0 û𝜆 2 2 + ℰ 3 u2 0 û𝜆 2 2 + ℰ 𝑢𝑢𝜆𝜆 u0 û𝜆 3 2 + ℰ 𝑢𝑢𝜆 u0 û𝜆 2 + ℰ 2 ⃛ 𝑢 0 û𝜆 3 6 + ℰ 𝑢𝑢𝜆𝜆 ü0 û𝜆 4 4 + ℰ 𝑢𝑢𝜆 ü0 û𝜆 3 2 + ℰ 𝑢𝑢𝑢𝜆 u2 0 û𝜆 3 2 + ℰ 2 ⃜ 𝑢 0 û𝜆 4 24 + ℰ 3 ü2 0 û𝜆 4 8 + ℰ 4 u3 0 û𝜆 3 6 + ℰ 𝑢𝑢𝜆 ⃛ 𝑢 0 û𝜆 4 6 + ℰ 3 ⃛ 𝑢 0 u0 û𝜆 4 6 + ℰ 3 ü0 u0 û𝜆 3 2 + ℰ 4 ü0 u2 0 û𝜆 4 4 + ℰ 𝑢𝑢𝑢𝜆 ü0 u0 û𝜆 4 2 Of course, since 𝜆 ↦ 𝑢 * (

The term of order 0

This term is uniformly null and therefore delivers no informations.

assert R_star.coeff(λ, 0) == 0

The term of order 1

This term delivers the following equation eq = Eq(R_star.coeff(λ, 1), 0) display(eq) ℰ 2 u0 û + ℰ 𝑢𝜆 û = 0 for all û ∈ 𝑈. This equation delivers the following expression of ℰ ,𝑢𝜆 (𝑢 0 , 𝜆 0 )

sol = solve(eq, E_uλ) mixed1[E_uλ] = sol[0] display_latex_equation(E_uλ, mixed1[E_uλ]) ℰ 𝑢𝜆 = -ℰ 2 u0
4.2.3 The term of order 2 eq = Eq(R_star.coeff(λ, 2).subs(mixed1), 0) display(eq)

ℰ 2 ü0 û 2 + ℰ 3 u2 0 û 2 + ℰ 𝑢𝜆𝜆 û 2 + ℰ 𝑢𝑢𝜆 u0 û = 0
for all û ∈ 𝑈. This equation delivers the following expression of ℰ ,𝑢𝜆𝜆 (𝑢 0 , 𝜆 0 )

sol = solve(eq, E_uλλ) mixed1[E_uλλ] = sol[0] display_latex_equation(E_uλλ, mixed1[E_uλλ]) ℰ 𝑢𝜆𝜆 = -ℰ 2 ü0 -ℰ 3 u2 0 -2ℰ 𝑢𝑢𝜆 u0
4.2.4 The term of order 3 eq = Eq(R_star.coeff(λ, 3).subs(mixed1), 0).expand() display(eq)

ℰ 2 ⃛ 𝑢 0 û 6 + ℰ 3 ü0 u0 û 2 + ℰ 4 u3 0 û 6 + ℰ 𝑢𝜆𝜆𝜆 û 6 + ℰ 𝑢𝑢𝜆𝜆 u0 û 2 + ℰ 𝑢𝑢𝜆 ü0 û 2 + ℰ 𝑢𝑢𝑢𝜆 u2 0 û 2 = 0
for all û ∈ 𝑈. This equation delivers the following expression of ℰ ,𝑢𝜆𝜆𝜆 (𝑢 0 , 𝜆 0 )

sol = solve(eq, E_uλλλ) mixed1[E_uλλλ] = sol[0] display_latex_equation(E_uλλ, mixed1[E_uλλ]) ℰ 𝑢𝜆𝜆 = -ℰ 2 ü0 -ℰ 3 u2 0 -2ℰ 𝑢𝑢𝜆 u0

Elimination of the remaining mixed derivatives

So far, we have found the following expressions display_latex_dict(mixed1, num_cols=1)

ℰ 𝑢𝜆 = -ℰ 2 u0 ℰ 𝑢𝜆𝜆 = -ℰ 2 ü0 -ℰ 3 u2 0 -2ℰ 𝑢𝑢𝜆 u0 ℰ 𝑢𝜆𝜆𝜆 = -ℰ 2 ⃛ 𝑢 0 -3ℰ 3 ü0 u0 -ℰ 4 u3 0 -3ℰ 𝑢𝑢𝜆𝜆 u0 -3ℰ 𝑢𝑢𝜆 ü0 -3ℰ 𝑢𝑢𝑢𝜆 u2 0
We want to get rid of the remaining mixed derivatives, namely: ℰ 𝑢𝑢𝜆 , ℰ 𝑢𝑢𝑢𝜆 and ℰ 𝑢𝑢𝜆𝜆 . To do so, we introduce the derivatives Ė 2 , Ë2 and Ė 3 defined in Chapter 2.

E_uu_star = E.diff(u, 2).subs(u, u_star).expand() E_uuu_star = E.diff(u, 3).subs(u, u_star).expand() mixed2 = dict()

The mixed derivative ℰ 𝑢𝑢𝜆 can first be expressed as a function of Ė 2 .

x = E_uuλ lhs = E2_dot rhs = E_uu_star.coeff(λ, 1) display_latex_equation(lhs, rhs)

Ė 2 = ℰ 3 u0 + ℰ 𝑢𝑢𝜆 sol = solve(Eq(lhs, rhs), x) mixed2[x] = sol[0] display_latex_equation(x, mixed2[x]) ℰ 𝑢𝑢𝜆 = -ℰ 3 u0 + Ė 2
Then, the expression of Ė3 delivers an expression of the mixed derivative ℰ 𝑢𝑢𝑢𝜆 .

x = E_uuuλ lhs = E3_dot rhs = E_uuu_star.coeff(λ, 1) display_latex_equation(lhs, rhs)

Ė 3 = ℰ 4 u0 + ℰ 𝑢𝑢𝑢𝜆 sol = solve(Eq(lhs, rhs), x) mixed2[x] = sol[0] display_latex_equation(x, mixed2[x]) ℰ 𝑢𝑢𝑢𝜆 = -ℰ 4 u0 + Ė 3
Finally, Ë2 delivers an expression of the mixed derivative ℰ 𝑢𝑢𝜆𝜆 .

x = E_uuλλ lhs = E2_ddot rhs = 2 * E_uu_star.coeff(λ, 2).subs(mixed2).expand() display_latex_equation(lhs, rhs)

Ë2 = ℰ 3 ü0 -ℰ 4 u2 0 + ℰ 𝑢𝑢𝜆𝜆 + 2 Ė 3 u0 sol = solve(Eq(lhs, rhs), x) mixed2[x] = sol[0] display_latex_equation(x, mixed2[x]) ℰ 𝑢𝑢𝜆𝜆 = -ℰ 3 ü0 + ℰ 4 u2 0 + Ë2 -2 Ė 3 u0

Summary: final expression of the energy

The following expressions were derived in 4.2 display_latex_dict(mixed1, num_cols=1)

ℰ 𝑢𝜆 = -ℰ 2 u0 ℰ 𝑢𝜆𝜆 = -ℰ 2 ü0 -ℰ 3 u2 0 -2ℰ 𝑢𝑢𝜆 u0 ℰ 𝑢𝜆𝜆𝜆 = -ℰ 2 ⃛ 𝑢 0 -3ℰ 3 ü0 u0 -ℰ 4 u3 0 -3ℰ 𝑢𝑢𝜆𝜆 u0 -3ℰ 𝑢𝑢𝜆 ü0 -3ℰ 𝑢𝑢𝑢𝜆 u2 0 and in 4.3 display_latex_dict(mixed2, num_cols=1) ℰ 𝑢𝑢𝜆 = -ℰ 3 u0 + Ė 2 ℰ 𝑢𝑢𝑢𝜆 = -ℰ 4 u0 + Ė 3 ℰ 𝑢𝑢𝜆𝜆 = -ℰ 3 ü0 + ℰ 4 u2 0 + Ë2 -2 Ė 3 u0
Combining the above results allows to fully eliminate the mixed derivatives mixed = {k: v.subs(mixed2).expand() for k, v in mixed1.items()} mixed.update(mixed2) display_latex_dict(mixed, num_cols=1)

ℰ 𝑢𝜆 = -ℰ 2 u0 ℰ 𝑢𝜆𝜆 = -ℰ 2 ü0 + ℰ 3 u2 0 -2 Ė 2 u0 ℰ 𝑢𝜆𝜆𝜆 = -ℰ 2 ⃛ 𝑢 0 + 3ℰ 3 ü0 u0 -ℰ 4 u3 0 -3 Ë2 u0 -3 ü0 Ė 2 + 3 Ė 3 u2 0 ℰ 𝑢𝑢𝜆 = -ℰ 3 u0 + Ė 2 ℰ 𝑢𝑢𝑢𝜆 = -ℰ 4 u0 + Ė 3 ℰ 𝑢𝑢𝜆𝜆 = -ℰ 3 ü0 + ℰ 4 u2 0 + Ë2 -2 Ė 3 u0
These expressions can be plugged into the expansion of the energy.

E = E.subs(mixed).expand() display_latex_long_equation(r"\E(u, \lambda)", E, terms_per_line=5) ℰ (𝑢, 𝜆) = ℰ 2 𝑢 2 2 + ℰ 3 𝑢 3 6 + ℰ 𝜆𝜆𝜆 𝜆 3 6 + ℰ 𝜆𝜆 𝜆 2 2 + ℰ 𝜆 𝜆 + ℰ 4 𝑢 4 24 + ℰ 𝜆𝜆𝜆𝜆 𝜆 4 24 + Ë2 𝜆 2 𝑢 2 4 + Ė 2 𝜆𝑢 2 2 + Ė 3 𝜆𝑢 3 6 + - ℰ 2 ü0 𝜆 2 𝑢 2 -ℰ 2 u0 𝜆𝑢 + ℰ 3 u2 0 𝜆 2 𝑢 2 -Ė 2 u0 𝜆 2 𝑢 + Ė 3 u2 0 𝜆 3 𝑢 2 + - ℰ 3 ü0 𝜆 2 𝑢 2 4 - ℰ 3 u0 𝜆𝑢 2 2 - Ë2 u0 𝜆 3 𝑢 2 - ü0 Ė 2 𝜆 3 𝑢 2 - Ė 3 u0 𝜆 2 𝑢 2 2 + - ℰ 2 ⃛ 𝑢 0 𝜆 3 𝑢 6 + ℰ 3 ü0 u0 𝜆 3 𝑢 2 - ℰ 4 u3 0 𝜆 3 𝑢 6 + ℰ 4 u2 0 𝜆 2 𝑢 2 4 - ℰ 4 u0 𝜆𝑢 3
6 From which we deduce the expression of the residual ℰ ,𝑢 E_u = E.diff(u) display_latex_long_equation(r"\E_{,u}(u, \lambda)", E_u, terms_per_line=5)

ℰ ,𝑢 (𝑢, 𝜆) = ℰ 2 𝑢 + ℰ 3 u2 0 𝜆 2 2 + ℰ 3 𝑢 2 2 + ℰ 4 𝑢 3 6 + Ė 2 𝜆𝑢 + -ℰ 2 u0 𝜆 + Ë2 𝜆 2 𝑢 2 -Ė 2 u0 𝜆 2 + Ė 3 u2 0 𝜆 3 2 + Ė 3 𝜆𝑢 2 2 + - ℰ 2 ⃛ 𝑢 0 𝜆 3 6 - ℰ 2 ü0 𝜆 2 2 - ℰ 4 u3 0 𝜆 3 6 - Ë2 u0 𝜆 3 2 - ü0 Ė 2 𝜆 3 2 + ℰ 3 ü0 u0 𝜆 3 2 - ℰ 3 ü0 𝜆 2 𝑢 2 -ℰ 3 u0 𝜆𝑢 + ℰ 4 u2 0 𝜆 2 𝑢 2 -Ė 3 u0 𝜆 2 𝑢 + - ℰ 4 u0 𝜆𝑢 2 2 E_uu = E.diff(u, 2) display_latex_long_equation(r"\E_{,uu}(u, \lambda)", E_uu, terms_per_line=7) ℰ ,𝑢𝑢 (𝑢, 𝜆) = ℰ 2 + ℰ 3 𝑢 + ℰ 4 u2 0 𝜆 2 2 + ℰ 4 𝑢 2 2 + Ë2 𝜆 2 2 + Ė 2 𝜆 + Ė 3 𝜆𝑢 + - ℰ 3 ü0 𝜆 2 2 -ℰ 3 u0 𝜆 -ℰ 4 u0 𝜆𝑢 -Ė 3 u0 𝜆 2

Implementation in the lsk.energy module

This module exposes three functions

• create_E(u, λ) : asymptotic expansion of the energy ℰ (𝑢, 𝜆),

• create_E_u(u, λ) : asymptotic expansion of the jacobian ℰ ,𝑢 (𝑢, 𝜆),

• create_E_u(u, λ) : asymptotic expansion of the hessian ℰ ,𝑢𝑢 (𝑢, 𝜆),

• create_u_star(λ) : asymptotic expansion of the fundamental branch 𝑢 ⋆ (𝜆),

where u and λ must be SymPy expressions. And these functions can be tested against the expressions found above.

assert E == lsk.energy.create_E(u, λ) assert E_u == lsk.energy.create_E_u(u, λ) assert E_uu == lsk.energy.create_E_uu(u, λ)

5 Bifurcation equations

Introduction

In this chapter, the bifurcation analysis of the perfect system is performed symbolically. It is assumed that through the critical point passes a second equilibrium curve 𝜆 ↦ 𝑢(𝜆), besides the fundamental branch 𝜆 ↦ 𝑢 ⋆ (𝜆). We seek an asymptotic expansion of 𝑢(𝜆) for 𝜆 → 𝜆 0 (critical load). It will be convenient to introduce an auxiliary parametrization 𝜂 such that the bifurcated branch is defined as the set of points (𝑢(𝜂), 𝜆(𝜂)). The functions 𝜂 ↦ 𝜆(𝜂) and 𝜂 ↦ 𝑢(𝜂) are expanded as follows

𝜆(𝜂) = 𝜆 (0) + 𝜂 𝜆 (1) + 1 2 𝜂 2 𝜆 (2) + … (5.1)
and

𝑢(𝜂) = 𝑢 * [𝜆(𝜂)] + 𝜂 𝑢 (1) + 1 2 𝜂 2 𝑢 (2) + … (5.
2)

It will be shown below that

𝑢 (1) = 𝜉 (1)
𝑖 𝑣 𝑖 and 𝑢 (2) = 𝜉

(2)

𝑖 𝑣 𝑖 + 𝜉

(1) 𝑖 𝜉

(1)

𝑗 𝑤 𝑖𝑗 + 2𝜆 (1) 𝜉

(1)

𝑖 𝑤 𝑖𝜆 , (5.3)

where the coefficients 𝜆 (1) , 𝜆 (2) , 𝜉

𝑖 and 𝜉

(2)

𝑖 solve the first bifurcation equation

1 2 𝐸 𝑖𝑗𝑘 𝜉 (1) 
𝑗 𝜉

(1) 𝑘 + 𝜆 (1) Ė𝑖𝑗 𝜉

(1) 𝑗 = 0 (5.4) and the second bifurcation equation

1 3 𝐸 𝑖𝑗𝑘𝑙 𝜉 (1) 
𝑗 𝜉

(1) 𝑘 𝜉

(1) 𝑙 + 𝜆 (1) 􏿴 Ė𝑖𝑗𝑘 𝜉

(1) 𝑘 + 𝜆 (1) Ë𝑖𝑗 􏿷 𝜉

(1) 𝑗 +􏿴𝐸 𝑖𝑗𝑘 𝜉

(1) 𝑘 + 𝜆 (1) Ė𝑖𝑗 􏿷𝜉

(2) 𝑗 + 𝜆 (2) Ė𝑖𝑗 𝜉

(1) 𝑗 = 0.

(5.5)

The tensors Ė𝑖𝑗 , Ë𝑖𝑗 , 𝐸 𝑖𝑗𝑘 , Ė𝑖𝑗𝑘 and 𝐸 𝑖𝑗𝑘𝑙 have been defined in Chapter 2 (see 2.4).

The starting point is the symbolic expression of the residual (𝑢, 𝜆) ↦ ℰ ,𝑢 (𝑢, 𝜆) that was derived in Chapter 4. We plug the postulated expansions (5.1) and (5.2) into the equilibrium equation ℰ ,𝑢 [𝑢(𝜂), 𝜆(𝜂); û] = 0 for all û ∈ 𝑈.

The coefficients of 𝜂 0 , 𝜂 1 , etc deliver a series of variational problems from which 𝑢 (𝑘) and 𝜆 (𝑘) are identified.

from sympy import * from lsk.display import * from lsk.energy import * from lsk.symbols import *

The asymptotic expansion of 𝜆 according to Eq. (5.1) is first postulated and plugged into the expression of 𝑢 ⋆ . The resulting symbolic expressions are combined to define the asymptotic expansion of 𝑢 according to Eq. (5.2). display_latex_equation(r"\lambda(\eta)", λ) display_latex_long_equation(r"u^\star(\eta)", u_star, terms_per_line=6) display_latex_long_equation(r"u(\eta)", u, terms_per_line=6) These expressions are then used to compute an asymptotic expansion of the residual ℰ ,𝑢 along the bifurcated branch.

𝜆(𝜂) = 𝜂𝜆 (1) + 𝜂 2 𝜆 (2) 2 + 𝜂 3 𝜆 (3) 6 + 𝜂 4 𝜆 (4) 24 + 𝑂 􏿴𝜂 5 􏿷 𝑢 ⋆ (𝜂) = ⃛ 𝑢 0 𝜂 3 𝜆 (1) 3 6 + ü0 𝜂 4 𝜆 (2) 2 8 + ü0 𝜂 2 𝜆 (1) 2 2 + u0 𝜂 3 𝜆 (3) 6 + u0 𝜂 2 𝜆 (2) 2 + u0

E_u = (create_E_u(u, λ) * u_hat).expand()

The general form of this expansion is

ℰ ,𝑢 [𝑢(𝜂), 𝜆(𝜂); û] = ℰ (0)
,𝑢 ( û) + 𝜂 ℰ

(1)

,𝑢 (𝑢 (1) ; û)

+ 1 2 𝜂 2 ℰ (2)
,𝑢 (𝑢 (1) , 𝑢 (2) , 𝜆 (1) ; û)

+ 1 6 𝜂 3 ℰ (3)
,𝑢 (𝑢 (1) , 𝑢 (2) , 𝑢 (3) , 𝜆 (1) , 𝜆 (2) ; û) + … , which delivers the following variational problems

ℰ (𝑘)

,𝑢 (𝑢 (1) , … , 𝑢 (𝑘) , 𝜆 (1) , … , 𝜆 (𝑘-1) ; û) for all û ∈ 𝑈, 𝑘 = 0, 1, 2, …

These problems are studied successively in the following sections. Note that the variational problem of order 0 is in fact uninformative, since ℰ

,𝑢 = 0.

assert E_u.coeff(η, 0) == 0

The variational problem of order 1

This problem reads ℰ 2 (𝑢 (1) , û) = 0 for all û ∈ 𝑈.

assert E_u.coeff(η, 1) == E2 * u1 * u_hat

Therefore 𝑢 (1) ∈ 𝑉 and we introduce the following decomposition

𝑢 (1) = 𝜉 (1) 𝑖 𝑣 𝑖 , (5.6) 
where 𝜉

(1)

1 , … , 𝜉 (1) 
𝑚 are yet unknown scalars.

The variational problem of order 2

E_u2 = E_u.coeff(η, 2)
The term in 𝜂 2 of the residual delivers the following variational problem display_latex_equation(E_u2, 0)

ℰ 2 û𝑢 (2) 2 + ℰ 3 û𝑢 (1) 2 2 + Ė 2 û𝜆 (1) 𝑢 (1) = 0
for all û ∈ 𝑈. Testing with v ∈ 𝑉, the term in ℰ 2 (𝑢 (2) , v ) vanishes and we get the following variational problem lhs1 = E_u2.subs(u_hat, v_hat).subs(E2 * v_hat, 0) display_latex_equation(lhs1, 0)

ℰ 3 v 𝑢 (1) 2 2 + Ė 2 v 𝜆 (1) 𝑢 (1) = 0 to be understood as 1 2 ℰ 3 (𝑢 (1) , 𝑢 (1) , v ) + 𝜆 (1) Ė 2 (𝑢 (1) , v ) = 0, (5.7) for all v ∈ 𝑉. The above equation fully defines 𝑢 (1) . Indeed, plugging the decomposition (5.6) delivers the equivalent equations

1 2 𝐸 𝑖𝑗𝑘 𝜉 (1) 
𝑗 𝜉

(1) 𝑘 + 𝜆 (1) Ė𝑖𝑗 𝜉

(1) 𝑗 = 0,

where we have introduced Ė𝑖𝑗 and 𝐸 𝑖𝑗𝑘 , defined by Eqs. (2.6) and (2.8), respectively. We finally retrieve the first bifurcation equation (5.4).

We now test the same equation with ŵ ∈ 𝑊, plugging the expansion (5.6) of 𝑢 ( 1)

1 2 ℰ 2 (𝑢 (2) , ŵ) + 1 2 𝜉 (1)
𝑖 𝜉

(1) 𝑗 ℰ 3 (𝑣 𝑖 , 𝑣 𝑗 , ŵ) + 𝜆 (1) 𝜉

(1) 𝑖 Ė2 (𝑣 𝑖 , ŵ) = 0.

The second-order term 𝑢 ( 2) is projected onto 𝑉 and 𝑊

𝑢 (2) = 𝑢 (2) 𝑉 + 𝑢 (2) 
𝑊 , where 𝑢

(2)

𝑉 = 𝜉 (2) 
𝑖 𝑣 𝑖 ∈ 𝑉 and 𝑢

(2) 𝑊 ∈ 𝑊.

Plugging this decomposition delivers

1 2 ℰ 2 (𝑢 (2) 𝑊 , ŵ) + 1 2 𝜉 (1)
𝑖 𝜉

(1) 𝑗 ℰ 3 (𝑣 𝑖 , 𝑣 𝑗 , ŵ) + 𝜆 (1) 𝜉

(1) 𝑖 Ė2 (𝑣 𝑖 , ŵ) = 0.

The unique solution to this variational problem can be expressed as a function of 𝑤 𝑖𝜆 and 𝑤 𝑖𝑗 , (see 2.3)

𝑢

(2) 𝑊 = 𝜉

(1) 𝑖 𝜉

(1) 𝑗 𝑤 𝑖𝑗 + 2𝜆 (1) 𝜉

(1) 𝑖 𝑤 𝑖𝜆 , which proves the decomposition (5.3) of 𝑢 (2) .

The variational problem of order 3

We now turn to the third-order term of the residual ℰ ,𝑢 . It involves 𝑢 (3) , that gets eliminated when testing with 𝑣 𝑖 ∈ 𝑉. lhs2 = E_u.coeff(η, 3).subs (u_hat, v[i]).subs(E2 * v[i], 0)

We get the following equations for 𝑖 = 1, … , 𝑚 display_latex_equation(lhs2, 0)

ℰ 3 𝑢 (1) 𝑢 (2) 𝑣 𝑖 2 + ℰ 4 𝑢 (1) 3 𝑣 𝑖 6 + Ë2 𝜆 (1) 2 𝑢 (1) 𝑣 𝑖 2 + Ė 2 𝜆 (1) 𝑢 (2) 𝑣 𝑖 2 + Ė 2 𝑢 (1) 𝜆 (2) 𝑣 𝑖 2 + Ė 3 𝜆 (1) 𝑢 (1) 2 𝑣 𝑖 2 = 0
For the terms that involve only 𝑣 𝑖 and 𝑢 (1) , we use Eqs. (2.6), (2.7) and (2.9) together with the decomposition 𝑢 (1) = 𝜉

(1)

𝑖 𝑣 𝑖 . d = { E2_dot * u1 * v[i]: ξ1[j] * E_dot[i, j], E2_ddot * u1 * v[i]: (ξ1[j] * (E_ddot[i, j] -E2_dot * v[i] * w[j]) -E2_dot * u1 * w[i]), E3_dot * u1 * u1 * v[i]: (ξ1[j] * ξ1[k] * (E_dot[i, j, k] -E2_dot * v[i] * w[j, k]) -2 * ξ1[j] * E2_dot * u1 * w[i, j]), } lhs2 = lhs2.subs(d).expand() display_latex_equation(lhs2, 0) ℰ 3 𝑢 (1) 𝑢 (2) 𝑣 𝑖 2 + ℰ 4 𝑢 (1) 3 𝑣 𝑖 6 - Ė 2 𝜆 (1) 2 𝑢 (1) 𝑤 𝑖 2 - Ė 2 𝜆 (1) 2 𝑣 𝑖 𝑤 𝑗 𝜉 (1) 𝑗 2 -Ė 2 𝜆 (1) 𝑢 (1) 𝑤 𝑖,𝑗 𝜉 (1) 𝑗 + Ė 2 𝜆 (1) 𝑢 (2) 𝑣 𝑖 2 - Ė 2 𝜆 (1) 𝑣 𝑖 𝑤 𝑗,𝑘 𝜉 (1) 𝑗 𝜉 (1) 𝑘 2 + 𝜆 (1) 2 Ë𝑖,𝑗 𝜉 (1) 𝑗 2 + 𝜆 (1) Ė𝑖,𝑗,𝑘 𝜉 (1) 𝑗 𝜉 (1) 𝑘 2 + 𝜆 (2) Ė𝑖,𝑗 𝜉 (1) 𝑗 2 = 0
In the remainder of this section, we simplify this equation. To do so, we rely heavily on Eqs.

(2.5) and (2.4) as well as the definitions of 2.4. We first apply the following simplification (1) 𝑘 Ė 2 (𝑤 𝑗𝑘 , 𝑣 𝑖 ) + 2𝜆 (1) Ė 2 (𝑤 𝑖 , 𝑢 (1) ).

Ė 2 (𝑢 (2) , 𝑣 𝑖 ) = Ė𝑖𝑗 𝜉 (2) 𝑗 + 𝜉 (1) 𝑗 𝜉 (1) 𝑘 Ė 2 (𝑤 𝑗𝑘 , 𝑣 𝑖 ) + 2𝜆 (1) Ė 2 (𝑤 𝑖 , 𝑢 (1)
expr = (E_dot[i, j] * ξ2[j] + ξ1[j] * ξ1[k] * E2_dot * v[i] * w[j, k] + 2 * λ1 * E2_dot * u1 * w[i]) lhs2 = lhs2.subs(E2_dot * u2 * v[i], expr).expand() display_latex_equation(lhs2, 0) ℰ 3 𝑢 (1) 𝑢 (2) 𝑣 𝑖 2 + ℰ 4 𝑢 (1) 3 𝑣 𝑖 6 + Ė 2 𝜆 (1) 2 𝑢 (1) 𝑤 𝑖 2 - Ė 2 𝜆 (1) 2 𝑣 𝑖 𝑤 𝑗 𝜉 (1) 𝑗 2 -Ė 2 𝜆 (1) 𝑢 (1) 𝑤 𝑖,𝑗 𝜉 (1) 𝑗 + 𝜆 (1) 2 Ë𝑖,𝑗 𝜉 (1) 𝑗 2 + 𝜆 (1) Ė𝑖,𝑗,𝑘 𝜉 (1) 𝑗 𝜉 (1) 𝑘 2 + 𝜆 (1) Ė𝑖,𝑗 𝜉 (2) 𝑗 2 + 𝜆 (2) Ė𝑖,𝑗 𝜉 (1) 𝑗 2 = 0
Then, ℰ 3 (𝑢 (1) , 𝑢 (2) , 𝑣 𝑖 ) = 𝐸 𝑖𝑗𝑘 𝜉

(2) 𝑗 𝜉

(1)

𝑘 + 1 3 𝜉 (1)
𝑗 𝜉

(1) 𝑘 𝜉

(1)

𝑙 𝐸 𝑖𝑗𝑘𝑙 -1 3 ℰ 4 (𝑢 (1) , 𝑢 (1) , 𝑢 (1) , 𝑣 𝑖 ) + 2𝜆 (1) 𝜉 (1) 𝑗 Ė 2 (𝑢 (1) , 𝑤 𝑖𝑗 ).

Proof ℰ 3 (𝑢 (1) , 𝑢 (2) , 𝑣 𝑖 ) = 𝜉 (1) 𝑘 Ė 2 (𝑤 𝑖𝑗 , 𝑣 𝑘 ) and the above identity is retrieved. 

expr = (E[i, j, k] * ξ2[j] * ξ1[k] + E[i, j, k, l] * ξ1[j] * ξ1[k] * ξ1[l] / 3 -E4 * v[i] * u1**3 / 3 + 2 * λ1 * ξ1[j] * E2_dot * u1 * w[i, j]) lhs2 = lhs2.subs(E3 * u1 * u2 * v[i], expr).expand() display_latex_equation(lhs2, 0) Ė 2 𝜆 (1) 2 𝑢 (1) 𝑤 𝑖 2 - Ė 2 𝜆 (1)
lhs2 = lhs2.subs(ξ1[j] * E2_dot * v[i] * w[j], E2_dot * u1 * w[i]) display_latex_equation(lhs2, 0) 𝜆 (1) 2 Ë𝑖,𝑗 𝜉 (1) 𝑗 2 + 𝜆 (1) Ė𝑖,𝑗,𝑘 𝜉 (1) 𝑗 𝜉 (1) 𝑘 2 + 𝜆 (1) Ė𝑖,𝑗 𝜉 (2) 𝑗 2 + 𝜆 (2) Ė𝑖,𝑗 𝜉 (1) 𝑗 2 + 𝐸 𝑖,𝑗,𝑘,𝑙 𝜉 (1) 𝑗 𝜉 (1) 𝑘 𝜉 (1) 𝑙 6 + 𝐸 𝑖,𝑗,𝑘 𝜉 (1) 𝑘 𝜉 (2) 𝑗 2 = 0
And the second bifurcation equation (5.5) is retrieved.

expected = (E[i, j, k, l] * ξ1[j] * ξ1[k] * ξ1[l] / 3 + λ1 * (E_dot[i, j, k] * ξ1[k] + λ1 * E_ddot[i, j]) * ξ1[j] + (E[i, j, k] * ξ1[k] + λ1 * E_dot[i, j]) * ξ2[j] + λ2 * E_dot[i, j] * ξ1[j])
assert expand(2 * lhs2 -expected) == 0

Asymptotic expansion of the energy and its hessian

The present chapter is organized as follows. In 6.1, we derive the following asymptotic expansion of the energy along the bifurcated branch

ℰ [𝑢(𝜂), 𝜆(𝜂)] = ℰ [𝑢 ⋆ ∘ 𝜆(𝜂), 𝜆(𝜂)] + 1 6 𝜂 3 𝜆 (1) 𝜉 (1) 𝑖 𝜉 (1) 𝑗 Ė𝑖𝑗 + 1 24 𝜂 4 􏿺𝐸 𝑖𝑗𝑘𝑙 𝜉 (1) 
𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 𝜉

(1) 𝑙 + 4𝜆 (1) Ė𝑖𝑗𝑘 𝜉

(1) 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 + 6􏿮􏿴𝜆 (1) 􏿷 2 Ë𝑖𝑗 + 𝜆 (2) Ė𝑖𝑗 􏿱 𝜉

(1) 𝑖 𝜉

(1)

𝑗 􏿽 + 𝑜(𝜂 4 ). (6.1)

Then, in 6.2, we derive the asymptotic expansion of the hessian of the energy along the bifurcated branch

ℰ ,𝑢𝑢 [𝑢(𝜂), 𝜆(𝜂); •, •] = ℰ 2 (•, •) + 𝜂 􏿮ℰ 3 (𝑢 (1) , •, •) + 𝜆 (1) Ė 2 (•, •)􏿱 + 1 2 𝜂 2 􏿮ℰ 4 (𝑢 (1) , 𝑢 (1) , •, •) + ℰ 3 (𝑢 (2) , •, •) + 2𝜆 (1) Ė 3 (𝑢 (1) , •, •) + (𝜆 (1) ) 2 Ë2 (•, •) + 𝜆 (2) Ė 2 (•, •)􏿱. (6.2) 
from sympy import * from lsk.display import * from lsk.energy import * from lsk.symbols import *

As in Chapter 5, 𝜆 and 𝑢 ⋆ are defined as asymptotic expansions of the powers of 𝜂. display_latex_equation(r"\lambda(\eta)", λ) display_latex_long_equation(r"u^\star(\eta)", u_star, terms_per_line=5)

𝜆(𝜂) = 𝜂𝜆 (1) + 𝜂 2 𝜆 (2) 2 + 𝜂 3 𝜆 (3) 6 + 𝜂 4 𝜆 (4) 24 + 𝑂 􏿴𝜂 5 􏿷 𝑢 ⋆ (𝜂) = ⃛ 𝑢 0 𝜂 3 𝜆 (1) 3 6 + ü0 𝜂 2 𝜆 (1) 2 2 + u0 𝜂 3 𝜆 (3) 6 + u0 𝜂 2 𝜆 (2) 2 + u0 𝜂𝜆 (1) + ⃜ 𝑢 0 𝜂 4 𝜆 (1) 4 24 + ⃛ 𝑢 0 𝜂 4 𝜆 (1) 2 𝜆 (2) 4 + ü0 𝜂 4 𝜆 (2) 2 8 + ü0 𝜂 3 𝜆 (1) 𝜆 (2) 2 + u0 𝜂 4 𝜆 (4) 24 + ü0 𝜂 4 𝜆 (1) 𝜆 (3) 6 + 𝑂 􏿴𝜂 5 􏿷
The bifurcated branch 𝑢(𝜂) is also expanded. Moreover, the second-order term, 𝑢 ( 2) is expressed as the orthogonal decomposition

𝑢 (2) = 𝑢 (2) 𝑉 + 𝑢 (2) 𝑊 , with 𝑢 (2) 
𝑉 ∈ 𝑉 and 𝑢

(2) 𝑊 ∈ 𝑊.

It was in fact shown in Chapter 5 that

𝑢

(2)

𝑊 = 𝜉 (1) 
𝑖 𝜉

(1)

𝑗 𝑤 𝑖𝑗 + 2𝜆 (1) 𝜉 (1) 𝑖 𝑤 𝑖 , while 𝑢 (2) 
𝑉 is expanded as follows:

𝑢 (2) 𝑉 = 𝜉 (2) 
𝑖 𝑣 𝑖 .

u = expand(u_star + η * u1 + η**2 / 2 * (u2_V + u2_W) + η**3 / 6 * u3 + η**4 / 24 * u4) display_latex_long_equation(r"u(\eta)", u, terms_per_line=5)

𝑢(𝜂) = 𝜂 4 𝑢 (4) 24 + 𝜂 3 𝑢 (3) 6 + 𝜂 2 𝑢 (2) 𝑉 2 + 𝜂 2 𝑢 (2) 𝑊 2 + 𝜂𝑢 (1) + ⃛ 𝑢 0 𝜂 3 𝜆 (1) 3 6 + ü0 𝜂 2 𝜆 (1) 2 2 + u0 𝜂 3 𝜆 (3) 6 + u0 𝜂 2 𝜆 (2) 2 + u0 𝜂𝜆 (1) + ⃜ 𝑢 0 𝜂 4 𝜆 (1) 4 24 + ⃛ 𝑢 0 𝜂 4 𝜆 (1) 2 𝜆 (2) 4 + ü0 𝜂 4 𝜆 (2) 2 8 + ü0 𝜂 3 𝜆 (1) 𝜆 (2) 2 + u0 𝜂 4 𝜆 (4) 24 + ü0 𝜂 4 𝜆 (1) 𝜆 (3) 6 + 𝑂 􏿴𝜂 5 􏿷

Asymptotic expansion of the energy

We expand the following quantity at the critical point

Δℰ (𝜂) = ℰ [𝑢(𝜂), 𝜆(𝜂)] -ℰ [𝑢 * ∘ 𝜆(𝜂), 𝜆(𝜂)],
where 𝜂 is the parametrization of the bifurcated branch introduced in Chapter 5 (𝜂 = 0 at the critical point).

The asymptotic expansion of Δℰ results from plugging the expansions of 𝜆(𝜂) and 𝑢(𝜂) defined above into the general expression of the energy that was derived in Chapter 4.

We then use these expansions to evaluate the energy along the fundamental and bifurcated branches, as well as the difference Δℰ of these two quantities. The resulting expressions are too long to be displayed. We first apply some elementary simplifications.

ΔE = (create_E(u, λ) -create_E(u_star, λ)).expand().subs({ E2 * u1 : 0, E2 * u2_V : 0 }) assert ΔE.coeff(η, 0) == 0 assert ΔE.coeff(η, 1) == 0 assert ΔE.coeff(η, 2) == 0 Simplification of the third-and fourth-order terms is performed below, first observing that, for all 𝑣 ∈ 𝑉 ℰ 3 (𝑢 (1) , 𝑢 (1) , 𝑣) = -2𝜆 (1) Ė 2 (𝑢 (1) , 𝑣). (

Proof

Let 𝑣 = 𝜉 𝑖 𝑣 𝑖 ∈ 𝑉 ℰ 3 (𝑢 (1) , 𝑢 (1) , 𝑣) = 𝜉 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 ℰ 3 (𝑣 𝑖 , 𝑣 𝑗 , 𝑣 𝑘 ) = 𝐸 𝑖𝑗𝑘 𝜉 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 = -2𝜆 (1) Ė𝑖𝑗 𝜉 𝑖 𝜉

(1) 𝑗 = -2𝜆 (1) Ė 2 (𝑢 (1) , 𝑣),

where we have used the definitions (2.6) and (2.8) of Ė𝑖𝑗 and 𝐸 𝑖𝑗𝑘 and the first bifurcation equation (5.4).

Note

Note that the first bifurcation equation was used to prove Eq. ( 6.3). The subsequent simplifications rely heavily on definitions (2.5) and (2.4) of 𝑤 𝑖𝑗 and 𝑤 𝑖 , definitions (2.6), (2.7), (2.8), (2.9) and (2.10) of Ė𝑖𝑗 , Ë𝑖𝑗 , 𝐸 𝑖𝑗𝑘 , Ė𝑖𝑗𝑘 and 𝐸 𝑖𝑗𝑘𝑙 . Finally, expressions (5.3) of 𝑢 (1) and 𝑢 (2) are used. 􏿮ℰ 4 (𝑢 (1) , 𝑢 (1) , 𝑢 (1) , 𝑢 (1) ) -𝐸 𝑖𝑗𝑘𝑙 𝜉 3 (𝑢 (1) , 𝑢 (1) , 𝑢 (1) ) -Ė𝑖𝑗𝑘 𝜉

(1) 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 􏿱 + 2􏿴𝜆 (1) 􏿷 2 􏿮 Ë2 (𝑢 (1) , 𝑢 (1) ) -Ë𝑖𝑗 𝜉 

𝑊 ) = 1 3 􏿮 Ė𝑖𝑗𝑘 𝜉 (2) 
𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 -Ė 3 (𝑢 (1) , 𝑢 (1) , 𝑢 (1) )􏿱 + 𝜆 (1) 􏿮 Ë𝑖𝑗 𝜉

(1) 𝑖 𝜉

(1) 𝑗 -Ë2 (𝑢 (1) , 𝑢 (1) )􏿱 Proof Ė 2 (𝑢 (1) , 𝑢

𝑊 ) = 𝜉

(1) 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 Ė 2 (𝑣 𝑖 , 𝑤 𝑗𝑘 ) + 2𝜆 ℰ 3 (𝑢 (1) , 𝑢 (1) , 𝑢

(2) 𝑊 ) = 𝜉

(1) 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 𝜉

(1) 𝑙 ℰ 3 (𝑣 𝑖 , 𝑣 𝑗 , 𝑤 𝑘𝑙 ) + 2𝜆 (1) 𝜉

(1) 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 ℰ 3 (𝑣 𝑖 , 𝑣 𝑗 , 𝑤 𝑘𝜆 ) = (1) 𝑙 -ℰ 4 (𝑢 (1) , 𝑢 (1) , 𝑢 (1) , 𝑢 (1) )􏿱 + 2 3 𝜆 (1) 􏿮 Ė𝑖𝑗𝑘 𝜉

(1) 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 -Ė 3 (𝑢 (1) , 𝑢 (1) , 𝑢 (1) )􏿱 The energy difference Δℰ is finally reordered as follows Δℰ = 1 6 𝜂 3 Δℰ (3) + 1 24 𝜂 4 Δℰ (4) , with Δℰ (3) = 𝜆 (1) Ė 2 (𝑢 (1) , 𝑢 (1) ) = 𝜆 (1) Ė𝑖𝑗 𝜉

(1) 𝑖 𝜉

(1) 𝑗 and Δℰ (4) = 𝐸 𝑖𝑗𝑘𝑙 𝜉

(1) 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 𝜉

(1) 𝑙 + 4𝜆 (1) Ė𝑖𝑗𝑘 𝜉

(1) 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 + 6􏿮􏿴𝜆 (1) 􏿷 2 Ë𝑖𝑗 + 𝜆 (2) Ė𝑖𝑗 􏿱 𝜉

(1) 𝑖 𝜉

(1) 𝑗 .

(6.5) and the asymptotic expansion (6.1) is retrieved. Δℰ (4) = 6 Ė 2 𝑢 (1) 2 𝜆 (2) + 6𝜆 (1) 2 Ë𝑖,𝑗 𝜉 (1) 𝑖 𝜉 (1) 𝑗 + 4𝜆 (1) Ė𝑖,𝑗,𝑘 𝜉 (1) 𝑖 𝜉 (1) 𝑗 𝜉 (1) 𝑘 + 𝐸 𝑖,𝑗,𝑘,𝑙 𝜉 (1) 𝑖 𝜉 (1) 𝑗 𝜉 (1) 𝑘 𝜉 (1) 𝑙

Asymptotic expansion of the hessian of the energy

We now turn to the hessian of the energy, which is expanded to second order in 𝜂 Using Eq. (5.3), the above expressions can be expanded as follows

ℋ (0) = ℰ 2 ℋ (1) = ℰ 3 𝑢 (1) + Ė 2 𝜆 (1) ℋ (2) = ℰ 3 𝑢 (2) 𝑉 + ℰ 3 𝑢 (2) 𝑊 + ℰ 4 𝑢 (1) 2 + Ë2 𝜆 (1) 2 + Ė 2 𝜆 (2) + 2 Ė 3 𝜆 (1)
ℋ (0) = ℰ 2 , ℋ (1) = 𝜉 (1) 𝑖 ℰ 3 (𝑣 𝑖 , •, •) + 𝜆 (1) Ė 2 ,
and

ℋ (2) = 𝜉 (1) 𝑖 𝜉 (1) 𝑗 ℰ 4 (𝑣 𝑖 , 𝑣 𝑗 , •, •) + 𝜉 (2) 𝑖 ℰ 3 (𝑣 𝑖 , •, •) + 𝜉 (1) 𝑖 𝜉 (1) 𝑗 ℰ 3 (𝑤 𝑖𝑗 , •, •) + 2𝜆 (1) 𝜉 (1) 𝑖 ℰ 3 (𝑤 𝑖 , •, •) + 2𝜆 (1) 𝜉 (1) 𝑖 Ė 3 (𝑣 𝑖 , •, •) + (𝜆 (1) ) 2 Ë2 (•, •) + 𝜆 (2) Ė 2 (•, •),
and Eq. (6.2) is retrieved.

Eigenmodes of the hessian of the energy

In view of stability analysis, the eigenvalues 𝛼 and eigenvectors 𝑥 of the hessian of the energy are expanded in this chapter to second order in 𝜂 We focus in this chapter on potentially unstable eigenmodes, for which the eigenvalue 𝛼 might be negative in the vicinity of 𝜂 = 0. It will be shown that these eigenmodes are necessarily such that 𝛼 (0) = 0. In that case, 𝑥 The coefficients 𝛼 (1) , 𝛼 (2) , 𝜒 𝑖 .

(7.3)

The eigenvalue problem

The eigenvalues 𝛼 ∈ ℝ and eigenvectors 𝑥 ∈ 𝑈 of the hessian are such that ℰ ,𝑢𝑢 [𝑢(𝜂), 𝜆(𝜂); 𝑥, û] = 𝛼 ⟨𝑥, û⟩ for all û ∈ 𝑈,

where 𝜂 ↦ 𝜆(𝜂) and 𝜂 ↦ 𝑢(𝜂) define the bifurcated branch.

In 

ℰ 𝑢𝑢 [𝑢(𝜂), 𝜆(𝜂)] = ℰ 2 + ℰ 3 𝜂 2 𝑢 (2) 𝑉 2 + ℰ 3 𝜂 2 𝑢 (2) 𝑊 2 + ℰ 3 𝜂𝑢 (1) + ℰ 4 𝜂 2 𝑢 (1) 2 2 + Ė 2 𝜂𝜆 (1) + Ė 3 𝜂 2 𝜆 (1) 𝑢 (1) + Ė 2 𝜂 2 𝜆 (2) 2 + Ë2 𝜂 2 𝜆 (1) 2 2 + 𝑂 􏿴𝜂 3 􏿷

The variational problem of order 2

The terms of second order are tested against elements of 𝑉 only. lhs2 = expand(2 * lhs.coeff(η, 2).subs (u_hat, v[i]).subs(rules)) rhs2 = expand(2 * rhs.coeff(η, 2).subs (u_hat, v[i]).subs(rules))

Simplification of these expressions Use some orthogonality conditions in the right-hand side. 

rhs2 = rhs2.subs({ x0_V * v[i]: χ0[i], x1_V * v[i]: χ1[i], v[i] * w[k]: 0, v[i] * w[k, l]: 0 }) Plug expansions 𝑢 (1) = 𝜉 (1) 𝑖 𝑣 𝑖 , 𝑢 (2) 𝑉 = 𝜉 (2) 𝑖 𝑣 𝑖 , 𝑥 (0) 𝑉 = 𝜒 (0) 𝑖 𝑣 𝑖 , and 𝑥 (1) 𝑉 = 𝜒 (1) 𝑖 𝑣 𝑖 . d = dict() d[E2_dot * v[i] * x0_V] = χ0[j] * E2_dot * v[i] * v[j] d[E2_dot * v[i] * x1_V] =

Asymmetric bifurcation

In this chapter, we consider a bifurcated branch for which 𝜆 (1) ≠ 0. The bifurcation equation (5.4) shows that necessarily, 𝐸 𝑖𝑗𝑘 is not identically nul. This equation has at most (2 𝑚 -1)

pairs of real solutions (𝜆 (1) , 𝑢 (1) ) et (-𝜆 (1) , -𝑢 (1) ); furthermore, multiplication by 𝜉

(1)

𝑖 shows that 𝜆 (1) = -𝐸 𝑖𝑗𝑘 𝜉

(1) 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘

Ė𝑖𝑗 𝜉

(1) 𝑖 𝜉

(1) 𝑗 .

(8.1) Warning I can't prove that the bifurcation equation ( 5.4) has at most (2 𝑚 -1) pairs of real solutions.

Along the bifurcated branch, we have 𝜆 = 𝜆 0 + 𝜂 𝜆 (1) + 𝑜(𝜂), and 𝜂 can be eliminated. In other words, 𝜂 = 𝜆 (𝜆 (1) = 1 and 𝜆 (2) = 𝜆 (3) = ⋯ = 0) can be selected as a parameter. It is therefore possible to express the bifurcated branch as a function of 𝜆: 𝑢(𝜆). For example, combining Eqs. (5.7) and (6.2), we find that ℰ ,𝑢𝑢 [𝑢(𝜂), 𝜆(𝜂); 𝑢 (1) , 𝑢 (1) ] = 𝜂 􏿮ℰ 3 (𝑢 (1) , 𝑢 (1) , 𝑢 (1) ) + 𝜆 (1) Ė 2 (𝑢 (1) , 𝑢 (1) )􏿱 + 𝑜(𝜂) = -𝜂 𝜆 (1) Ė 2 (𝑢 (1) , 𝑢 (1) ) + 𝑜(𝜂), or ℰ ,𝑢𝑢 [𝑢(𝜆), 𝜆; 𝑢 (1) , 𝑢 (1) ] = -􏿴𝜆 -𝜆 0 􏿷 Ė 2 (𝑢 (1) , 𝑢 (1) ) + 𝑜(𝜆 -𝜆 0 ). (8.2)

For 𝜆 < 𝜆 0 , the above quantity is negative (since Ė 2 is negative definite). In other words: for asymmetric bifurcations, below the critical load, the bifurcated branch is unstable.

To investigate the stability above the critical load, we need to analyse the sign of the eigenvalues 𝛼 of the Hessian. At first order, 𝛼 = 𝜂 𝛼 (1) +𝑜(𝜂), where 𝛼 ( 1) is an eigenvalue of (𝐸 𝑖𝑗𝑘 𝜉

(1) 𝑘 +𝜆 (1) Ė𝑖𝑗 ) (see Chapter 7). Let 𝛼 min and 𝛼 max be the minimum and maximum eigenvalues of this secondorder tensor. Three cases must be discussed 1. If 𝛼 min 𝛼 max > 0, then (𝐸 𝑖𝑗𝑘 𝜉

(1) 𝑘 + 𝜆 (1) Ė𝑖𝑗 ) is positive or negative definite: all eigenvalues have the same sign, 𝜖 ∈ {-1, +1}. Then the sign of the eigenvalues 𝛼 of the Hessian is 𝜖 𝜂 and there is a stability switch at the critical load. Since the bifurcated branch is unstable below the critical load, this means that it is stable above the critical load.

  where • ℰ 𝜆 , ℰ 𝜆𝜆 , ℰ 𝜆𝜆𝜆 and ℰ 𝜆𝜆𝜆𝜆 are scalar quantities, • ℰ 𝑢𝜆 , ℰ 𝑢𝜆𝜆 and ℰ 𝑢𝜆𝜆𝜆 are linear forms, • ℰ 2 , ℰ 𝑢𝑢𝜆 and ℰ 𝑢𝑢𝜆𝜆 are bilinear forms, • ℰ 3 and ℰ 𝑢𝑢𝑢𝜆 are trilinear forms, • ℰ 4 is a quadrilinear form.

  u, λ = symbols(r"u \lambda") E = (λ * E_λ + (E2 * u**2 + 2 * λ * E_uλ * u + λ**2 * E_λλ) / 2 + (E3 * u**3 + 3 * λ * E_uuλ * u**2 + 3 * λ**2 * E_uλλ * u + λ**3 * E_λλλ) / 6 + (E4 * u**4 + 4 * λ * E_uuuλ * u**3 + 6 * λ**2 * E_uuλλ * u**2 + 4 * λ**3 * E_uλλλ * u + λ**4 * E_λλλλ) / 24).expand() display_latex_long_equation(r"\E(u, \lambda)", E, terms_per_line=7)

  -E3 * u0_dot, E_uuλλ : E4 * u0_dot**2 -2 * E3_dot * u0_dot -E3 * u0_ddot + E2_ddot, E_uuuλ : E3_dot -E4 * u0_dot, } def create_E(u, λ): out = (λ * E_λ + (E2 * u**2 + 2 * λ * E_uλ * u + λ**2 * E_λλ) / 2 + (E3 * u**3 + 3 * λ * E_uuλ * u**2 + 3 * λ**2 * E_uλλ * u + λ**3 * E_λλλ) / 6 + (E4 * u**4 + 4 * λ * E_uuuλ * u**3 + 6 * λ**2 * E_uuλλ * u**2 + 4 * λ**3 * E_uλλλ * u + λ**4 * E_λλλλ) / 24) return out.subs(__mixed_derivatives).expand() def create_E_u(u, λ): out = (E2 * u + λ * E_uλ + (E3 * u**2 + 2 * λ * E_uuλ * u + λ**2 * E_uλλ) / 2 + (E4 * u**3 + 3 * λ * E_uuuλ * u**2 + 3 * λ**2 * E_uuλλ * u + λ**3 * E_uλλλ) / 6) return out.subs(__mixed_derivatives).expand() def create_E_uu(u, λ): out = (E2 + E3 * u + λ * E_uuλ + (E4 * u**2 + 2 * λ * E_uuuλ * u + λ**2 * E_uuλλ) / 2) return out.subs(__mixed_derivatives).expand() def create_u_star(λ): return (λ * u0_dot + λ**2 * u0_ddot / 2 + λ**3 * u0_dddot / 6 + λ**4 * u0_ddddot / 24).expand()

  λ = η * λ1 + η**2 / 2 * λ2 + η**3 / 6 * λ3 + η**4 / 24 * λ4 + O(η**5) u_star = create_u_star(λ) u = u_star + η * u1 + η**2 / 2 * u2 + η**3 / 6 * u3 + η**4 / 24 * u4

  𝑣 𝑖 , 𝑣 𝑗 , 𝑤 𝑘𝑙 ) + ℰ 3 (𝑣 𝑖 , 𝑣 𝑘 , 𝑤 𝑗𝑙 ) + ℰ 3 (𝑣 𝑖 , 𝑣 𝑙 , 𝑤 𝑗𝑘 )􏿱 -

  λ = η * λ1 + η**2 / 2 * λ2 + η**3 / 6 * λ3 + η**4 / 24 * λ4 + O(η**5) u_star = create_u_star(λ)

  * u1 * u1 : -2 * λ1 * E2_dot * u1 * u1, E3 * u1 * u1 * u2_V : -2 * λ1 * E2_dot * u1 * u2_V, } ΔE = ΔE.subs(d).expand()

  i, j, k, l] * ξ1[i] * ξ1[j] * ξ1[k] * ξ1[l]) / 3 + 4 * λ1 / 3 * (E3_dot * u1 * u1 * u1 -E_dot[i, j, k] * ξ1[i] * ξ1[j] * ξ1[k]) + 2 * λ1**2 * (E2_ddot * u1 * u1 -E_ddot[i, j] * ξ1[i] * ξ1[j])) ΔE = ΔE.subs(E2 * u2_W * u2_W, expr).expand()

  expr = ((E[i, j, k, l] * ξ1[i] * ξ1[j] * ξ1[k] * ξ1[l] -E4 * u1 * u1 * u1 * u1) / 3 + 2 * λ1 / 3 * (E_dot[i, j, k] * ξ1[i] * ξ1[j] * ξ1[k] -E3_dot * u1 * u1 * u1)) ΔE = ΔE.subs(E3 * u1 * u1 * u2_W, expr).expand()

  ΔE3 = expand(6 * ΔE.coeff(η, 3)) ΔE4 = expand(24 * ΔE.coeff(η, 4))display_latex_equation("\order[3]{\Delta\E}", ΔE3) display_latex_equation("\order[4]{\Delta\E}", ΔE4) assert ΔE3 == λ1 * E2_dot * u1 * u1 expected = (E[i, j, k, l] * ξ1[i] * ξ1[j] * ξ1[k] * ξ1[l] + 4 * λ1 * E_dot[i, j, k] * ξ1[i] * ξ1[j] * ξ1[k] + 6 * (λ1**2 * E_ddot[i, j] * ξ1[i] * ξ1[j

ℰ

  

𝑊

  

  Chapter 5 and in Chapter 6, the following asymptotic expansions of 𝜆(𝜂), 𝑢(𝜂) and ℰ ,𝑢𝑢 [𝑢(𝜂), 𝜆(𝜂); •, •] were derived H0 = E2 H1 = E3 * u1 + λ1 * E2_dot H2 = (E4 * u1 * u1 + E3 * (u2_V + u2_W) + 2 * λ1 * E3_dot * u1 + λ1**2 * E2_ddot + λ2 * E2_dot) H = expand(H0 + η * H1 + η**2 / 2 * H2 + O(η**3)) display_latex_long_equation(r"\E_{uu}[u(\eta), λ(\eta)]", H, terms_per_line=6)

  χ1[j] * E2_dot * v[i] * v[j] d[E2_ddot * x0_V * v[i]] = χ0[j] * E2_ddot * v[i] * v[j] d[E3 * v[i] * x1_V * u1] = χ1[j] * ξ1[k] * E3 * v[i] * v[j] * v[k] d[E3 * v[i] * x0_V * u2_V] = χ0[j] * ξ2[k] * E3 * v[i] * v[j] * v[k] d[E3_dot * v[i] * x0_V * u1] = χ0[j] * ξ1[k] * E3_dot * v[i] * v[j] * v[k] d[E4 * v[i] * x0_V * u1 * u1] = (χ0[j] * ξ1[k] * ξ1[l] * E4 * v[i] * v[j] * v[k] * v[l]) lhs2 = lhs2.subs(d)Rename some indices.lhs2 = lhs2.subs({ χ0[k] * E2_dot * v[i] * w[k]: χ0[j] * E2_dot * v[i] * w[j], χ0[k] * ξ1[l] * w[k, l]: χ0[j] * ξ1[k] * w[j𝑣 𝑖 , 𝑣 𝑗 , 𝑤 𝑘𝑙 ) + 2𝜆 (1) ℰ 3 (𝑣 𝑖 , 𝑣 𝑗 , 𝑤 𝑘 )𝑘 , 𝑤 𝑖𝑗 ) lhs2 = lhs2.subs(E3 * v[i] * x0_V * u2_W, (χ0[j] * ξ1[k] * ξ1[l] * E3 * v[i] * v[j] * w[k,l] + 2 * λ1 * χ0[j] * ξ1[k] * E2_dot * v[k] * w[i, j])).expand() 𝑗 , 𝑤 𝑖𝑘 ) lhs2 = lhs2.subs(χ0[k] * E3 * v[i] * u1 * w[k], χ0[j] * ξ1[k] * E2_dot * v[j] * w[i, k]).expand() 𝑣 𝑖 , 𝑣 𝑘 , 𝑤 𝑗,𝑙 ) + ℰ 3 (𝑣 𝑖 , 𝑣 𝑙 , 𝑤 𝑗,𝑘 )􏿱 lhs2 = lhs2.subs(χ0[j] * ξ1[k] * E3 * v[i] * w[j, k] * u1, χ0[j] * ξ1[k] * ξ1[l] / 2 * (E3 * v[i] * v[k] * w[j, l] + E3 * v[i] * v[l] * w[j, k])).expand() lhs2 = lhs2.subs({ E2_dot * v[i] * v[j]: E_dot[i, j], E2_ddot * v[i] * v[j]: (E_ddot[i, j] -2 * E2_dot * v[i] * w[j]), E3 * v[i] * v[j] * v[k]: E[i, j, k], E3_dot * v[i] * v[j] * v[k]: (E_dot[i, j, k] -E2_dot * v[i] * w[j, k] -E2_dot * v[j] * w[i, k] -E2_dot * v[k] * w[i, j]), E4 *v[i] * v[j] * v[k] * v[l]: (E[i, j, k, l] -E3 * v[i] * (v[j] * w[k, l] + v[k] * w[j, l] + v[l] * w[j, k])) }).expand()And Eq. (7.3) is finally retrieved.expected = ((E[i, j, k, l] * ξ1[k] * ξ1[l] + λ1 * (2 * E_dot[i, j, k] * ξ1[k] + λ1 * E_ddot[i, j]) + E[i, j, k] * ξ2[k] + λ2 * E_dot[i, j]) * χ0[j] + 2 * (E[i,j, k] * ξ1[k] + λ1 * E_dot[i, j]) * χ1[j]) assert expand(lhs2 -expected) == 0 expected = 2 * α1 * χ1[i] + α2 * χ0[i] assert expand(rhs2 -expected) == 0

  𝐸 𝑖𝑗𝑘𝑙 = ℰ 4 (𝑣 𝑖 , 𝑣 𝑗 , 𝑣 𝑘 , 𝑣 𝑙 ) + ℰ 3 (𝑣 𝑖 , 𝑣 𝑗 , 𝑤 𝑘𝑙 ) + ℰ 3 (𝑣 𝑖 , 𝑣 𝑘 , 𝑤 𝑗𝑙 ) + ℰ 3 (𝑣 𝑖 , 𝑣 𝑙 , 𝑤 𝑗𝑘 ).

	Ė𝑖𝑗 = Ė 2 (𝑣 𝑖 , 𝑣 𝑗 ),	(2.6)
	Ë𝑖𝑗 = Ë2 (𝑣 𝑖 , 𝑣 𝑗 ) + Ė 2 (𝑣 𝑖 , 𝑤 𝑗 ) + Ė 2 (𝑣 𝑗 , 𝑤 𝑖 ),	(2.7)
	𝐸 𝑖𝑗𝑘 = ℰ 3 (𝑣 𝑖 , 𝑣 𝑗 , 𝑣 𝑘 ),	(2.8)
	Ė𝑖𝑗𝑘 = Ė 3 (𝑣 𝑖 , 𝑣 𝑗 , 𝑣 𝑘 ) + Ė 2 (𝑣 𝑖 , 𝑤 𝑗𝑘 ) + Ė 2 (𝑣 𝑗 , 𝑤 𝑖𝑘 ) + Ė 2 (𝑣 𝑘 , 𝑤 𝑖𝑗 ),	(2.9)
		(2.10)
	These symbols define second, third and fourth-order, fully symmetric, tensors over 𝑉.	

Consistency of the above definitions

Since ℰ 2 (𝑣, •) = 0 for all 𝑣 ∈ 𝑉, definitions (2.6) and (

2

.8) of Ė𝑖𝑗 and 𝐸 𝑖𝑗𝑘 can also be written Ė𝑖𝑗 = Ė 2 (𝑣 𝑖 , 𝑣 𝑗 ) + ℰ 2 (𝑣 𝑖 , 𝑤 𝑗 ) + ℰ 2 (𝑣 𝑗 , 𝑤 𝑖 ) and 𝐸 𝑖𝑗𝑘 = ℰ 3 (𝑣 𝑖 , 𝑣 𝑗 , 𝑣 𝑘 ) + ℰ 2 (𝑣 𝑖 , 𝑤 𝑗𝑘 ) + ℰ 2 (𝑣 𝑗 , 𝑤 𝑖𝑘 ) + ℰ 2 (𝑣 𝑘 , 𝑤 𝑖𝑗 ),

  𝑣 𝑖 , 𝑣 𝑗 , 𝑣 𝑘 , 𝑣 𝑙 ) -3ℰ 2 (𝑤 𝑖𝑗 , 𝑤 𝑘𝑙 )􏿱 𝜉 𝑖 𝜉 𝑗 𝜉 𝑘 𝜉 𝑙 ≥ 0 for all 𝜉 1 , … , 𝜉 𝑚 ∈ ℝ, which, in view of definition (2.10) of 𝐸 𝑖𝑗𝑘𝑙 , is equivalent to 𝐸 𝑖𝑗𝑘𝑙 𝜉 𝑖 𝜉 𝑗 𝜉 𝑘 𝜉 𝑙 ≥ 0 for all 𝜉 𝑚 , … , 𝜉 𝑚 ∈ ℝ.

	The direction 𝑣 ∈ 𝑉 being fixed, the above expression is minimal when 𝑤 satisfies the following
	variational problem			
	2ℰ 2 (𝑤, ŵ) + ℰ 3 (𝑣, 𝑣, ŵ) = 0 for all	ŵ ∈ 𝑊.	(3.3)
	Expanding 𝑣 ∈ 𝑉 in the (𝑣 𝑖 ) basis as follows: 𝑣 = 𝜉 𝑖 𝑣 𝑖 , it is observed that the solution to the above variational problem is 𝑤 = 1 2 𝜉 𝑖 𝜉 𝑗 𝑤 𝑖𝑗 , where 𝑤 𝑖𝑗 is the solution to the elementary variational problem (2.5) . For this value of 𝑤, condition (3.2) reads
	􏿮ℰ 4 (			
			1 2	𝜉 4 􏿮ℰ 2 (𝑤, 𝑤) + ℰ 3 (𝑣, 𝑣, 𝑤) +	1 12	ℰ 4 (𝑣, 𝑣, 𝑣, 𝑣)􏿱 + 𝑜(𝜉 4 )
	and we get the further necessary condition
	ℰ 2 (𝑤, 𝑤) + ℰ 3 (𝑣, 𝑣, 𝑤) +	1 12	ℰ 4 (𝑣, 𝑣, 𝑣, 𝑣) ≥ 0 for all 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊.	(3.2)

  ).

	Proof			
	Ė 2 (𝑢 (2) , 𝑣 𝑖 ) = Ė𝑖𝑗 𝜉 (2) 𝑗 + 𝜉	(1) 𝑗 𝜉 (1) 𝑘	Ė 2 (𝑤 𝑗𝑘 , 𝑣 𝑖 ) + 2𝜆 (1) 𝜉 (1) 𝑗	Ė 2 (𝑤 𝑗 , 𝑣 𝑖 )
	= Ė𝑖𝑗 𝜉 (2) 𝑗 + 𝜉	(1) 𝑗 𝜉 (1) 𝑘	Ė 2 (𝑤 𝑗𝑘 , 𝑣 𝑖 ) -2𝜆 (1) 𝜉 (1) 𝑗 ℰ 2 (𝑤 𝑖 , 𝑤 𝑗 )
	= Ė𝑖𝑗 𝜉 (2) 𝑗 + 𝜉	(1) 𝑗 𝜉 (1) 𝑘	Ė 2 (𝑤 𝑗𝑘 , 𝑣 𝑖 ) + 2𝜆 (1) 𝜉 (1) 𝑗	Ė 2 (𝑤 𝑖 , 𝑣 𝑗 )
	= Ė𝑖𝑗 𝜉 (2) 𝑗 + 𝜉	(1) 𝑗 𝜉		

  Note that the eigenvector 𝑥 is projected onto 𝑉 and 𝑊 : 𝑥 It will be convenient to expand the 𝑉-component in the (𝑣 1 , … , 𝑣 𝑚 ) basis

	}		
	from sympy import *
	from lsk.display import *
	from lsk.symbols import *
	from lsk.energy import *
	x0_V, x0_W = symbols(r"{\order[0]{x}_V} {\order[0]{x}_W}")
	x1_V, x1_W = symbols(r"{\order[1]{x}_V} {\order[1]{x}_W}")
	x2_V, x2_W = symbols(r"{\order[2]{x}_V} {\order[2]{x}_W}")
	α0, α1, α2 = symbols(r"{\order[0]{\alpha}} {\order[1]{\alpha}} {\order[2]{\alpha}}")
	χ0 = IndexedBase(r"\order[0]{\chi}")
	χ1 = IndexedBase(r"\order[1]{\chi}")
	x = (x0_V + x0_W) + η * (x1_V + x1_W) + η**2 / 2 * (x2_V + x2_W) + O(η**3)
	α = α0 + η * α1 + η**2 / 2 * α2 + O(η**3)
	display_latex_dict({"x": x, r"\alpha": α}, num_cols=1)
	𝑥 = 𝑥 (0) 𝑊 + 𝑥 (0) 𝑉 + 𝜂 􏿴𝑥 (1) 𝑉 + 𝑥 (1) 𝑊 􏿷 +	𝜂 2 􏿴𝑥 (2) 𝑉 + 𝑥 (2) 𝑊 􏿷 2	+ 𝑂 􏿴𝜂 3 􏿷
	𝛼 = 𝛼 (0) + 𝜂𝛼 (1) +	𝜂 2 𝛼 (2) 2	+ 𝑂 􏿴𝜂 3 􏿷
				(𝑘) 𝑉 ∈ 𝑉 and 𝑥 (𝑘) 𝑊 ∈ 𝑊. 𝑥 (𝑘) 𝑉 = 𝜒 (𝑘) 𝑖 𝑣 𝑖 .
	We immediately have the following simplification rules
	rules = {		
	E2 * v[i]: 0,	
	E2 * x0_V: 0,	
	E2 * x1_V: 0,	
	E2 * x2_V: 0	

We define the left-hand side and right-hand side of the variational problem that defines the eigenpairs (𝛼, 𝑥) at all orders. lhs = (H * x * u_hat).subs(rules).expand() rhs = (α * x * u_hat).subs(rules).expand()

The terms of order 0, 1 and 2 in 𝜂 are identified below.

7.2

The variational problem of order 0 lhs0 = lhs.coeff(η, 0).subs(rules) rhs0 = rhs.coeff(η, 0)

The lowest-order problem reads: find 𝑥 If 𝑥 (0) 𝑊 ≠ 0, then 𝛼 (0) is an eigenvalue of ℰ 2 over 𝑊. Therefore, 𝛼 (0) > 0 and 𝛼 > 0 in the vicinity of the critical point 𝜆 = 𝜆 0 : the resulting eigenmode is stable. So, in order to find potentially unstable modes, we need to consider that 𝑥 (0) 𝑊 = 0 and 𝛼 (0) = 0.

The variational problem of order 1 lhs1 = lhs.coeff(η, 1).subs(rules) rhs1 = rhs.coeff(η, 1).subs(rules)

The problem reads: find 𝑥 (𝑂) 𝑉 ∈ 𝑉, 𝑥

(1) 𝑊 ∈ 𝑊 and 𝛼 (1) ∈ ℝ such that, for all û ∈ 𝑈 display_latex_equation(lhs1, rhs1)

Testing first with û = 𝑣 𝑖 delivers the following variational problem: find 𝑥 (0)

𝑉 ∈ 𝑉 such that, for all 𝑖 = 1, … , 𝑚

𝑗 𝑣 𝑖 𝑣 𝑗 𝑣 𝑘 𝜉 (1) 𝑘 + Ė 2 𝜆 (1) 𝜒 (0) 𝑗 𝑣 𝑖 𝑣 𝑗 = 𝛼 (1) 𝜒 (0) 𝑖 and Eq. (7.2) is retrieved.

The test function is now picked in 𝑊 = 𝑉 ⟂ and we get the following variational problem: find 𝑥

𝑊 ∈ 𝑊 such that, for all ŵ ∈ 𝑊, lhs1.subs(d).subs(rules) rhs1b = rhs1.subs(d).subs(rules).subs(v[i] * w_hat, 0) display_latex_equation(lhs1b, rhs1b) ℰ 2 ŵ𝑥 (1) 𝑊 + ℰ 3 ŵ𝜒 (0) 𝑖 𝑣 𝑖 𝑣 𝑗 𝜉 (1) 𝑗 + Ė 2 ŵ𝜆 (1) 𝜒 (0) 𝑖 𝑣 𝑖 = 0 (observe that, in the RHS, ⟨𝑣 𝑖 , ŵ⟩ = 0 since 𝑉 and 𝑊 are orthogonal subspaces). The solution to the above problem is expressed as a linear combination of the 𝑤 𝑖𝑗 and 𝑤 𝑖 -defined by the variational problems (2.5) and (2.4), respectively-, delivering Eq. (7.1).

2. If 𝛼 min 𝛼 max < 0, then the extremal eigenvalues of the Hessian are 𝜂 𝛼 min and 𝜂 𝛼 max , the product of which is 𝜂 2 𝛼 min 𝛼 max < 0. The bifurcated branch is unstable for all values of 𝜆. 3. If 𝛼 min 𝛼 max = 0, the analysis is inconclusive.

To close this section, it is observed that the dominant term of the expansion (6.1) of the potential energy along the bifurcated branch is of the third order in 𝜂

𝑖 𝜉

(1)

𝑗 + 𝑜(𝜂 3 ).

Eliminating 𝜆 and plugging expression (8.1) of 𝜆 (1) delivers the expression of the potential energy, where 𝜆 is the parameter

Recalling that Ė𝑖𝑗 𝜉

(1) 𝑖 𝜉

(1)

𝑗 < 0, it is found that, above the critical load, the potential energy is smaller along the bifurcated branch than along the fundamental branch.

Note

As expected, the above expression does not depend on the scaling of 𝑢 (1) (of the 𝜉 (1) 𝑖 ).

Note

It has been shown in Chapter 3 that, when 𝐸 𝑖𝑗𝑘 is not identically null, the critical point is unstable.

A particular case of symmetric bifurcation

In this chapter, we consider the case 𝐸 𝑖𝑗𝑘 = 0 for all 𝑖, 𝑗, 𝑘 = 1, … , 𝑚. Then, from Eq. (5.4), 𝜆 (1) = 0 on all bifurcated branches. It is assumed that, on the bifurcated branch under consideration, the next term of the expansion of 𝜆 is non-zero: 𝜆 (2) ≠ 0. The bifurcation is symmetric, and the bifurcation equation (5.5) reduces to

𝑙 + 𝜆 (2) Ė𝑖𝑗 𝜉

(1) 𝑗 = 0, (9.1) which has at most (3 𝑚 -1)/2 pairs of real solutions (𝜆 (2) , 𝑢 (1) ) and (-𝜆 (2) , -𝑢 ( 1) ).

Warning I can't prove that the bifurcation equation ( 9.1) has at most (3 𝑚 -1)/2 pairs of real solutions.

Upon multiplication by 𝜉

(1) 𝑖 , the above equation delivers the following expression of 𝜆 ( 2)

𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 𝜉

(1) 𝑙

Ė𝑖𝑗 𝜉

(1) 𝑖 𝜉

(1) 𝑗 .

(9.2)

Since Ė𝑖𝑗 𝜉

(1) 𝑖 𝜉

(1) 𝑗 < 0, 𝜆 (2) has the same sign as 𝐸 𝑖𝑗𝑘𝑙 𝜉

(1) 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 𝜉

(1)

𝑙 . In other words, if 𝐸 𝑖𝑗𝑘𝑙 𝜉

(1) 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 𝜉

(1) 𝑙 > 0, (resp. < 0) then the bifurcated branch exists above (resp. below) the critical load 𝜆 0 only.

Turning now to the eigenpairs of the Hessian of the energy along the bifurcated branch, Eq. (7.2) shows that 𝛼 (1) = 0. Then 𝛼 = 𝛼 (2) 𝜂 2 /2 + 𝑜(𝜂 2 ) and, from Eq. (7.3)

𝑖 .

If (𝐸 𝑖𝑗𝑘𝑙 𝜉

(1) 𝑘 𝜉

(1) 𝑙 + 𝜆 (2) Ė𝑖𝑗 ) is positive definite, then the bifurcated branch is stable (note that, in that case, the bifurcated branch exists above the critical load only). If one of the eigenvalues of this tensor is < 0, then the bifurcated branch is unstable. The stability is undecided when all eigenvalues are ≥ 0. Note Note that, from Eq. (9.1),

𝐸 𝑖𝑗𝑘𝑙 𝜉

(1) 𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 𝜉

(1) 𝑙 + 𝜆 (2) Ė𝑖𝑗 𝜉

(1) 𝑖 𝜉

(1)

𝑖 𝜉

(1) 𝑗 𝜉

(1) 𝑘 𝜉

(1) 𝑙 .

To conclude this section, it is observed that, when 𝜆 (1) = 0, the dominant term of the potential energy along the bifurcated branch is of the fourth order, see Eq (6.1). Combining with Eq. ( 9 (1) 𝑙 + 𝑜(𝜂 4 ).

(9.

3)

The expansion 𝜆 = 𝜆 0 + 𝜆 (2) 𝜂 2 /2 + 𝑜(𝜂 2 ) can be inverted as follows (1) 𝑙 > 0, then only loads that are greater than the critical load can be reached on the bifurcated branch, where the energy is lower than the fundamental branch.

The case of a single mode

In this chapter, we discuss the case 𝑚 = 1; all tensors considered previously ( Ė𝑖𝑗 , 𝐸 𝑖𝑗𝑘 , 𝐸 𝑖𝑗𝑘𝑙 , etc) then reduce to simple scalars. To avoid ambiguity, indices are kept: Ė11 , 𝐸 111 , 𝐸 1111 . Since Ė 2 is negative definite over 𝑉 (see note in 2.2), we have Ė11 < 0.

It is first observed that the following conditions are necessary to ensure stability of the critical point 𝐸 111 = 0 and 𝐸 1111 ≥ 0, which shows that asymmetric critical points are always unstable.

Asymmetric bifurcation

We first consider the case 𝐸 111 ≠ 0. Owing to the discussion above, the bifurcation point is unstable. It follows from Eq. (8.1) that

Then, Eq. (8.2) delivers, with 𝑢 (1) = 𝜉

(1)

1 􏿷 2 Ė 2 (𝑣 1 , 𝑣 1 ) + 𝑜(𝜆 -𝜆 0 )

or ℰ ,𝑢𝑢 [𝑢(𝜆), 𝜆; 𝑣 1 , 𝑣 1 ] = -􏿴𝜆 -𝜆 0 􏿷 Ė11 + 𝑜(𝜆 -𝜆 0 ).

Since Ė11 < 0 we conclude that asymmetric bifurcations branches are unstable for 𝜆 ≤ 𝜆 0 and stable for 𝜆 > 𝜆 0 (stability switch).

Symmetric bifurcation

We now consider the case 𝐸 111 = 0. From the general discussion of Chapter 3, the critical point is stable if 𝐸 1111 > 0 and unstable if 𝐸 1111 < 0.

Warning Is this really true? Even for 𝑚 = 1 the proof that conditions (3.4) are sufficient to ensure stability does not seem so obvious to me.

The bifurcation equation (9.1) reduces to

which in particular shows that 𝜆 (2) has the same sign as 𝐸 1111 . Since the expansion of 𝜆 reads: 𝜆 = 𝜆 0 + 𝜆 (2) 𝜂 2 /2 + 𝑜(𝜂 2 ), the bifurcation branch exists only for loads above the critical load (𝜆 ≥ 𝜆 0 ) if 𝐸 1111 > 0 and only for loads below the critical load (𝜆 ≤ 𝜆 0 ) if 𝐸 1111 < 0.

From Eq. ( 6.2), the hessian of the energy along the bifurcated branch reads

which has the sign of 𝜆 (2) . Therefore the Hessian is positive (resp. negative) definite if 𝐸 1111 > 0 (resp < 0).

To sum up, if 𝐸 1111 > 0, then the bifurcation branch (including the critical point) is stable and exists only for loads greater than the critical load. Conversely, if 𝐸 1111 < 0, then the bifurcation branch (including the critical point) is unstable and exists only for loads lower than the critical load.

The lsk.symbols module

This module defines all symbols required for the SymPy derivations (see below).

import lsk.symbols %psource lsk.symbols from sympy import Idx, IndexedBase, Symbol E2 = Symbol(r"\E_2") E3 = Symbol(r"\E_3") E4 = Symbol(r"\E_4") E2_dot = Symbol(r"\dot{\E}_2") E3_dot = Symbol(r"\dot{\E}_3") E2_ddot = Symbol(r"\ddot{\E}_2") E_λ = Symbol(r"\E_{\lambda}") E_λλ = Symbol(r"\E_{\lambda\lambda}") E_λλλ = Symbol(r"\E_{\lambda\lambda\lambda}") E_λλλλ = Symbol(r"\E_{\lambda\lambda\lambda\lambda}") E_uλ = Symbol(r"\E_{u\lambda}") E_uλλ = Symbol(r"\E_{u\lambda\lambda}") E_uλλλ = Symbol(r"\E_{u\lambda\lambda\lambda}") E_uuλ = Symbol(r"\E_{uu\lambda}") E_uuλλ = Symbol(r"\E_{uu\lambda\lambda}") E_uuuλ = Symbol(r"\E_{uuu\lambda}") u0_dot = Symbol(r"\dot{u}_0") u0_ddot = Symbol(r"\ddot{u}_0") u0_dddot = Symbol(r"\dddot{u}_0") u0_ddddot = Symbol(r"\ddddot{u}_0") i = Idx("i") j = Idx("j") k = Idx("k") l = Idx("l") λ = IndexedBase(r"\lambda") ξ = IndexedBase(r"\xi") ξ1 = IndexedBase(r"{\order[1]{\xi}}") ξ2 = IndexedBase(r"{\order[2]{\xi}}") v = IndexedBase("v") w = IndexedBase("w") E = IndexedBase("E") E_dot = IndexedBase("\dot{E}") E_ddot = IndexedBase("\ddot{E}") Note that the symbols: λ, ξ, v, w, E, E_dot and E_ddot are all instances of the class IndexedBase.

In other words, they can be indexed with symbolic indices