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Sensitivity of a homogeneous and isotropic second-gradient continuum model for particle-based materials with respect to uncertainties

This work concerns the probabilistic analysis of particle-based materials. More precisely, this work is devoted to the stochastic modeling of the geometric and constitutive microscale parameters associated with particle-pair interactions of an existing model for particle-based materials. Such an issue is addressed with a probabilistic methodology that relies on the maximum entropy principle from information theory. After dening and improving the chosen second-gradient continuum model for particle-based materials, it is shown that for micro-homogeneous and micro-isotropic materials, the involved microscale parameters turn out to be statistically independent. More precisely, the particle-pair distance between two consecutive particles is a uniformly distributed random variable and the specic microscale stiness parameters are Gamma-distributed random variables. A homogeneous and isotropic 2D concrete plate subjected to an axial load is considered for illustration purposes. A stochastic solver based on Monte Carlo numerical simulations and mixed nite element (FE) method are chosen. The FE discretization is applied to the weak formulation of the equivalent continuum model with random mechanical properties. On the contrary, the particle-pair distance and the microscale stiness parameters, which are the parameters of the boundary value problem formulated for the equivalent continuum model, are modeled as random variables. Finally, uncertainties propagation is discussed and statistical uctuations of the macro mechanical response are found to be signicant.

Introduction

Particle-based materials consist of an assembly of a great number of rigid particles with arbitrary shapes. For such complex systems, several discrete and equivalent continuum models have been proposed in the literature. In the last decades, numerous eorts have been made for improving the continuum-based approaches. The use of the generalized continuum theories has been proposed that enrich the classical ones with scale parameters related to particle-pair interactions. Among others, we mention nonlocal continuum theories, micropolar continuum theories and second-gradient continuum theories.

Nonlocal continuum theories dier from classical ones because the constitutive equations relating stress and strain are nonlocal. First works on the topic are found in [START_REF] Kröner | Elasticity theory of materials with long range cohesive forces[END_REF][START_REF] Green | Multipolar continuum mechanics[END_REF][START_REF] Eringen | On nonlocal elasticity[END_REF], where continuum models able to take into account nite range interaction forces are developed. Recent theoretical and numerical developments are presented in [START_REF] Fuschi | Size eects of small-scale beams in bending addressed with a strain-dierence based nonlocal elasticity theory[END_REF]. In [START_REF] Bazant | Instability, ductility, and size eect in strain-softening concrete[END_REF][START_REF] Bazant | Continuum theory for strain-softening[END_REF][START_REF] Bazant | Nonlocal continuum damage, localization instability and convergence[END_REF], applications concerning the failure of heterogeneous materials and the modeling of strain-softening are proposed.

Micropolar continuum theories are possibly traced back to [START_REF] Cosserat | Théorie des corps déformables[END_REF] that summarizes the main concepts discussed at the end of nineteenth century by Kelvin, Helmholtz, Duhem, Voigt, Le Roux, the Cosserats and others [START_REF] Altenbach | On generalized cosserat-type theories of plates and shells: a short review and bibliography[END_REF]. From a kinematic point of view, micropolar continuum theories add an independent rotational eld to the displacement eld considered in classical continuum theories. Recent results are given in [START_REF] Eremeyev | Foundations of micropolar mechanics[END_REF][START_REF] Altenbach | Generalized Continua from the Theory to Engineering Applications[END_REF]. Nowadays, micropolar continuum theories are used to model several phenomena in solid and uid mechanics [START_REF] Pietraszkiewicz | On natural strain measures of the non-linear micropolar continuum[END_REF]. In [START_REF] Manzari | Application of micropolar plasticity to post failure analysis in geomechanics[END_REF], a micropolar elastic model for soils is formulated that overcomes the numerical diculties encountered in the failure analysis performed within the framework of classical continuum theories. In [START_REF] Mohan | A frictional Cosserat model for the slow shearing of granular materials[END_REF], a rigid-plastic micropolar model is used for slow frictional ow of particle-based materials in order to predict experimental evidences for cylindrical Couette ow.

Second gradient theories are characterized by deformation energy functionals depending on the rst and second order derivatives of the displacement eld. Moreover, they are characterized by unusual boundary conditions whose physical signicance is addressed and claried in [START_REF] Dell'isola | The relationship between edge contact forces, double force and interstitial working allowed by the principle of virtual power[END_REF][START_REF] Dell'isola | Edge contact forces and quasi-balanced power[END_REF]. Precursor of second-gradient theories is Gabrio Piola whose works are summarized in [START_REF] Isola | The complete works of Gabrio Piola[END_REF][START_REF] Isola | The complete works of Gabrio Piola: Volume I[END_REF]. Second gradient theories are currently applied for describing the mechanical behaviors of metamaterials. A paradigmatic case is represented by pantographic structures [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium[END_REF][START_REF] Alibert | Truss modular beams with deformation energy depending on higher displacement gradients[END_REF][START_REF] Ciallella | Research perspective on multiphysics and multiscale materials: a paradigmatic case[END_REF][START_REF] Spagnuolo | Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures[END_REF]. Nevertheless, their use in technical contexts is limited by several diculties related to the experimental identication of second-order constitutive parameters, which is usually performed with arbitrary simplications [START_REF] Altan | On some aspects in the special theory of gradient elasticity[END_REF][START_REF] Lam | Experiments and theory in strain gradient elasticity[END_REF][START_REF] Yang | Couple stress based strain gradient theory for elasticity[END_REF]. In [START_REF] Misra | Identication of a geometrically nonlinear micromorphic continuum via granular micromechanics[END_REF][START_REF] Barchiesi | Granular micromechanics-based identication of isotropic strain gradient parameters for elastic geometrically nonlinear deformations[END_REF], a particle-based second-gradient continuum model is proposed that overcomes the above mentioned deciency. It allows us to express the second-gradient constitutive parameters in terms of relatively few microscale geometric and constitutive parameters related to the particle-pair interaction. Recent applications of this model concern the analysis of damage of particle-based materials by following a hemivariational approach [START_REF] Timofeev | Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution[END_REF][START_REF] Placidi | Micromechanics-based elasto-plasticdamage energy formulation for strain gradient solids with granular microstructure[END_REF].

The studies cited so far are deterministic. Material properties fail to be deterministic in reality and uncertainties have to be taken into account. Uncertainty quantication is important to correctly estimate mechanical responses of media made up of particle-based materials. A review of stochastic methods of analysis of particle-based-eects uncertainties at the microscale on their response at the macroscale is given in [START_REF] Ostoja-Starzewski | Random elds and processes in mechanics of granular materials[END_REF] within the framework of rst gradient continuum theories. Nevertheless, despite the intrinsic random nature of particle-based materials, uncertainties have not still been taken into account within the framework of second-gradient continuum theories. Recently, few studies involving some uncertain quantities have been proposed in the context of second-gradient theories, not for particle-based, but for ber materials [START_REF] Berkache | Construction of second gradient continuum models for random brous networks and analysis of size eects[END_REF][START_REF] Reda | Dynamical properties of random brous networks based on generalized continuum mechanics[END_REF] and for pantographic structures [START_REF] Turco | Pantographic structures presenting statistically distributed defects: Numerical investigations of the eects on deformation elds[END_REF][START_REF] Valle | The eect of local random defects on the response of pantographic sheets[END_REF].

This work provides for the rst time a study of the second-gradient continuum model for particle-based materials derived from [START_REF] Placidi | Micromechanics-based elasto-plasticdamage energy formulation for strain gradient solids with granular microstructure[END_REF][START_REF] Barchiesi | Granular micromechanics-based identication of isotropic strain gradient parameters for elastic geometrically nonlinear deformations[END_REF] in accounting for uncertainties and, more generally, for uncertainty quantication of a secondgradient continuum model for particle-based materials. The analyzed model could be also applied to two-phase composite materials with rigid inclusion and to granular materials. The application of this modeling to composite materials with rigid inclusion is immediate. On the contrary, if we wish to apply this modeling to granular materials, hypotheses should be added concerning the topology of contacts between contiguous grains, granulometry involved, grain sizes, grain shapes, and granular matter congurations. Moreover, assumptions should be added concerning the geometric disorder and structure of granular materials. This paper is organized as follows. In Section 2, the deterministic second-gradient continuum model for particlebased materials developed in [START_REF] Placidi | Micromechanics-based elasto-plasticdamage energy formulation for strain gradient solids with granular microstructure[END_REF][START_REF] Barchiesi | Granular micromechanics-based identication of isotropic strain gradient parameters for elastic geometrically nonlinear deformations[END_REF] is used and the analytical relationship between the rst-and second-gradient deformation tensors is modied for improving the algebraic derivation. Section 3 is devoted to the denition of the corresponding random second-gradient continuum model for particle-based materials. Under the hypotheses of micro-homogeneity and micro-isotropy, the prior probabilistic distributions for the involved geometric and constitutive microscale parameters are derived and discussed through the maximum entropy principle. Although the equivalent continuum model is derived from the discrete one, this is not a classical homogenization problem for which there is a microstructure that is a random medium represented by apparent mechanical properties and a macrostructure with eective mechanical properties that would be deterministic for scale separation. For the sake of simplicity, in Section 4, the stochastic boundary value (BVP) problem is introduced in the context of the application and not in a general framework. A derived stochastic computational model is constructed by means of the mixed nite element (FE) method [START_REF] Shekarchizadeh | A benchmark strain gradient elasticity solution in twodimensions for verifying computational approaches by means of the nite element method[END_REF][START_REF] Greco | An isogeometric implicit G1 mixed nite element for Kirchho space rods[END_REF] with the aid of open-source packages developed under the FEniCS project. The FE discretization is applied to the weak formulation of the equivalent continuum model with deterministic geometry. The only sources of uncertainty are the particle-pair distance and microscale stiness parameters, which are the BVP parameters that model material cohesion by describing particle interactions. As a consequence, the convergence with respect to the FE size mesh is not related to the random properties of the analyzed system.

For uncertainty-propagation analysis, a stochastic solver based on Monte Carlo numerical simulation is used whose convergence is studied. Finally, for this type of particle-based mechanical medium, a discussion on uncertainties propagation is presented.

Notation

A lower case letter such as x, η, u is a real deterministic variable except when used as an integer index as i, j, etc. Greek letters α, β, η and τ are either deterministic variables or integers as subscripts.

A boldface lower case letter such as x, η, u is a real deterministic vector.

An upper case letter such as X, H, U is a real random variable except when used as an integer index as A, B, etc.

A boldface upper case letter such as X, H, U is a vector random variable.

A lower case letter between brackets such as [x], [η], [u] is a real deterministic second-order tensor.

A boldface upper case letter between brackets such as [X], [H], [U ] is a real random second-order tensor.

A lower case Gothic letter between brackets such as [x], [h], [u] is a real deterministic third-order tensor.

A boldface upper case Gothic letter between brackets such as [X], [H], [U] is a real random third-order tensor.

A lower case letter between two brackets such as [[x]], [[z]], [[u]

] is a real deterministic fourth-order tensor.

A lower case Gothic letter between two brackets such as [[x]], [[h]], [[u]

] is a real deterministic fth-order tensor.

A lower case letter between three brackets such as [[[x]]], [[[h]]], [[[u]]

] is a real deterministic sixth-order tensor.

E: Mathematical expectation.

The Levi-Civita tensor calculus is used. Indices denoted by upper case letters are chosen to indicate components in the initial conguration and lowercase letters to indicate components in the current conguration.

Summation over the repeated Latin indices is used. There is no summation over repeated Greek indices. Superscripts denote the contravariant components, and subscripts denote the covariant ones.

∥x∥: Euclidean norm of x ∈ R n ∥A∥: Sup ∥x∥≤1 ∥Ax∥ operator norm of linear operator A.

[g]: metric tensor.

[δ]: Kronecker delta.

[x]

T : transpose of the second-order tensor [x], and x T is the second-order tensor of the transposition. 

Discrete model

We summarize the model proposed in [START_REF] Barchiesi | Granular micromechanics-based identication of isotropic strain gradient parameters for elastic geometrically nonlinear deformations[END_REF][START_REF] Timofeev | Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution[END_REF][START_REF] Placidi | Micromechanics-based elasto-plasticdamage energy formulation for strain gradient solids with granular microstructure[END_REF]. Let β be a rigid particle and let us build a discrete set of n rigid particles at distance ℓ from β (same arguments can be generalized for ℓ variable along the spatial directions). Let us consider the discrete system of rigid particles obtained by assembling s of these sets. It is a discrete grid of rigid particles within a bounded domain L of R 3 such that the distance between two consecutive particles in the grid is ℓ. Although any particle shape is acceptable, particle sizes must be suciently small to justify the passage from the discrete to the equivalent continuum model in Subsection 2.2. Let α and β be two consecutive particles in the grid, whose coordinate vectors are q α = (q 1 α , q 2 α , q 3 α ) and q β = (q 1 β , q 2 β , q 3 β ) in a given xed coordinate system dened by a generic basis of R 3 . We dene r = (r 1 , r 2 , r 3 ) : q → r(q) as the conguration function and we introduce the second-order tensor valued-function [f ] such as

[f ] : q → [f (q)] = {[f (q)] i A = ∂r i (q) ∂q A , i = 1, 2, 3; A = 1, 2, 3} (1) 
and we dene

[f β ] = [f (q β )]
. Let u αβ be the objective deformation vector such that 1

u αβ = f T β r (q α ) -r q β -q α -q β . (2) 
Truncated at the second-order, the Taylor expansion of r in the neighborhood of q β yields

r i (q α ) ≈ r i q β + ∂r i (q) ∂q A q=q β q A α -q A β + 1 2 ∂ 2 r i (q) ∂q A ∂q B q=q β q A α -q A β q B α -q B β . (3) 
Let n αβ be the unit vector dening the orientation of one pair (α, β) of two consecutive particles such as

q α -q β = n αβ ℓ. (4) 
Substituting Eqs. ( 3) and ( 4) in Eq. ( 2) yields

u C αβ = f T β C i f T β i B n B αβ ℓ + 1 2 ∂ 2 r i (q) ∂q A ∂q B q=q β n B αβ ℓ n A αβ ℓ -[δ] C B n B αβ ℓ = f T β C i f T β i B -[δ] C B n B αβ ℓ + 1 2 f T β C i ∂ 2 r i (q) ∂q A ∂q B q=q β n B αβ n A αβ ℓ 2 .
(

) 5 
1 In components:

u C αβ = f T β C i r i (q α ) -r i q β -q C α -q C β [e] C B = 1 2 [f ] C i f T i B -[δ] C B , (6) 
[h]

C AB = f T C i ∂ 2 r i ∂q A ∂q B . (7)
We introduce the notation [e β ] = [e] q β and [h β ] = [h] q β . The tensor [e] is the CauchyGreen tensor. Substituting Eqs. ( 6) and ( 7) into Eq. ( 5) yields

u C αβ = 2 [e β ] C B n B αβ ℓ + 1 2 f T β C i ∂ 2 r i (q) ∂q A ∂q B q=q β n B αβ n A αβ ℓ 2 = = 2 [e β ] C B n B αβ ℓ + 1 2 [h β ] C AB n B αβ n A αβ ℓ 2 . ( 8 
)
Equation ( 7) can be written (see [START_REF] Dell'isola | At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola[END_REF]) as

[h β ] C AB = 1 2 [g] DC ∂ [e] AD (q) ∂q B q=q β + ∂ [e] BD (q) ∂q A q=q β - ∂ [e] BA (q) ∂q D q=q β . ( 9 
)
Let us dene the elastic energy function ∆w αβ : u αβ → ∆w αβ (u αβ ) related to the interaction of the pair (α, β).

Since u αβ is an objective function, it is considered as a measure of deformation (see Eq. ( 2)). Among all possible choices for the function ∆w αβ , it is chosen such that ∆w αβ (u αβ ) = ∆w αβη (u αβ ) + ∆w αβτ (u αβ ) , [START_REF] Barchiesi | Granular micromechanics-based identication of isotropic strain gradient parameters for elastic geometrically nonlinear deformations[END_REF] in which

∆w αβη (u αβ ) = 1 2 k αβη ∥u αβη ∥ 2 , ∆w αβτ (u αβ ) = 1 2 k αβτ ∥u αβτ ∥ 2 , (11) 
and where

u αβη = 1 2 (u αβ • n αβ ) n αβ , u αβτ = u αβ -(u αβ • n αβ ) n αβ , (12) 
in which k αβη and k αβτ are two given positive local microscale constitutive parameters, and in which u αβη and u αβτ are the vector decomposition of the deformation vector u αβ parallel and orthogonal to n αβ , respectively. The vector decomposition of u αβ in 2u αβη and u αβτ with respect to the local coordinates system q 1(lc) , q 2(lc) , q 3(lc) q 2 q 3 q 2(lc) q 1(lc) q 3(lc) Figure 1: Vector decomposition of u αβ in the local coordinates system q (lc) = q 1(lc) , q 2(lc) , q 3(lc) , in which 2u αβη is the projection of u αβ with respect to n αβ and u αβτ is the projection on the plane dened by u αβ and u ατ .

Particles can have dierent sizes and dierent shapes. Any particle shape is admissible. Particle sizes need to be small enough to pass from the discrete to the equivalent continuum model. The quantities u αβ , u αβη , u αβτ have been dened in Eqs. ( 7) and [START_REF] Berkache | Construction of second gradient continuum models for random brous networks and analysis of size eects[END_REF]. They represent deformation measures of the particle-pair (α,β). due to the interactions between all the n consecutive particles of β, labeled as 1 β ,...,n β , is written as

∆w β = n β α=1 β ∆w αβ (u αβ ) = n β α=1 β 1 2 k αβη ∥u αβη ∥ 2 + 1 2 k αβτ ∥u αβτ ∥ 2 , (13) 
Finally, the total energy w related to the considered system of particles is equal to

w = s β=1 n β α=1 β ∆w αβ = s β=1 n β α=1 β 1 2 k αβη ∥u αβη ∥ 2 + 1 2 k αβτ ∥u αβτ ∥ 2 . ( 14 
)

Equivalent continuum model

If the distance ℓ between two consecutive particles is small enough with respect to the smaller characteristic dimension of domain L, we can replace the discrete model by an equivalent continuum model. Let n : ω → n (ω) be the orientation eld in which ω ∈ Ω = [0, 2π] × [0, 2π] and let u : q → u (q) such that

u C (q, ω) = 2 [e] C B (q) n B (ω) ℓ + 1 2 f T (q) C i ∂ 2 r i (q) ∂q A ∂q B n B (ω) n A (ω) ℓ 2 = = 2 [e] C B (q) n B (ω) ℓ + 1 2 [h] C AB (q) n B (ω) n A (ω) ℓ 2 . ( 15 
)
For the continuum model, the deformation energy w is written as

w = L ϕ (q) dq = L Ω ψ (ω, q) dω dq = L Ω 1 2 k η (ω, q) ∥u η (ω, q)∥ 2 + 1 2 k τ (ω, q) ∥u τ (ω, q)∥ 2 dω dq, (16) 
where ϕ : q → ϕ (q) is the specic deformation energy and ψ : (ω, q) → ψ(ω, q) is the specic deformation energy per unit direction, such that

ϕ (q) = Ω ψ (ω, q) dω, ψ (ω, q) = 1 2 k η (ω, q) ∥u η (ω, q)∥ 2 + 1 2 k τ (ω, q) ∥u τ (ω, q)∥ 2 , (17) 
in which u η : (ω, q) → u η (ω, q) and u τ : q → u τ (ω, q) are such that

u η (ω, q) = 1 2 (u (q) • n (ω)) n (ω) , u τ (ω, q) = u (q) -u η (ω, q) . ( 18 
)
The mappings k η : (ω, q) → k η (ω, q) and k τ : (ω, q) → k τ (ω, q) are the specic stiness elds per unit direction.

The specic deformation energy ϕ (q) is written as

ϕ (q) = 1 2 [[c]] BL CM (q) [e] C B (q) [e] M L (q) + 1 2 [[c]] BEF CD (q) [e] C B (q) [h] D EF (q) + 1 2 [[[a]]] ABF L CM (q) [h] C AB (q) [h] M F L (q) , ( 19 
) in which [[c]], [[[a]]] and [[c]
] are the constitutive tensors that are detailed in [START_REF] Barchiesi | Granular micromechanics-based identication of isotropic strain gradient parameters for elastic geometrically nonlinear deformations[END_REF] and where [[c]] is the classical constitutive tensor.

Case of a homogeneous and isotropic equivalent continuum model

Let us call micro-homogeneous a continuum characterized by constant specic microscale stiness elds along spatial direction q, i.e., k η (ω, q) = k (hom) η (ω) and k τ (ω, q) = k (hom) τ

(ω). Let us call micro-isotropic a continuum in which the specic microscale stiness elds are constant along the direction of interaction ω, i.e, k η (ω, q) = k (iso) η (q) and k τ (ω, q) = k (iso) τ (q). If the continuum is micro-homogeneous and micro-isotropic, we have k η (ω, q) = k η and k τ (ω, q) = k τ , where k η and k τ belongs to R + . At the macroscale, choosing the coordinate system dened by the canonical (or standard) basis of R 3 , it is proven in [START_REF] Barchiesi | Granular micromechanics-based identication of isotropic strain gradient parameters for elastic geometrically nonlinear deformations[END_REF][START_REF] Timofeev | Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution[END_REF][START_REF] Placidi | Micromechanics-based elasto-plasticdamage energy formulation for strain gradient solids with granular microstructure[END_REF] that the homogeneous and isotropic continuum is characterized by the specic deformation energy ϕ (q) dened by

ϕ (q) = ξ 2 [e] A B (q) [e] B A (q) + 1 2 ξ 1 [e] A A (q) [e] B B (q) + +2 ξ 3 [h] A AB (q) [h] B CC (q) + 1 2 ξ 4 [h] A AB (q) [h] C CB (q) + +2 ξ 5 [h] A BA (q) [h] B CC (q) + ξ 6 [h] A BC (q) [h] A BC (q) + 2 ξ 7 [h] A BC (q) [h] C AB (q) . ( 20 
)
The symbols ξ 1 and ξ 2 are the Lamé coecients in classical elasticity. The term homogeneous is used here to underline that ξ 1 , ξ 2 ,..., and ξ 7 are constant. The term isotropic is used here to underline that the specic deformation energy is invariant under coordinate rotation (see [START_REF] Abali | Strain gradient elasticity with geometric nonlinearities and its computational evaluation[END_REF] for more details). By adding the hypotheses of micro-isotropic and micro-homogeneous continua, the functions ξ 1 and ξ 2 are dened by

ξ 1 = ξ 1 (ℓ, k η , k τ ) = 4π ℓ 2 15 (k η -4k τ ) , ξ 2 = ξ 2 (ℓ, k η , k τ ) = 4π ℓ 2 15 (k η + 6k τ ) . (21) 
The remaining parameters ξ 3 , ξ 4 , ξ 5 , ξ 6 and ξ 7 depend on ξ 1 and ξ 2 , which, in turn depend on ℓ, k η and k τ ,

ξ 3 = ξ 3 (ℓ, k η , k τ ) = ℓ 2 112 ξ 1 (ℓ, k η , k τ ) = ξ 4 , ξ 5 = ξ 5 (ℓ, k η , k τ ) = ℓ 2 1120 7 ξ 2 (ℓ, k η , k τ ) + 3 ξ 1 (ℓ, k η , k τ ) = ξ 7 , (22) 
ξ 6 = ξ 6 (ℓ, k η , k τ ) = ℓ 2 1120 7 ξ 2 (ℓ, k η , k τ ) -4 ξ 1 (ℓ, k η , k τ ) . (23) 
In the following, a probabilistic model is proposed for ℓ, k η and k τ under the hypotheses of micro-homogeneity and micro-isotropy. Then, the random mechanical response of continua described by Eqs. ( 20), [START_REF] Eringen | On nonlocal elasticity[END_REF], and ( 23) is studied.

3 Dening the random particle-based continuum Let X : θ → X (θ) = (L (θ) , K η (θ) , K τ (θ)) be the random variable with values in R 3 , dened on the probability space (Θ, T , P), whose probability distribution is P X on R 3 . The random variable L describes the random particlepair distance between two consecutive particles, K η and K τ are the random microscale stiness elds modeling interactions between two consecutive particles. Under the hypotheses of micro-homogeneity and micro-isotropy, L, K η , and K τ are assumed to be independent of the spatial and orientation directions. Equation ( 21) allows us to dene the random variables

Ξ 1 : θ → Ξ 1 (θ) = ξ 1 (L (θ) , K η (θ) , K τ (θ)) and Ξ 2 : θ → Ξ 2 (θ) = ξ 2 (L (θ) , K η (θ) , K τ (θ)) such that Ξ 1 = 4πL 2 15 (K η -4K τ ) , Ξ 2 = 4πL 2 15 (K η + 6K τ ) , (24) 
The symbols Ξ 1 and Ξ 2 correspond to the random Lamé coecients in classical elasticity. Equations ( 22) and [START_REF] Fuschi | Size eects of small-scale beams in bending addressed with a strain-dierence based nonlocal elasticity theory[END_REF] lead us to dene the random variables

Ξ 3 = Ξ 4 : θ → Ξ 3 (θ) = Ξ 4 (θ) = ξ 3 (L (θ) , K η (θ) , K τ (θ)), Ξ 5 : θ → Ξ 5 (θ) = Ξ 7 (θ) = ξ 5 (L (θ) , K η (θ) , K τ (θ)) and Ξ 6 : θ → Ξ 6 (θ) = ξ 6 (L (θ) , K η (θ) , K τ (θ)).
At q, the random specic deformation energy Φ (q) : θ → Φ (q, θ) is obtained by substituting the deterministic quantities (ξ 1 , ξ 2 , [e](q) , [h](q)) in Eq. ( 20) by the random ones (Ξ

1 (θ) , Ξ 2 (θ) , [E](q, θ) , [H](q, θ))
, and is given by

Φ (q) = Ξ 2 [E] A B (q) [E] B A (q) + 1 2 Ξ 1 [E] A A (q) [E] B B (q) + +2 Ξ 3 [H] A AB (q) [H] B CC (q) + 1 2 Ξ 4 [H] A AB (q) [H] C CB (q) + +2 Ξ 5 [H] A BA (q) [H] B CC (q) + Ξ 6 [H] A BC (q) [H] A BC (q) + 2 Ξ 7 [H] A BC (q) [H] C AB (q) , (25) 
where [E] (q) : θ → [E] (q, θ) is the random CauchyGreen deformation tensor and [H] (q) : θ → [H] (q, θ) is the random second-gradient deformation tensor, which depend on the random conguration function R : θ → {q → R (q, θ)}. The random deformation energy per unit direction, Ψ (ω, q) : θ → Ψ (ω, q, θ), is given by

Ψ (ω, q) = 1 2 K η ∥U η (ω, q)∥ 2 + 1 2 K τ ∥U τ (ω, q)∥ 2 , (26) 
in which

U η (ω, q) = 1 2 (U (q) • n (ω)) n (ω) , U τ (ω, q) = U (q) -U η (ω, q) , (27) 
and where U : θ → {q → U (q, θ)} is the random eld dened by

U C (q) = 2 [E] C B (q) n B (ω) ℓ + 1 2 F T (q) C i ∂ 2 R i (q) ∂q A ∂q B n B (ω) n A (ω) ℓ 2 = = 2 [E] C B (q) n B (ω) ℓ + 1 2 [H] C AB (q) n B (ω) n A (ω) ℓ 2 , (28) 
where

[F (q)] : θ → [F (q)](θ) = {[F (q)] i A (θ) = ∂R i (q,θ) ∂q A , i = 1, 2, 3 ; A = 1, 2, 3}.
The approach proposed in [START_REF] Guilleminot | On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties[END_REF] for classical linear elasticity is used in Subsection 3.2. In Subsection 3.1, the maximum entropy principle is used to dene a prior probability model for X = (L, K η , K τ ), which are the only source of uncertainty of the continuum model under consideration. In the spirit of the previous deterministic model, since we analyze the equivalent continuum model, the geometry of the single rigid particles, which are modeled as material points, are not considered here.

The connectivity of the particles is modeled by means of the microscale stiness parameters K η and K τ . The random variables L, K η , and K τ are assumed to be independent of spatial and orientation directions. If we wish to apply the exposed second-gradient continuum model for particle-based materials to granular materials, as for the deterministic case, remarks should be added concerning the geometry and shapes of the grains, granulometry involved, geometry disorder, and structure of the granular medium. The application is immediate for composite materials.

Maximum entropy principle for constructing the prior probability distribution of uncertain parameters

The Shannon entropy E(p X ) of a probability density function (pdf ) p X on R n is dened by

E(p X ) = - R n p X (x) log (p X (x)
) dx, which measures the level of uncertainties. Higher uncertainty results in a larger Shannon entropy.

In accordance with the maximum entropy (MaxEnt) principle, the pdf of the R 3 -valued random variable X = (L, K η , K τ ) maximizes the Shannon entropy under the constraints dened by the available information (see for instance [START_REF] Soize | Uncertainty Quantication[END_REF]) that are given as follows:

(Q1) The support of p X is Supp p X = S X , S X ⊆ [ζ 1 , ζ 2 ] × R + × R + ⊂ R 3 , (29) 
where 0 < ζ 1 < ζ 2 < +∞.

(Q2) The mean value of K η and K τ are given and nite,

E {K η } = γ η < +∞ , γ η ∈ R + , (30) 
E {K τ } = γ τ < +∞ , γ τ ∈ R + . (31) 
(Q3) The inverse of the random matrix [K] such that

[K] =    K η 0 0 K τ    , (32) 
has a nite second-order moment (for physical consistencies),

E K -1 2 < +∞. (33) 
This property can be stated as suggested in [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF] and can be replaced by the following one: the random variable log (det ([K])) has a given mean value whose absolute value is nite,

E {log (det ([K]))} = γ det , |γ det | < +∞. ( 34 
)
Since the random variable det ([K]) = K η K τ , Eq. ( 34) can be rewritten as

E {µ (K η , K τ )} = γ det , µ (K η , K τ ) = log (K η K τ ) . ( 35 
)
We now consider the R 2 -valued random variable (K η , K τ ) dened on (Θ, T , P). The constraints stated by propositions (Q2) and (Q3) read

E {h (K η , K τ )} = γ, ( 36 
)
where γ = (γ η , γ τ , γ det ) and h : R

2 → R 3 such that h(k η , k τ ) = (k η , k τ , log(k η k τ )). ( 37 
)
Let C free (see [START_REF] Soize | Uncertainty Quantication[END_REF]) be the set of functions on R 3 , dened by

C free = p ∈ L 1 R 3 , R + , Supp p = S X . ( 38 
)
The set C ad of the admissible probability density functions p : (ℓ,

k η , k τ ) → p(ℓ, k η , k τ ) of X = (L, K η , K τ ) is dened by C ad = p ∈ C free , R 3 p (ℓ, k η , k τ ) dℓ dk η dk τ = 1, R 3 h (k η , k τ ) p (ℓ, k η , k τ ) dℓ dk η dk τ = γ . ( 39 
)
Under the constraints dened by (Q1), (Q2), and (Q3), and using the MaxEnt principle, it is possible to prove that pdf p X of X is the unique solution to the following optimization problem, p X = arg max

p∈C ad E (p) , (40) 
where p → E(p) is the Shannon entropy dened by

E(p) = - R 3 p (ℓ, k η , k τ ) log (p (ℓ, k η , k τ )) dℓ dk η dk τ . ( 41 
)

Eective construction of the prior probability distribution of uncertain parameters

Proposition 1 For the micro-homogeneous and micro-isotropic continuum in the eld of the particle-based theory presented in Section 2, the expression of the joint probability density function of the random variables L, K η , and K τ , constructed using the maximum entropy (MaxEnt) principle under the constraints dened by (Q1), (Q3), and (Q3), shows that random variables L, K η and K τ are statistically independent. It also shows that the random

variable L is uniformly distributed in [ζ 1 , ζ 2 ],
and that K η and K τ are Gamma distributed in R + , whose parameters are

(α η , β η ) = 1 -λ c , m Kη 1 -λ c and (α τ , β τ ) = 1 -λ c , m Kτ 1 -λ c . (42) 
In Eq. ( 42), m Kη = E {K η } and m Kτ = E {K τ } are the given mean values of K η and K τ , and 

λ c ∈ ]-∞,
m Kη = α η β η , m Kτ = α τ β τ , cv Kη = cv Kτ = 1 √ 1 -λ c . ( 43 
)
Note that the statistical uctuations of K η and K τ , which are driven by their coecients of variation, depend only on the same single parameter λ c .

Proof The following proof is inspired from [START_REF] Guilleminot | On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties[END_REF]. The solution of the optimization problem dened by Eq. ( 40) is written as

p L Kη Kτ (ℓ, k η , k τ ) = 1 S X (ℓ, k η , k τ ) c sol 0 exp(-⟨λ sol , h (k η , k τ )⟩) , ∀ (ℓ, k η , k τ ) ∈ R 3 , (44) 
where h : R To simplify the presentation, for constructing and analyzing the boundary value problem (BVP) for the random particle-based continuum model exposed in Section 3, the methodology is directly applied to a composite sample and not presented in a general case. We consider a plate with a hole placed in the middle whose mechanical properties are those of concrete and that is subjected to a numerical axial traction test. The domain of this plate is denoted by L and its boundary is ∂L = ∂L 0 ∪ ∂L t ∪ ∂L 1 . A zero Dirichlet condition is applied on ∂L 0 (left end), where the body is clamped. A Neumann boundary condition is applied on ∂L t (right end), where the uniaxial traction is applied. The displacement eld is free on ∂L 1 (see Fig. 2).

2 → R 3 is such that h(k η , k τ ) = (k η , k τ , log(k η k τ )) (see Eq. ( 37 

Geometry, load, deterministic and random mechanical properties

The values of the geometry parameters dened in Fig. 

Let σ Kη and σ Kτ be the standard deviations of the random variables K η and K τ . Following Proposition 1 we have now to choose the value of cv K := cv Kη = cv Kτ , and of

ζ 1 and ζ 2 . Since L is uniformly distributed in [ζ 1 , ζ 2 ], we have m L = (ζ 1 + ζ 2 ) /2 and σ L = (ζ 2 -ζ 1 ) /(2 √ 3). Thus, one has ζ 1 = m L -cv L m L √ 3 and ζ 2 = m L + cv L m L √ 3.
In this application, m L = 1 × 10 -4 m. The sensitivity in the mechanical response of the analyzed continuum sample with respect to cv L and cv K is investigated.

Strong stochastic solution of the weak formulation of the boundary value problem

In this section, rst, we summarize the weak formulation of the deterministic BVP, which will be used for constructing the computational model based on the mixed nite element (FE) method. Then, we introduce stochasticity in this weak formulation yielding the random weak formulation. The strong stochastic solution of this random weak formulation will be searched. Note that such a formulation is adapted to a stochastic solver based on Monte Carlo (MC) numerical simulation that will be introduced in Subsubsection 4.2.3.

b 1 b 3 b 2 t=1 500 N/mm 2 q 1 q 2
Figure 2: Numerical axial traction test on a plate made of particle-based materials with uncertainties. In the application, the constitutive parameters are the ones of concrete. In the present gure, the red points are used to underline that we are dealing with a particle-based material and, more specically, with a composite material whose particles (or inclusions) have a random distance that is independent of the spatial and orientation directions.

These assumptions on the distance between particles may be relaxed to describe more complex microstructures in which the particle-pair distance, and consequently ℓ, would depend on the spatial directions.

Derivation of the weak formulation of the deterministic boundary value problem

Let C V be the admissible space of suciently dierentiable functions v : q → v (q) dened on L with values in R 2 such that the trace of v is zero on the boundary ∂L 0 . Since the right-hand side of Eq. ( 20) exhibits the deformation tensors that are a function of v and since coecients ξ 1 to ξ 7 depend on x = (ℓ, k η , k τ ), we rewrite function ϕ(q) as ϕ(v, x)(q) in order to explicit the dependencies in v and x, where ϕ : (v, x) → φ (v, x) is such that ϕ (v, x)(q) = ϕ (q). The weak formulation of the deterministic BVP is: nd v in C V such that

(δπ) (v, δv; x) = 0 , ∀ δv = δv 1 , δv 2 , δv 3 ∈ C V , ( 54 
)
where δπ is the rst variation of the energy functional π dened by

π (v; x) = L ϕ (v, x)(q) dq - ∂Lt t v 1 (q) ds(q), (55) 
in which ds(q) is the surface element.

Random weak formulation and its strong stochastic solution

The random weak formulation is derived from Eqs. (54) and (55) in substituting x by the random vector X whose probability model is dened in Proposition 1. Consequently, displacement eld v becomes a random displacement eld V : θ → {V (θ) : q → V (q, θ)} such that V (θ) belongs to C V and conguration r becomes the random conguration function R : θ → {q → R (q, θ)} dened in Section 3. The strong stochastic solution consists in nding V (θ), for θ in Θ, with values in C V such that (δπ) (V (θ), δv; X(θ)) = 0 , ∀ δv ∈ C V , a.s.

(56)

4.2.3

Monte Carlo numerical simulation as stochastic solver

The construction of the strong stochastic solution of the random weak formulation is based on the use of the MC numerical simulation and on Eq. (56). Consequently, the steps of the stochastic solver are as follows.

1. Generation of n independent realizations X(θ 1 ),...,X(θ n ) of random variable X using the probability distribution P X (dx) = p X (x)dx dened in Proposition 1, in which X = (L, K η , K τ ).

2. Computation of n independent deterministic solutions V (θ 1 ) , ..., V (θ n ) that satisfy Eq. ( 56). In fact, the mixed FE method is used for each computation, where the displacement eld and its gradient are solved both as unknowns under constraints imposed by means of Lagrange multipliers. In the formulation used, the denition of the stress tensors is not required and related issues are avoided. In this regard, one should mention the important issue of symmetry loss of the Cauchy stress tensor within the framework of secondgradient continuum models [START_REF] Bardet | The asymmetry of stress in granular media[END_REF]. For second-gradient continuum models, details concerning the application of the mixed FE method are presented in [START_REF] Shekarchizadeh | A benchmark strain gradient elasticity solution in twodimensions for verifying computational approaches by means of the nite element method[END_REF]. In the presented application, the weak formulation of the equivalent continuum model is discretized using nite elements. We are simulating a particle-based material not with a random microstructure, but with random particle-pair distance between consecutive particles and random microscale stiness parameters. As previously explained, the mesh size does not depend on the random medium properties. Although the equivalent continuum model is derived from the discrete model, this is not a classical homogenization procedure in which the microstructure is a random medium represented by apparent mechanical properties and in which the macrostructure has eective mechanical properties that are deterministic for scale separation. As a consequence, the random uctuations of the mechanical response do not depend on the mesh size. All simulations are performed by a computing node using Intel Xeon E7-4850, in total 64 cores each with a 40 MB cache, equipped with 256 GB memory in total, running Linux Kernel 5 Ubuntu 20.04. The code is written in Python by using multithreading such that thousands of computations are distributed asynchronously to the available resources eciently. The code in Python is wrapped by the FEniCS software into a C++ code and is solved as a compiled program. Therefore, yet ecient in developing the code in Python, the solution is highly optimized by using a massive parallelization under the current implementation. The Python code, generated during the current study, is part of the FEniCS project available at http://www.fenicsproject.org/download, and an example for the computational implementation is available in [START_REF] Abali | Supply code for computations[END_REF] to be used under the GNU Public license [START_REF]Gnu general public license[END_REF].

3. We consider a nite set of scalar observations expressed in terms of V , for instance, the energy and some components of the displacement eld at a given point q. Let Z be the real valued-random variable representing one of the considered observations. For any xed value n, we estimate the mean value m

(n) Z and the standard deviation σ

(n) Z .

4. The convergence of the stochastic solver with respect to n is performed for each random variable Z by estimating the quantity ε

(n) Z = η σ Z /
√ n following the procedure in ([41] pp. 35) based on the central limit theorem. For that, we will plot the dimensionless quantity ε 

(n) Z /m (n) Z where ε (n) Z = η σ (n) Z / √ n.
(%) cv V 1 1 (%) cv V 1 
(%) cv V 1 2 (%) cv V 1 2 as a function of cv L and cv K (d) Figure 4: Graphs of (a) cv Φ1 , (b) cv V 1 1 , (c) cv V 1 2 , (d) cv V 2 1
for dierent values of cv L and cv K . Solid line: results for cv L equal to cv K both dierent from zero. Dashed line: results for cv L dierent from zero and cv K equal to zero. Dotted line: results for cv L equal to zero and cv K dierent form zero. 

m Δ V 1 1 (%) m Δ V
0 cv L , cv K (%) m Δ V 1 2 (%) m Δ V 1 2 as a function of cv L and cv K (d) Figure 5: Graphs of (a) m ∆Φ 1 , (b) m ∆ V 1 1 , (c) m ∆ V 1 2 , (d) m ∆ V 2 1
for dierent values of cv L and cv K . Solid line: results for cv L equal to cv K both dierent from zero. Dashed line: results for cv L dierent from zero and cv K equal to zero. Dotted line: results for cv L equal to zero and cv K dierent from zero. for dierent values of cv L and cv K . Solid line: results for cv L equal to cv K both dierent from zero. Dashed line: results for cv L dierent from zero and cv K equal to zero. Dotted line: results for cv L equal to zero and cv K dierent form zero. This work is the rst devoted to the construction of a probabilistic model for the geometric and constitutive microscale parameters of a second-gradient model for particle-based materials. We have improved the relationship between the Cauchy deformation tensor and the second-gradient deformation tensor.

The statistical dependency between the particle-pair distance between two consecutive particles and the microscale stiness parameters has been investigated for the micro-homogeneous and micro-isotropic continuum. A probabilistic model for these uncertain parameters has been constructed using the maximum entropy (MaxEnt) principle. Using the MaxEnt principle with the available information, it has been shown that the three considered uncertain parameters are statistically independent. The particle-pair distance between two consecutive particles is uniformly distributed, the microscale stiness parameters are Gamma-distributed.

For the considered application, it has been shown that the random mechanical response, such as the specic deformation energy and displacements at some points, exhibits nonnegligible statistical uctuation with respect to the level of uncertainties. It has been observed that the statistical uctuations of the random mechanical responses are more inuenced by the level of uncertainties of the particle-pair distance between two consecutive particles.

1 B

 1 : indicator function of a set B.

is shown in Fig. 1 .

 1 For technical needs, no coupling energetic term, such as ∥u αβη ∥ ∥u αβτ ∥, is considered between u αβη and u αβτ . It allows us to state a relationship between the microscale constitutive parameters, k αβη and k αβτ , and the macroscale constitutive parameters, and to obtain an equivalent second-gradient continuum model for particle-based based materials that generalizes the classical (or Cauchy) continuum model. The energy ∆w β

  )), the positive normalization constant 4 Stochastic boundary value problem and its random solution dened in the application framework

  (2) are b 1 = 3×10 -1 m, b 2 = 5×10 -2 m, and b 3 = 1×10 -2 m. The amplitude of the uniaxial traction load is t = 1.5×10 9 N/m 2 . The mean values m Ξ1 = E {Ξ 1 } and m Ξ2 = E {Ξ 2 } of the random Lamé coecients Ξ 1 and Ξ 2 are such that m Ξ1 = 3.529 × 10 9 N/m 2 and m Ξ2 = 10 10 N/m 2 . Using Eq. (24) and because L is independent on K η and K τ , then, solving the linear equations for the mean values of K η and K τ yields m Kη = E {K η } = 8.613 × 10 15 N/m 4 , m Kτ = E {K τ } = 1.029 × 10 15 N/m 4 .
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 6122712 Figure 6: Graphs of (a) rms ∆Φ 1 , (b)rms ∆ V 1 1 , (c) rms ∆ V 1 2 , (d) rms ∆ V 2 1for dierent values of cv L and cv K . Solid line: results for cv L equal to cv K both dierent from zero. Dashed line: results for cv L dierent from zero and cv K equal to zero. Dotted line: results for cv L equal to zero and cv K dierent form zero.

  Kη and m Kτ and of the coecients of variation cv Kη = σ Kη /m Kη and cv Kτ = σ Kτ /m Kτ of K η and of K τ ,

1[ controls the statistical uctuations. The parameters (α η , β η ) and (α τ , β τ ) can be expressed as a function of the mean values m
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c sol 0 and the Lagrange multiplier λ sol = (λ η , λ τ , λ c ) are such that p L Kη Kτ belongs to the admissible set C ad dened by Eq. ( 39). An algebraic calculation shows that the support S X introduced in Eq. ( 29) can be written as S X =

[ζ 1 , ζ 2 ] × R + × R + and that, substuiting Eq. ( 37) into [START_REF] Turco | Pantographic structures presenting statistically distributed defects: Numerical investigations of the eects on deformation elds[END_REF], p L Kη Kτ can be written as p L Kη Kτ (ℓ, k η , k τ ) = p L (ℓ) p Kη (k η ) p Kτ (k τ ) [START_REF] Yang | Couple stress based strain gradient theory for elasticity[END_REF] in which

and

where c 1 , c 2 , and c 3 are positive normalization constants such that c sol = c 1 c 2 c 3 . As a consequence, the random variables L, K η and K τ are statistically independent. Hence, L is uniformly distributed, K η and K τ are Gamma

where Γ : z → Γ (z) = +∞ 0 s z-1 exp (-s) ds is the Gamma function. The normalization constants are found to be

while it can be deduced that

To guarantee the nite value of the integrals in Eqs. ( 50) and (51), we must have 1 -λ c > 0, λ η > 0 and λ τ > 0. Using the argument presented in Appendix B of [START_REF] Guilleminot | On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties[END_REF], it can be seen that this algebraic solution is the unique solution of the optimization problem dened by Eq. [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF].

Let us emphasize that the outcomes presented in this section are the result of applying the MaxEnt principle with the available information (Q1), (Q2), and (Q3).

an error of 0.49 % with respect to the derived mean values was estimated to be 0.95 by considering n = 10 000.

The choice to analyze the mechanical response at points q 1 and q 2 is due to two reasons: an energy concentration occurs at q 1 and the maximum displacement occurs at q 2 . The coecients of variation cv

, and cv V 2

obtained for dierent values of cv L and cv K are shown in Fig. 4. Moreover, the mean values

and the root mean square values rms ∆Φ 1 , rms

of the dimensionless random variables

obtained for dierent values of cv L and cv K are shown in Figs. 5 and6, where

2 , and V 2 1 are the specic deformation energy at q 1 , the horizontal displacements at q 1 and q 2 , the vertical displacement at q 1 corresponding to the nominal values of L, K η and K τ . For dierent values of cv L and cv K , Fig. 7 shows the graph of the dimensionless quantities dened by

Equation ( 59) denes the relative dierences between the coecients of variation of 

for dierent values of cv L and cv K to study the convergence with respect to n. Solid line: results for cv L = 15 % and cv K = 15 % (yellow), cv L = 15 % and cv K = 0 (red), cv L = 0 and cv K = 15 % (black). Dashed line: results for cv L = 10 % and cv K = 10 % (yellow), cv L = 10 % and cv K = 0 (red), cv L = 0 and cv K = 10 % (black). Dotted line: results for cv L = 5 % and cv K = 5 % (yellow), cv L = 5 % and cv K = 0 (red), cv L = 0 and cv K = 5 % (black).