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Investigating the error on autocorrelation for operational modal analysis
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Abstract

Autocorrelation is commonly used in signal processing for analyzing time signals, however the shape and magni-
tude of its error is rarely addressed. Previous research showed that in the general case, the error on the autocorrelation5

estimator of an arbitrary signal is inversely proportional to the square root of the signal length. For operational modal
analysis of linear systems under unknown ambient excitation, this error seems to present a peculiar shape influenc-
ing the estimation of damping ratios. In this paper the error on autocorrelation for a linear, time-invariant system
subjected to white Gaussian noise is analytically and numerically studied. It is found to be very similar to the sys-
tem’s response to an ambient noise, thus with a frequency content close to that of the expected autocorrelation itself.10

An upper bound of error magnitude is found for each mode of the system. Then, the resulting error on damping
computations is investigated through numerical simulations applied to a two degrees of freedom mechanical system.
Numerical outcomes show good agreement with the theoretical part and are then supported by experimental data of a
prestressed concrete bridge under ambient traffic. This study allows for a better understanding and quantification of
the inaccuracy on damping ratios computation through techniques using autocorrelation in time domain, notably the15

logarithmic decrement or time-frequency domain decomposition based on wavelet analysis.

Keywords: Autocorrelation, Linear time-invariant systems, Operational modal analysis, Ambient excitation,
Damping, Wavelet analysis, Prestressed concrete bridge

1. Introduction

Techniques estimating modal structural parameters only based on the output dynamic responses became more20

and more popular as Operational Modal Analysis (OMA) or output-only modal analysis, particularly in the civil
engineering community because they allow for the identification of the modal characteristics of a given structure
under operating conditions. In ambient vibration tests, the structure under study may be subjected to several sources
of excitation caused by urban traffic, seismic activity, wind, etc, which are not measured but assumed to be “broadband
random” (and often modeled as a white noise), and only responses of the structure are measured. All aspects of25

operational modal analysis for civil engineering are covered in [1] from theoretical background to applications. OMA
has become the primary modal testing method in civil engineering applications and the number of reported case
studies is abundant [2, 3, 4].

A broad classification can be made for OMA methods according to two criteria: frequency domain or time domain,
and Bayesian or non-Bayesian [5]. Bayesian methods were developed in time domain and frequency domain after30

Non-Bayesian ones. In Bayesian techniques, modal parameters are modeled as random variables with a probability
distribution depending on the available information. The direct problem is first addressed: given the modal parameters,
what is the distribution of data? Bayes’ theorem determines the probability that an event occurs from another event
already occurred, provided that these two events are interdependent. The theorem allows here to swap the roles of
modal parameters and available data, so that the inverse problem: given the data, what is the distribution of the35

modal parameters? can also be addressed in full details. Probability is used as a measure of the relative possibility
of outcomes, given a model of the system and measured data. Recently, some Bayesian methods estimating modal
parameters through maximum likelihood computations were developed, allowing an estimation of their error [6, 7].
In this paper, the study is restricted to non-Bayesian methods.

As OMA is based on the assumption of a random input, non-Bayesian methods generally use certain statistical40

estimators with known theoretical expectations such as the correlation function or the spectral density of the mea-
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sured vibrations. Common non-Bayesian methods include stochastic subspace identification (time domain) [8] and
frequency domain decomposition (frequency domain), using the singular value decomposition of the power spectral
density matrix [9]. In [10, 11], time–frequency instantaneous estimators are proposed for the identification of damping
from signals measured in ambient vibration conditions. In [10], from each signal, a time function of modal damping45

and amplitude is extracted, providing punctual information on the stability and consistency of structural damping es-
timate. In [11], the wavelet spectral and instantaneous wavelet spectral functions defined from the continuous wavelet
transform of response signals, give an estimation of modal viscous damping ratio for stationary processes and locally
stationary processes. A ”smoothed” estimate has been then produced, strongly depending on the choice of the time-
frequency resolution of the wavelet transform. Based on energetic properties, an optimal value of this quality factor50

controlling the wavelet time-frequency resolution is proposed.
Numerous techniques for OMA purposes are based on autocorrelation and cross-correlation functions, especially

in frequency domain using power spectrum density [12]. In this paper, only OMA methods based on the analysis of
autocorrelation functions in time domain are considered, notably those that rely on the wavelet transform [13, 14]
and the logarithmic decrement [15]. Estimating autocorrelation from a finite size signal inevitably introduces an error55

(defined as the difference with its expectation for a non-biased estimator), yet the matter of the results precision is
rarely addressed, especially for the damping computations which often yield significant inaccuracies, in some cases
more than 100 % [11, 16]. Bendat and Piersol [17] studied the variance of the autocorrelation estimator in the general
case, and found that it is inversely proportional to the length of the acquired signal. Similarly, Vandiver [18] studied
the variance of the random decrement signature, which can be directly linked to the autocorrelation function [19],60

and came to the same conclusion. However, to our knowledge, the special case of linear systems under white noise,
and specifically the shape of the error on the associated autocorrelation, has never been investigated. The aim of
this paper is to characterize the shape and magnitude of the error on the autocorrelation function estimator in time
domain for responses of linear systems to unknown white Gaussian noise. The outcomes of the study allow for a
better understanding and quantification of the resulting errors on modal parameters, especially damping ratios.65

This paper is structured as follows: the expectation of the autocorrelation of a linear system under white Gaussian
noise is reminded in section 2 and the shape and magnitude of its error is investigated in section 3. Finally, the resulting
error on damping computations is derived, and numerical simulations and experimental results of a monitored bridge
are presented.

2. Definitions and expected autocorrelation70

For simplicity and similarity with numerical computations, we will use discrete sampled signals instead of con-
tinuous ones. In addition, the considered linear systems will have only one input and output, although they can model
multiple degrees of freedom, acting as linear filters.

2.1. Reminders and notations
For discrete signals u, v ∈ CZ, we define here the convolution product as:75

u ∗ v [n] = ∆t
+∞∑

k=−∞

u[n − k] v[k], (1)

where n ∈ Z, and ∆t > 0 is the time increment. Then autocorrelation of a finite energy signal u is defined as:

Ru[n] = ∆t
+∞∑

k=−∞

u[k] u∗[k − n], (2)

where the exponent ∗ refers to the complex conjugate. This implies notably that Ru[−n] = R∗u[n]. Alternative defi-
nitions for autocorrelation are often used, with normalization coefficients that can lead to biased or unbiased estima-
tors [17]. We decide to use a simple definition, because it can always be normalized afterwards.

Realistically, physical signals are measured only on finite time intervals. Thus, for any discrete signal u ∈ CZ, we80

introduce its windowed counterpart ũ:

ũ[n] =

{
u[n] if n ∈ {0, . . . , N − 1}
0 else, (3)
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where N ∈ N∗ is the number of sampled points.

2.2. Expected autocorrelation for a linear system
Let w be a discrete, white Gaussian noise, defined by:

w[n] ∼ N(0, σ2), (4)

where the w[n] are mutually independent. Then we define the discrete response x of a linear system to w as:85

x[n] = h ∗ w [n], (5)

where h is the discrete impulse function of the system. If λ1, . . . , λP denote the poles of the system’s transfer function,
its impulse function can be written as [20]:

h[n] = Θ[n]
P∑

p=1

Apeλpn∆t ∈ R, (6)

where A1, . . . , AP are complex coefficients, and Θ is the discrete Heaviside function. Assuming the system is damped
on each one of its modes, i.e. Re(λp) < 0 for all p, its autocorrelation becomes:

∀ n ∈ N, Rh[n] = Rh[−n] =

P∑
p=1

Bpeλpn∆t ∈ R with Bp = ∆t
P∑

q=1

ApA∗q
1 − e(λp+λ∗q)∆t . (7)

At last, let x̃ be the windowed signal on interval {0, . . . , N − 1}, and Rx̃ its autocorrelation. It can be shown from90

Eq. (5) that:
∀ n ∈ N, E [Rx̃[n]] = (N − n)∆t2σ2Rh[n]. (8)

Therefore the windowed signal’s autocorrelation constitutes an indirect estimator of Rh. Then, using various signal
processing methods [12, 13, 14], its poles λ1, . . . , λP can be computed through Eq. (7). Finally, these poles give the
natural frequencies and damping ratios of the system’s modes [20].

However, an error as a significant difference between autocorrelation computation and its expectation can be95

observed in experimental applications. This error is similar to the system’s response to a random noise, i.e. oscillations
at around its natural frequencies with varying amplitudes, as demonstrated in the next section.

3. Shape and magnitude of the error on autocorrelation

3.1. Autocorrelation of a windowed white Gaussian noise
To give a simple example of error on the autocorrelation of a windowed signal, and to obtain necessary preliminary100

results, in this part we study a windowed white Gaussian noise.
Let w be the white Gaussian noise defined by Eq. (4), and w̃ its windowed counterpart (see Eq. (3)). As windowed

noise w̃ is real valued, its autocorrelation Rw̃ is even, and for |n| > N, Rw̃[n] is equal to 0. Then, using Eq. (2) and w[k]
independence, we get:

E [Rw̃[n]] =

{
N∆tσ2 for n = 0
0 for |n| ∈ {1, . . . , N − 1}, (9)

and:105

Var (Rw̃[n]) =

{
2N∆t2σ4 for n = 0
(N − |n|) ∆t2σ4 for |n| ∈ {1, . . . , N − 1}. (10)

Autocorrelation Rw̃ can therefore be divided into a deterministic ‘spike’ at n = 0, and a random, zero-expectation
signal W:

Rw̃[n] = N∆t2σ2δ[n] + W[n], (11)

where δ[n] equals 1/∆t for n = 0, and 0 everywhere else. Variance for W is determined by Eq. (10), and as for Rw̃,
it is even. In addition, for any i, j such as 0 6 i < j, W[i] and W[ j] are uncorrelated. Simulations of w̃ and Rw̃ are
shown in Fig. 1.110

It should be noted that the ‘spike’ impulsion amplitude at n = 0, defined by Eq. (9), is proportional to N, while the
standard deviation of W[n], defined by Eq. (10), is proportional to N1/2. Thus, when the number of points N increases,
Rw̃ becomes closer to its expectation such as a pure ‘spike’.
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Figure 1: Numerical simulation of the autocorrelation Rw̃ of a windowed white Gaussian noise w̃ (a), its expectation N∆t2σ2δ[n] (b), and their
difference W (c). The parameters taken are σ = 1, ∆t = 0.05 and N = 10000.

3.2. Autocorrelation of a windowed response of a linear system to white Gaussian noise

We now study the error on autocorrelation of a windowed response of a linear system to white Gaussian noise Rx̃,115

i.e. the difference with its expectation. First, it is proven in Appendix A that:

Rx̃[n] ≈
N�n

Rh∗w̃[n], (12)

with a relative error of order 1/N. As can be seen in Fig. 2, x̃ and h ∗ w̃ only differ around n = 0 and n = N − 1,
where their difference is a free response of the system, hence the approximation. Then, using a classical formula on
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Figure 2: Numerical simulation of a one degree of freedom system under white Gaussian noise w, with its windowed response to w, x̃ = h̃ ∗ w (a),
its response h ∗ w̃ to windowed noise w̃ (b), and their difference h ∗ w̃ − x̃ (c). The system’s response is computed using a convolution product (see
Eqs. (5) and (6)), using parameters λ1 = −0.1 + 2iπ, λ2 = λ∗1, A1 = −i, A2 = A∗1, σ = 1, ∆t = 0.05 and N = 2000.

autocorrelation of a convolution product [17], we get Rh∗w̃ = Rh ∗ Rw̃, which, combined with Eq. (11), leads to:

Rh∗w̃[n] = N∆t2σ2Rh[n] + Rh ∗W [n]. (13)

Autocorrelation Rh∗w̃ constitutes therefore an estimation of Rh if the right-hand term Rh ∗ W remains small enough.120

Then it can be used to compute the system’s natural frequencies and damping ratios, as stated before. This right-hand
term Rh ∗ W, given the shapes of Rh and W, is similar to the system’s response to a random noise. Hence, as these
autocorrelation signals are generally processed and filtered to isolate and analyze each mode individually, we split
them into P sub-signals corresponding to each pole λp, by introducing R(p)

h [n] = R(p)
h [−n] = Bpeλpn∆t for all n ∈ N,

and R(p)
h∗w̃ = R(p)

h ∗ Rw. This way, we get:125

E
[
R(p)

h∗w̃[n]
]

= N∆t2σ2R(p)
h [n], (14)
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and, as proven in Appendix B:

Var
(
R(p)

h ∗W [n]
)
6 N∆t4σ4

∣∣∣Bp

∣∣∣2  8
1 − e(λp+λ∗p)∆t +

4∣∣∣1 − e(λp−λ
∗
p)∆t

∣∣∣
 (15)

≈
|λp∆t|�1

N∆t3σ4
∣∣∣Bp

∣∣∣2  4

−Re
(
λp

) +
2∣∣∣∣Im (
λp

)∣∣∣∣
 . (16)

Finally, considering pole p as λp = −µp ± iωd,p with µp as the damping constant and ωd,p as the damped angular
frequency, total response signal time N∆t as T , and introducing the ratio between the characteristic amplitude of the
error on pole p, R(p)

h ∗W, and its expected initial amplitude R(p)
h∗w̃[0], we get an upper bound αp which satisfied:√

Var
(
R(p)

h ∗W [n]
)

∣∣∣∣N∆t2σ2R(p)
h [0]

∣∣∣∣ 6 αp, (17)

where:

αp =

√
4
µpT

+
2

ωd,pT
. (18)

This way, an upper bound for the magnitude of the error on autocorrelation can be computed for each mode. This130

upper bound depends on pole λp of the associated mode p, predominantly its real part −µp for lightly damped systems
(i.e. µp � ωd,p). It should be noted that αp is of order 1/N1/2, while the relative difference between Rx̃ and Rh∗w̃ is
of order 1/N, thus the use of Eq. (12) is justified. The error on autocorrelation for a one degree of freedom system
and its upper bound derived from Eq. (17) are presented in Fig. 3. Mode amplitude is estimated using the Continuous
Wavelet Transform skeleton as described in [13], in order to better illustrate and understand the effect of the error.135

Furthermore, the use of an averaging method [12], for instance dividing the signal into M sub-signals of length
N/M, calculating their autocorrelation and taking the mean result, does not change the magnitude of the final error. As
a matter of fact, according to the central limit theorem, and assuming the sub-signals are long enough to be considered
independent, averaging the errors will reduce their magnitude by a M1/2 coefficient, while their magnitude is inversely
proportional to the square root of their size, (N/M)1/2 (see Eq. (18)). Consequently, the square root of M will cancel140

out, and the resulting error will be the same as without the averaging step, making the signal total acquisition length N
the only relevant parameter. This has been verified numerically, giving almost identical error profiles with and without
the averaging process.

4. Applications on damping estimation

4.1. Subsequent error on damping145

This error on autocorrelation eventually induces an error on the damping estimated from its exponentially decaying
amplitude. To asses this error, we will consider a linear regression on the log of the amplitude of R̂(p)

h , the estimator of
R(p)

h obtained through Eq. (8) after normalization and a filtering process (for instance, using the wavelet transform [13],
singular value decomposition [15], or both [14]). For this purpose, we must first assume that the error to signal ratio
(which is computed from R(p)

h module, |R(p)
h [n]| = |Bpeλpn∆t | = |Bp| e−µpn∆t, see Eqs. (7) and (17)) remains low in the150

autocorrelation, i.e.:
αpe µpn∆t � 1. (19)

Then, using Eq. (17), and assuming the phase shift between R̂(p)
h [n] expectation and its error is uniformly distributed,

we get:

E
[
ln

∣∣∣∣R̂(p)
h [n]

∣∣∣∣] ≈ ln |Bp| − µpn∆t, (20)

and: √
Var

(
ln

∣∣∣∣R̂(p)
h [n]

∣∣∣∣) 6 √2αpe µpn∆t. (21)
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Figure 3: Numerical simulation of a one degree of freedom system under white Gaussian noise, with autocorrelation Rx̃ (a), its expectation
(N − |n|)∆t2σ2Rh (b), and their difference, the error (c). The amplitude of Rx̃ (d), (N − |n|)∆t2σ2Rh (e), and their difference (f), are computed using
the continuous wavelet transform skeleton [13] (log scale). Red dotted lines correspond to plus and minus the upper bound on error magnitude,
derived from Eq. (17). The system’s response is computed using a convolution product (see Eqs. (5) and (6)), using parameters λ1 = −0.1 + 2iπ,
λ2 = λ∗1, A1 = −i, A2 = A∗1, σ = 1, ∆t = 0.05 and N = 100000 (although graphs are plotted for |n| 6 3000 only).

Although the approximation from Eq. (20) holds up to at least the 8th order in αpe µpn∆t, the assumption from Eq. (19)155

still needs to be verified. Otherwise, it would induce a bias in Eq. (20), and therefore on the estimated damping ratio.
This is especially true for the end of the regression, where e µpn∆t is at its highest.

Then, through a linear regression on ln |R̂(p)
h | from n = nri to n = nr f , with a total number of points Nr = nr f −nri+1,

the estimated damping constant µ̂p can be expressed as:

µ̂p = −DT Y where D =
6

Nr(Nr − 1)(Nr + 1)∆t


−Nr + 1
−Nr + 3

...
Nr − 1

 and Y =


ln

∣∣∣∣R̂(p)
h [nri]

∣∣∣∣
...

ln
∣∣∣∣R̂(p)

h [nr f ]
∣∣∣∣
 , (22)

which implies, from Eq. (20),160

E[µ̂p] = −DTE[Y] ≈ µp, (23)

and: √
Var(µ̂p) =

√
DT Cov(Y)D 6

Nr∑
n=1

|Dn|
√

Var(Yn). (24)

We now introduce the regression initial time tri = nri∆t, final time tr f = nr f ∆t and total time Tr = Nr∆t. Because tr f

is the last moment of the regression, thus with the largest time, condition from Eq. (19) becomes αpe µptr f � 1. Then,
assuming ∆t is sufficiently small (µp∆t � 1), we get from Eqs. (21) and (24):√

Var(µ̂p)
E[µ̂p]

6 6
√

2αpeµptri
eµpTr (µpTr − 2) + 2eµpTr/2µpTr + (2e−µpTr/2 − 1)(µpTr + 2)

(µpTr)3 . (25)
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Finally, this upper bound can be minimized to give the optimal value of regression time Topt, which is found numeri-165

cally to be equal to:

Topt = argmin
Tr

(
6
√

2
eµpTr (µpTr − 2) + 2eµpTr/2µpTr + (2e−µpTr/2 − 1)(µpTr + 2)

(µpTr)3

)
'

1.4326
µp

, (26)

with:

Mopt = min
Tr

(
6
√

2
eµpTr (µpTr − 2) + 2eµpTr/2µpTr + (2e−µpTr/2 − 1)(µpTr + 2)

(µpTr)3

)
' 9.8380. (27)

This way, we now have an optimal value of regression time Topt, for which the error bound on µ̂p is minimized.
Therefore, from now on, the regressions are supposed to be carried out using a total time Tr = Topt. Considering
Eq. (18), Eq. (25) becomes:170 √

Var(µ̂p)
E[µ̂p]

6 Mopteµptri

√
4
µpT

+
2

ωd,pT
. (28)

This upper bound depends only on the mode’s pole real and imaginary parts, −µp and ±ωd,p, on the response signal
total length T = N∆t, and on the regression start time tri. However, because the upper bounds found in Eqs. (15)
and (24) both yield a significant margin, this upper bound may be much larger than the relative standard deviation of
µ̂p.

To that extent, we will study numerically and experimentally the “effective” factor Mef f , which replaces Mopt in175

Eq. (28) in the case of an equality, and therefore satisfies by definition the following equation:

Mef f =

√
Var(µ̂p)
E[µ̂p]

e−µptri

(
4
µpT

+
2

ωd,pT

)−1/2

. (29)

Although Mef f may depend on the system parameters and regression initial and total times, we will see in the numerical
and experimental applications that it seems to be a constant.

4.2. Numerical simulations
To illustrate the error on damping found in OMA, and find the effective factor Mef f from Eq. (29), we carry out180

several numerical simulations of a two degrees of freedom system pictured in Fig. 4, whose modal parameters are
given in Table 1. A white Gaussian noise is applied to the mass located on the left, where the response of the system
x is measured. This response is computed through a convolution product with the the system’s impulse response
function (see Eq. (5)). The time increment taken for the simulations is ∆t = 0.05 s.

k

k

c

m m

x

w

Figure 4: Numerical simulations: system modeled.

Mode p fp [Hz] ζp [%] ωd,p [rad.s−1] µp [s−1] 1/µp [s]
1 0.984 1.118 6.181 0.0691 14.5
2 2.575 1.118 16.178 0.1809 5.5

Table 1: Numerical system modal parameters.

For several response time lengths T , 100 simulations are performed. Autocorrelation of the response signals is185

then computed, and R̂h is obtained through Eq. (8). The damping constant estimate µ̂p is computed for both modes

7



using a linear regression on the log of the amplitude associated with each mode, which is retrieved using the wavelet
transform, as described in [13]. The regression initial time tri is set by the wavelet transform edge effect zone, and
its total time Tr is set to Topt to obtain minimal variance in the result, as explained earlier. System modal parameter
estimates f̂p and ζ̂p are then computed from the pole formula −µ̂p + iω̂d,p = 2π f̂p(−ζ̂p + i(1 − ζ̂2

p)1/2) for the 100190

simulations, for each response time length T and each mode, and their means and standard deviations are presented
in Table 2, along with Mef f computed from Eq. (29). To assess the error to signal ratio in autocorrelation at the end of
the regression, that is at its maximum, αpeµptr f is given for each mode (see Eq. (19)).

Response Mode 1 Mode 2
length T Mean f̂1 Mean ζ̂1 S.D. ζ̂1 α1e µ1tr f Mef f Mean f̂2 Mean ζ̂2 S.D. ζ̂2 α2e µ2tr f Mef f

[s] [Hz] [%] [%] [Hz] [%] [%]
100 0.984 0.906 0.518 3.53 0.55 2.574 1.057 0.471 2.37 0.74
1000 0.984 1.065 0.223 1.12 0.79 2.576 1.127 0.157 0.75 0.88
10000 0.984 1.123 0.083 0.35 0.92 2.576 1.119 0.054 0.24 0.96
100000 0.984 1.116 0.028 0.11 1.00 2.575 1.117 0.017 0.08 0.92
1000000 0.984 1.116 0.010 0.04 1.01 2.575 1.116 0.006 0.04 0.93

Table 2: Numerical simulations: mean and standard deviation (S.D.) of damping computations from 100 simulations, for several signal lengths,
with effective bound coefficient Mef f .

In some cases, the relative error at the end of the regression is high, i.e. αpeµptr f > 1, thus the assumption from
Eq. (19) is not met (both modes for T = 100 s, and mode 1 for T = 1000 s). For those cases, the mean value195

obtained for the damping ratio seems to be lower than expected. This indicates a bias not accounted for in Eq. (20),
especially for the first mode for T = 100 s, where the difference with the expected value can hardly be explained by
statistical chance. They also seem to give lower values for Mef f , which should therefore be discarded. However, in the
other cases, the results for Mef f seem to be fairly steady across the different signal lengths (which vary by 3 orders of
magnitude) and modes, with a mean value around 1. It is therefore reasonable to assume the following approximation:200

Mef f ' 1, (30)

which finally gives an estimate of the error on the damping computation through Eq. (29). This value, combined
with Eq. (29), is a significant improvement from Eq. (28), given that Mef f is about ten times lesser than Mopt, thus
providing tighter margins on the damping error estimate. To test the dependency of Mef f on the damping ratios, three
other series of simulation were carried out using the same system with a damping factor ten times greater, ten times
lesser and one hundred times lesser than first simulation’s one, which all gave similar results.205

These numerical results also highlight the significant inaccuracies on damping that arise from the statistical nature
of OMA. For instance, estimating damping of mode 1 from a signal about 17 minutes long (corresponding to mode
1 with T = 1000 s in Table 2) would result in a standard deviation of more than a fifth of its value. This corresponds
to a typical situation in civil engineering, where modal parameters need to be estimated regularly at relatively short
intervals, because of the temperature influence that must be evaluated afterwards.210

A number of assumptions made in this study can be questioned, especially regarding the nature of excitation,
namely that it is a nonstationary white Gaussian noise and that the system is linear and nonstationary as well. First,
it is not in the general case a one channel signal, but rather a multi-channel signal or field, modeling the various
loads on each part of the structure. Second, although the assumption of a white noise excitation is generally made
in OMA [12], and can be justified under certain conditions [21], real excitation signals often present more complex215

profiles in frequency domain. For instance, they can be seen as white noise convoluted with a linear filter, whose poles
can be extracted with those of the system and eventually discarded [22], or more generally as colored noise, whose
parameters can be retrieved and taken into account in the modal analysis of the system [23]. Excitation can also be
nonstationary [24], which is handled by some OMA techniques [25]. The dynamical behavior of the system itself
poses other issues, as it is generally nonstationary as well, for example due to the stiffness and damping dependence220

of concrete on temperature for civil engineering applications, and of steel for aerospace engineering applications [26],
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and can present nonlinearities for example [27] in the case of a soft impact response behavior of a reinforced concrete
mock-up. For all these reasons, an application to an experimental study is presented in the next section.

4.3. Experimental testing
An experimental campaign on a bridge under ambient traffic was carried out, to support our study. The structure225

under study is a 74 m long bridge, supported by 6 parallel prestressed concrete beams. It is part of a series of five
identical bridges build across the Marne River in France in the 1940s and 1950s under the advice of the expert engineer
Eugène Freyssinet of the Campenon Bernard companies [28], as a demonstration of the capabilities of prestressed
concrete for slender, long-span bridges. A total of 14 triaxial wireless accelerometers (G-Link-200) were installed on
the bridge, as shown in Fig. 5. Due to the limited bandwidth of the wireless radio communication system, only the230

vertical acceleration signals were recorded, except for sensor 29279 (one of the mid-span accelerometers) which also
monitored acceleration in the transverse direction of the bridge. Signals were sampled at 128 Hz frequency, after a
numeric anti-aliasing filter with 26 Hz cutoff frequency. The signals were acquired for about 8300 s, under ambient
traffic which was the main source of excitation.

NA-40195 NA-40196 NA-40197 NA-40198 NA-40199 NA-40200 NA-40201

NA-40202 NA-29277 NA-29278 NA-29279 NA-29280 NA-29281 NA-29282

BEAM AXES
BRIDGE AXES
ACCELEROMETER POSITION

Figure 5: Experimental data: overview of the bridge accelerometric instrumentation.

To obtain the modal parameters from the accelerometric data of the bridge, the CWT-based method, described235

in [14], was used. This method combines cross-correlation including autocorrelation, CWT and singular value de-
composition, and leads to instantaneous amplitudes, frequencies and mode shapes as functions of the cross-correlation
lag. The autocorrelation function of sensor 29278 signal is showed as an example in Fig. 6a, only for positive time lags
as it is even. It features an interference beat pattern, originating from the first four modes close frequencies. Fig. 6b
displays the first singular value of the CWT of the cross-correlation matrix [14] between 2 Hz and 2.3 Hz, with ridges240

associated with the first two modes. The modal parameters are then retrieved using averages, and a linear regression
on the log of the amplitude for damping. The method is slightly modified, by using Topt as the total regression time,
providing theoretically a minimal error on damping as explained earlier, instead of the frequency and mode shape
stability stopping conditions proposed in the original paper. At first, the method is implemented on the whole signal,
which provides reference parameters that will be considered the true modal parameters of the bridge for the rest of the245

study (hence the lack of “∼” exponent for these parameters). The results obtained for the natural frequencies fp and
damping ratios ζp of the 10 identified modes are presented in Table 3, along with the relative error on autocorrelation
at its maximum αpe µptr f , and the expected standard deviation on the ζp computed from Eqs. (29) and (30), which
gives an estimation of their error. The corresponding mode shapes are shown in Fig. 7, where their longitudinal edges
curves are smoothed using quadratic interpolation.250

Observing Fig. 7’s mode shapes, some modes appear to be missing, as for example the third and fourth torsional
modes. This is likely due to insufficient excitation and/or excessive additive noise in their frequency range. It is not a
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Figure 6: Experimental data: (a) autocorrelation of sensor 29278 acceleration channel; (b) first singular value (module) of the CWT of the cross-
correlation matrix [14] (log scale), using the Cauchy mother wavelet with quality factor Q = 52 whose choice of value is detailed in [29], with
ridges of the first two modes. The shaded area correspond to the edge effect zone.

Mode p fp ζp Expected S.D. ζp αpe µptr f

[Hz] [%] [%]
1 2.08 0.90 0.24 1.09
2 2.18 0.94 0.25 1.14
3 2.83 0.80 0.26 1.34
4 2.94 0.95 0.46 1.95
5 5.47 1.82 0.10 0.24
6 6.51 3.70 0.37 0.42
7 7.83 4.96 0.72 0.58
8 15.04 2.36 0.17 0.30
9 16.74 1.05 0.04 0.19

10 21.13 1.04 0.05 0.19

Table 3: Experimental data: natural frequencies fp and damping ratios ζp estimated from the method described in [14] using the whole signal, with
expected coefficient of variation (C.V.) computed from Eqs. (29) and (30).

problem for our study however, which is not intended to be a complete modal analysis of the bridge. All the modes are
pure bending or torsional modes, except for the fourth one which is a combination of torsional and lateral movement.
There also seems to be spatial aliasing in the tenth mode due to a lack of sensors, which presumably corresponds to255

the ninth bending mode, which is why it is not displayed. Moreover, the expected standard deviation of the damping
ratios and related error, is quite high as shown in Table 3. Condition from Eq. (19) is not met either for the first four
modes. Therefore, although these values are taken as reference, we must keep in mind that they are potentially subject
to errors.

Next, the accelerometric signals are divided into 20 sub-signals of about 415 s long in order to support the theo-260

retical and analytical results, especially regarding Mef f . For each one, the same procedure from [14] is applied. The
number of sub-signals is chosen from the compromise between statistical representativeness and respect of Eq. (19).
Results are presented in Table 4. In this case, the assumption of Eq. (19) is not met for any mode. There are however
a few modes (5, 8, 9 and 10) whose autocorrelation relative error αpe µptr f is lower or close to 1. For these modes, the
results for Mef f are around 1 (with a large error margin though, considering the small sample size), which supports265
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Mode 1 Mode 2
First bending mode, 2.08 Hz Second bending mode, 2.18 Hz

Mode 3 Mode 4
First torsional mode, 2.83 Hz Mixed lateral-torsional mode, 2.94 Hz

Mode 5 Mode 6
Second torsional mode, 5.47 Hz Third bending mode, 6.51 Hz

Mode 7 Mode 8
Fourth bending mode, 7.83 Hz Fifth bending mode, 15.04 Hz

Mode 9
Fifth torsional mode, 16.74 Hz

Figure 7: Experimental data: modes shapes estimated from the method described in [14] using the whole signal. The tenth mode shape could not
be portrayed correctly because of a lack of sensors.
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Mode p Mean f̂p Mean ζ̂p S.D. ζ̂p αpe µptr f Mef f

[Hz] [%] [%]
1 2.07 0.56 0.25 4.90 0.24
2 2.18 0.62 0.55 5.12 0.50
3 2.84 0.54 0.43 6.00 0.37
4 2.95 0.50 0.34 8.70 0.16
5 5.45 1.43 0.62 1.06 1.37
6 6.45 2.38 0.93 1.89 0.56
7 7.99 2.76 0.67 2.60 0.21
8 15.07 1.71 0.49 1.35 0.63
9 16.76 0.86 0.25 0.84 1.25

10 21.14 0.95 0.27 0.86 1.34

Table 4: Experimental data: mean natural frequencies f̂p, and mean and standard deviation (S.D.) of damping ratios ζ̂p estimated from the method
described in [14] using 20 sub-signals, with corresponding Mef f .

the numerical results of Eq. (30). Additionally, the mean values found for damping are significantly smaller than the
reference values of Table 3, especially for modes with high autocorrelation relative error αpe µptr f , indicating a bias.
This bias is due to the non-fulfillment of the condition from Eq. (19), as demonstrated and discussed in the numerical
part.

These experimental data highlight the importance of the condition from Eq. (19), to get unbiased estimators of270

damping. Its non-fulfillment leads to a bias that tends to underestimate the damping ratios. This implies that one
single value of damping computed from the whole length of a signal is closer to the real damping of the system than
the average of several damping values computed from different parts of this signal. In addition, they show once again
the large statistical errors (variance and bias) that can emerge in OMA for damping estimation, which can however be
estimated using Eqs. (19), (29) and (30).275

5. Conclusions

The error on autocorrelation for a discrete, finite size response of a linear system to white noise, has been shown
to be very similar to its response to a random noise with varying standard deviation. This error can be divided as
a sum of terms centered in the Fourier domain around the natural frequencies of the system, interfering with the
meaningful signal parts of the corresponding modes which are exponentially decaying sinusoids. Thus, these error280

terms eventually become predominant for large enough lag values of the autocorrelation. For each mode p, the
magnitude of the associated error term can be bounded by using coefficient αp.

In this paper, the error on the derived damping ratios, resulting from the error on autocorrelation, has been in-
vestigated. An upper bound on its standard deviation, and an associated optimal regression time, have been found
analytically. It indicates a relation of inverse proportionality with the square root of the response signal total length.285

Numerical simulations of a two degrees of freedom system corroborate the analytical results, highlighting a bias
which appears when a condition on the signal length is not met. Then, a refinement of this upper bound is carried out
through the numerical simulations in order to better estimate the damping computations inaccuracies. Experimental
accelerometric data of a prestressed concrete single-span bridge allow for validation of the theoretical and numeri-
cal results. Indeed, the analysis on the experimental data underline the importance of the established condition on290

autocorrelation relative error associated with the signal length. This study shows the inaccuracies deriving from the
statistical nature of the signals in operational modal analysis, which remain quite large for typical civil engineering
case studies, highlighting the relevance of our work in quantifying them.
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Appendix A. Proof of Eq. (12)

Let n be a natural integer, n ∈ N. In this appendix, we will prove Eq. (12) by finding upper bounds for the300

expectation and variance of the difference between both terms, independent from N. This way, as the expectation of
Rh∗w̃[n] is proportional to N (see Eq. (14)), the relative error is of order 1/N. For readability, some brackets will be
noted as indices from now on, for instance wn = w[n].

First, to obtain the upper bound on the expectation, Eqs. (8) and (14) are combined to find:

E [Rh∗w̃[n] − Rx̃[n]] = n∆t2σ2Rh[n].

Then, for the variance upper bound:

x̃[k] = h̃ ∗ w [k] =

{
∆t

∑+∞
i=−∞ wihk−i for k ∈ {0, . . . , N − 1}

0 else

h ∗ w̃ [k] = ∆t
N−1∑
i=0

wihk−i,

with, for all i < 0, hi = 0. Next:

Rx̃[n] = ∆t3
N−1∑
k=n

+∞∑
i=−∞

wihk−i

+∞∑
j=−∞

w jhk−n− j = ∆t3
N−1∑
k=n

N−1∑
i=−∞

N−1∑
j=−∞

hk−ihk−n− jwiw j

Rh∗w̃[n] = ∆t3
+∞∑

k=−∞

N−1∑
i=0

wihk−i

N−1∑
j=0

w jhk−n− j = ∆t3
+∞∑
k=n

N−1∑
i=0

N−1∑
j=0

hk−ihk−n− jwiw j.

As can be seen from Eq. (6), there exist C0, β ∈ R∗+ such as:

|hk | 6 Θ[k] C0e−βk,

and for all i, j, i′, j′ ∈ Z,

Cov
(
wiw j, wi′w j′

)
=


2σ4 if i = j = i′ = j′

σ4 if i = i′ , j = j′ or i = j′ , j = i′

0 else.

13



Thus:

1
∆t6 Var (Rh∗w̃[n] − Rx̃[n]) =

N−1∑
k=n

N−1∑
k′=n

N−1∑
i=−∞

N−1∑
i′=−∞

N−1∑
j=−∞

N−1∑
j′=−∞

hk−ihk′−i′hk−n− jhk′−n− j′Cov
(
wiw j, wi′w j′

)
− 2

N−1∑
k=n

+∞∑
k′=n

N−1∑
i=−∞

N−1∑
i′=0

N−1∑
j=−∞

N−1∑
j′=0

hk−ihk′−i′hk−n− jhk′−n− j′Cov
(
wiw j, wi′w j′

)
+

+∞∑
k=n

+∞∑
k′=n

N−1∑
i=0

N−1∑
i′=0

N−1∑
j=0

N−1∑
j′=0

hk−ihk′−i′hk−n− jhk′−n− j′Cov
(
wiw j, wi′w j′

)
= σ4

N−1∑
k=n

N−1∑
k′=n

N−1∑
i=−∞

N−1∑
j=−∞

Hk,k′,i, j − 2
N−1∑
k=n

+∞∑
k′=n

N−1∑
i=0

N−1∑
j=0

Hk,k′,i, j +

+∞∑
k=n

+∞∑
k′=n

N−1∑
i=0

N−1∑
j=0

Hk,k′,i, j


= σ4

N−1∑
k=n

N−1∑
k′=n

N−1∑
i=−∞

−1∑
j=−∞

Hk,k′,i, j +

N−1∑
k=n

N−1∑
k′=n

−1∑
i=−∞

N−1∑
j=0

Hk,k′,i, j −

N−1∑
k=n

+∞∑
k′=N

N−1∑
i=0

N−1∑
j=0

Hk,k′,i, j +

+∞∑
k=N

+∞∑
k′=n

N−1∑
i=0

N−1∑
j=0

Hk,k′,i, j


= σ4

N−1∑
k=n

N−1∑
k′=n

−1∑
i=−∞

−1∑
j=−∞

Hk,k′,i, j +

N−1∑
k=n

N−1∑
k′=n

N−1∑
i=0

−1∑
j=−∞

Hk,k′,i, j +

N−1∑
k=n

N−1∑
k′=n

−1∑
i=−∞

N−1∑
j=0

Hk,k′,i, j +

+∞∑
k=N

+∞∑
k′=N

N−1∑
i=0

N−1∑
j=0

Hk,k′,i, j


6 2C0e2βnσ4

N−1∑
k=n

N−1∑
k′=n

−1∑
i=−∞

−1∑
j=−∞

e−2β(k+k′−i− j) + 2
N−1∑
k=n

N−1∑
k′=n

min(k, k′)∑
i=0

−1∑
j=−∞

e−2β(k+k′−i− j) +

+∞∑
k=N

+∞∑
k′=N

N−1∑
i=0

N−1∑
j=0

e−2β(k+k′−i− j)


where Hk,k′,i, j = hk−ihk′−ihk−n− jhk′−n− j + hk−ihk′− jhk−n− jhk′−n−i. At last:

N−1∑
k=n

N−1∑
k′=n

−1∑
i=−∞

−1∑
j=−∞

e−2β(k+k′−i− j) 6
e−4β(n+1)(
1 − e−2β)4 ,

and:

N−1∑
k=n

N−1∑
k′=n

min(k, k′)∑
i=0

−1∑
j=−∞

e−2β(k+k′−i− j) =

N−1∑
k=n

k∑
k′=n

k′∑
i=0

−1∑
j=−∞

e−2β(k+k′−i− j) +

N−1∑
k=n

N−1∑
k′=k+1

k∑
i=0

−1∑
j=−∞

e−2β(k+k′−i− j)

6
e−2β(n+1)(
1 − e−2β)2

+∞∑
k=0

(k + 1)e−2βk +
e−2β(n+2)(
1 − e−2β)4 6

e−2β(n+1)
(
1 + e−2β

)
(
1 − e−2β)4 ,

and finally:
+∞∑
k=N

+∞∑
k′=N

N−1∑
i=0

N−1∑
j=0

e−2β(k+k′−i− j) 6
e−4β(

1 − e−2β)4 .

Appendix B. Proof of Eq. (16)

First, we write R(p)
h ∗W as:

R(p)
h ∗W [n] = ∆t

N−1∑
k=−N+1

R(p)
h [n − k] Wk = ∆t R(p)

h [n] W0 + ∆t
N−1∑
k=1

(
R(p)

h [n − k] + R(p)
h [n + k]

)
Wk.
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Then, knowing that for any i, j such as 0 6 i < j, Wi and W j are uncorrelated, we get:

Var
(
R(p)

h ∗W [n]
)

= ∆t2
∣∣∣∣R(p)

h [n]
∣∣∣∣2 Var (W0) + ∆t2

N−1∑
k=1

∣∣∣∣R(p)
h [n − k] + R(p)

h [n + k]
∣∣∣∣2 Var (Wk)

= ∆t4σ4

−2N
∣∣∣∣R(p)

h [n]
∣∣∣∣2 +

N−1∑
k=0

∣∣∣∣R(p)
h [n − k] + R(p)

h [n + k]
∣∣∣∣2 (N − k)


6 N∆t4σ4

+∞∑
k=0

∣∣∣∣R(p)
h [n − k] + R(p)

h [n + k]
∣∣∣∣2

6 N∆t4σ4

 n∑
k=0

∣∣∣∣R(p)
h [k] + R(p)

h [2n − k]
∣∣∣∣2 +

+∞∑
k=0

∣∣∣∣R(p)
h [k] + R(p)

h [2n + k]
∣∣∣∣2

6 N∆t4σ4
∣∣∣Bp

∣∣∣2  n∑
k=0

∣∣∣eλpk∆t + eλp(2n−k)∆t
∣∣∣2 +

+∞∑
k=0

∣∣∣eλpk∆t + eλp(2n+k)∆t
∣∣∣2 ,

with:
+∞∑
k=0

∣∣∣eλpk∆t + eλp(2n+k)∆t
∣∣∣2 =

∣∣∣1 + e2λpn∆t
∣∣∣2

1 − e(λp+λ∗p)∆t 6
4

1 − e(λp+λ∗p)∆t ,

and finally:

n∑
k=0

∣∣∣eλpk∆t + eλp(2n−k)∆t
∣∣∣2 =

1 − e(λp+λ∗p)(n+1)∆t

1 − e(λp+λ∗p)∆t +
1 − e−(λp+λ∗p)(n+1)∆t

1 − e−(λp+λ∗p)∆t e2(λp+λ∗p)n∆t

+
1 − e(−λp+λ∗p)(n+1)∆t

1 − e(−λp+λ∗p)∆t e2λpn∆t +
1 − e(λp−λ

∗
p)(n+1)∆t

1 − e(λp−λ
∗
p)∆t e2λ∗pn∆t

6
4

1 − e(λp+λ∗p)∆t +
4∣∣∣1 − e(λp−λ

∗
p)∆t

∣∣∣ .
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