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Autonomous Network Slicing Prototype Using
Machine Learning Based Forecasting

for Radio Resources
Nazih Salhab, Rami Langar, Rana Rahim, Sylvain Cherrier and Abdelkader Outtagarts

Abstract—With the emergence of virtualization and software
automation for mobile networks, network slicing is enabling
operators to dynamically provision network resources tuned to
suit heterogeneous service requirements. This article investigates
the architectures of the Fifth Generation (5G) of mobile networks
experimental prototypes with a focus on network slicing. We
present some existing 5G prototypes and identify their gaps.
We, then, propose an architecture and a design of a 5G micro-
service based prototype. Such prototype has an ability to auto-
configure radio resources for network slices using machine
learning (ML) powered decisions based on real-time acquired
performance metrics. Finally, we discuss some use cases on top
of this prototype and their related results before concluding.

Index Terms—Network Slicing prototype, micro-service archi-
tecture, OpenAirInterface (OAI), TICK Stack

I. INTRODUCTION

ON top of conventional communication scenarios among
people, the Fifth Generation (5G) of mobile com-

munications and Beyond (B5G) will empower machine-to-
machine communication that drive different applications for
multiple industries. Vertical applications with heterogeneous
requirements in terms of latency, reliability, mobility support,
energy efficiency, throughput, and connection/traffic densities
will flourish with 5G/B5G. These applications include smart
grid, collaborative robots, cooperative vehicles, smart farms,
and so on. To serve such a plethora of applications, mobile
network operators need to modernize their architectures to
accommodate forecasted exponential increase in terms of
number of connected devices and explosive size of exchanged
data. Networks have to become agile by offering tailor made
infrastructures to suit specific use-cases and their requirements.
5G Standards Developing Organizations envision supporting
at least three major categories of services: enhanced Mobile
Broadband (eMBB), massive Machine-Type Communications
(mMTCs), and ultra-Reliable Low-Latency Communications
(uRLLCs). These are considered as network slices consisting
of end-to-end logical infrastructures deployed over a shared
physical infrastructure inline with sought performance de-
mands. Network slicing and dynamic provisioning are espe-
cially interesting in case of uRLLC, where virtualized network
functions have to be deployed at the edge of the network
to minimize the latency. Conversely, traditional system ar-
chitectures rely on monolithic systems. In the monoliths, the
presentation layer (user interface) and the data access layer
(database) are tightly coupled in a single program making
the application self-contained and independent from other

computing applications, but also, highly dependent on hosting
platform. On the other hand, monoliths have some downsides,
especially, when it comes to the lack of flexibility in terms
of maintenance complexity and evolution speed. With data
usage growth, monoliths become too large to operate and
maintain. In addition, in order to upgrade a functionality in
a particular monolith, system administrators have to take the
whole system down to complete such an operation. Moreover,
a risk of regression during integration that causes unplanned
delays should not be neglected. Therefore, traditional mono-
liths cannot provide required agility for 5G/B5G. Advents of
Network Function Virtualization (NFV) and Software-Defined
Networking (SDN) allow overcoming this limitation [1].

On another front, the cloud positions itself as an enabler for
5G/B5G and is well suited, in particular, for the Radio Access
Network (RAN) as Cloud-RAN (C-RAN) with inherent elas-
ticity. Instead of relying on dedicated servers and proprietary
computing devices, the cloud provides virtual, but dedicated
resources relying on shared capabilities (Compute, Networking
and Storage). Cloud resources provide required flexibility, fea-
tured through auto-scalability, and reduced deployment time,
while ensuring up-to-date software releases [2].

In this context, we propose, in this paper, a micro-service
based experimental prototype with Machine Learning (ML)
forecasting capability for autonomous slicing management.
Based on an exhaustive evaluation of multiple ML techniques
[3], we implement the best performer prediction method and
leverage our prototype to analyze its performance in a closed-
loop setting. Also, compared to our former prototype [3], we
consider, in this paper, a micro-service based deployment of
the core network rather than a monolithic one. Moreover, we
have developed special scripts for the data processing engine
and interfaced the latter with a northbound application for an
autonomous configuration management.

The rest of this article is organized as follows. We first
investigate the state of the art, the major European projects
and the standardized reference architecture for 5G. Then,
we present our approach in designing our 5G experimental
prototype with machine-learning capability using open-source
software. Finally, we present two use cases of the designed
prototype using our Internet of Thing (IoT) programming
cloud platform, called BeC3 (Behavior Crowd Centric Com-
position) [4] and our ML based autonomous slicing prototype
with forecasting capability and discuss related experimental
results.



2

II. EXISTING 5G PROTOTYPES

Authors in [1] surveyed 5G Network slicing using SDN and
NFV. They discussed the related architectures and future chal-
lenges. They clearly advocated containerization technologies
as an enabler for 5G. Moreover, author in [2] discussed the
pros and cons of cloud migration and the points in between,
suggesting seven R’s (Replace, Reuse, Refactor, Re-platform,
Re-host, Retain and Retire) strategy, while emphasizing on
cloud architecture advantages. They addressed agnostic appli-
cations migration issues. Therefore, we proposed a microser-
vice based cloud native architecture for our prototype using
Docker [5].

Authors in [6] introduced 5G-EmPOWER platform that
enables complex policies deployment and management over
SDN. They evaluated the performance of their platform using
Long Term Evolution (LTE) network elements provided by
Software Radio Systems (srsLTE).

Authors in [7] presented a prototype of a virtualized 5G
infrastructure supporting network slicing. They investigated
how OpenAirInterface™ (OAI) [8] can be used on top of Mo-
bile Central Office Re-architected as a Datacenter (M-CORD).
Moreover, they demonstrated a virtualized 5G RAN and core
deployment, using monolithic architecture. Recall that OAI is
an open-source software implementation of 4G/5G, spanning
the full protocol stack of both radio and core networks. On
the other hand, M-CORD is an open source reference solution
for carriers deploying 5G mobile wireless networks.

The O-RAN [9] Alliance initiated an operator driven mis-
sion to open the RAN interfaces in an aim to allow multi-
vendor equipment to work seamlessly across well-defined in-
terfaces. O-RAN aims to transform the RAN Industry towards
open, intelligent, virtualized and fully interoperable one.

MOSAIC-5G [10] encompasses multiple projects in an aim
to transform the RAN and the core into an agile service deliv-
ery platform to rapidly explore new ideas as well as emergent
application and changing business needs. In particular, we
have reused the FlexRAN project [10], [11] to implement
the RAN SDN controller and automate its control through
our northbound web app for an autonomous configuration
management.

Authors in [12] reported their experience building a 5G
slicing prototype that enables multi-tenancy through virtual-
ization. They highlighted the lack of monitoring capabilities,
cross-domain and intelligent orchestration for such prototypes
and flagged these axes as open research questions. We note that
these works did not include a holistic performance manage-
ment stack or illustrate its benefits through common use cases.
Therefore, we identify four objectives that a 5G prototype
needs to address: i) minimizing the total cost of ownership
by relying on open source software, ii) automating reconfigu-
ration through data-driven ML decisions, iii) overcoming IoT
complexity through abstraction, and iv) minimizing human
management by employing self-healing, resilience and auto-
scaling. Our proposed 5G prototype will indeed provide these
features, as described later.

III. EUROPEAN PROJECTS AND STANDARDS DEVELOPING
ORGANIZATIONS

The 5G Infrastructure Public Private Partnership (5G PPP)
includes several projects aiming to formalize the reference
architecture of 5G. Some of these projects are: i) 5G-NORMA
(Novel Radio Multiservice adaptive network Architecture), ii)
5G-xHAUL (5G-Cross Haul), iii) COHERENT (Coordinated
control and spectrum management for 5G heterogeneous radio
access networks), iv) Euro-5G, v) Fantastic 5G (Flexible Air
Interface for Scalable service delivery within the wireless
communication networks of the 5G), vi) Flex5Gware (Flexible
hardware/software platforms for 5G network elements and
devices), vii) METIS-II (Mobile and Wireless communications
Enablers) and viii) 5G-ESSENCE (Edge Cloud computing
and Small Cell as a Service). On the other hand, several
standards developing organizations such as 3rd Generation
Partnership Project 3GPP, ETSI NFV evolution and ecosystem,
Next Generation Mobile Networks (NGMN), TeleManagement
Forum (TM Forum) and Open Networking Foundation (ONF)
have envisioned a service based architecture for 5G.

IV. ARCHITECTURE OF OUR PROPOSED PROTOTYPE

We propose using microservice based architecture that em-
ploys a collection of autonomous self-contained services, each
implementing a single business capability. It is an evolution
of a service-oriented architecture by further decomposing the
services into smaller, independent microservices with loose
coupling relation. A well-known example of this architecture
is a cluster of microservices managed by an orchestrator.
This architecture is convenient for large applications with
numerous sub-domains that require high release velocity and
high scalability. However, there are some downsides for this
architecture, that are: i) accrued latency due to distribution of
microservices over several machines and ii) potential internal
network congestion as more inter-service communication is
involved. Note that such latency can be minimized by setting
up a local repository to store the different network function
images. Moreover, the high latency drawback appears when
a virtualized network function is deployed from scratch. In
contrast, when a scaling operation takes place, the change in
terms of microservices replica happens seamlessly, without
affecting the available microservices. In the following, we
detail our proposed architecture for 5G experimental prototype
as depicted in Fig. 1.

A. Infrastructure Layer (5G system)

To be in line with the reference 5G architecture, we deploy
OpenAirInterface for Core-Network (OAI-CN) [8] as Docker
containers in a Docker Swarm Cluster consisting of a manager
and two workers. Note that we propose using Docker Swarm
instead of Kubernetes [14] due to its native support by Docker,
being the default orchestrator offered by Docker and thus,
it is much simpler when it comes to implementation in Lab
testing environments. Moreover, using containers allows us to
manage the infrastructure in an agnostic way allowing us to
seamlessly upgrade it to different 5G releases whenever they
are ready. Note also that we considered a number of replicas
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Fig. 1. Experimental Prototype Architecture

that is strictly greater than zero.
Accordingly, using the Docker Swarm container orchestration
tool allowed us to seamlessly scale the number of replicas
of each microservice without impacting the service to which
they belong. Therefore, we have included in our auto-scaler
a stopper-condition to enforce this, in order to avoid any
downtime. However, in case of a failure of the hosting docker-
machine, and supposing that the whole microservices are
affected, it takes multiple seconds to redeploy the correspond-
ing microservices. The downtime depends on multiple factors
including loading it from the cached Docker images or having
to download it from the online or local repositories. We also
implement the next generation fronthaul interface to split the
Next Generation Node-B (gNB) into i) a remote unit imple-
mented using a Universal Service Radio Peripheral (USRP)
from ETTUS research (subsidiary of National Instruments),
ii) a Digital Unit (DU) and iii) a Central Unit (CU) using
OAI-5G [8]. Note that OAI is an open-source project that im-
plements 3GPP compliant-technology on general purpose x86
computing hardware and a USRP. Initially, OAI implemented
the 4G architecture, but OAI wide community have started
implementing the 5G new radio, the NF-approach and the
control-user plane separation for the 5G Core (5GC). Recall
that Docker [5] is a tool that enables developers to create,
deploy and run applications by using containers. Containers
package up an application with all its dependencies (libraries
and environment) and ship it out as only one package making
a vast economy of scale. Unlike Virtual Machines (VMs),
containers virtualize an application on top of the operating
system kernel directly, and thus containers are lighter to

load, faster to start and less memory-hungry, when booting,
compared to VMs.

B. Control Layer (SDN Controllers)

An orchestrator organizes containers at the networking level
and enables the application to run as intended. We used Docker
Swarm [5] that is the native Docker orchestrator as it is
well-suited for small-scale deployments. In addition, it has
a large community attached to it due to the huge number of
developers that use Docker products. As Controllers, we use
FlexRAN [11] as a Software-Defined Radio Access Network
Controller (SD-RANC) to manage the gNB and Open Network
Operating System (ONOS) as software-defined transport net-
work controller to manage the fronthaul, midhaul and backhaul
networks.

C. Intelligent application Layer (Top)

On first hand, we have developed a northbound web app
interfacing with the controllers for slices lifecycle manage-
ment. It orchestrates the configuration management tasks,
including on-demand slices creation/update/deletion, cell re-
configuration, devices rehoming to slices and performance
statistics generation. This layer enables us to create on-the-fly
different slices as needed (eMBB/mMTC/uRLLC). Based on
our previous work where we exhaustively evaluated multiple
ML techniques [3], we have shortlisted a particular regres-
sion model, as we will see in section V-B, and integrated
it to automate the provisioning of network slicing ratios.
Furthermore, we have used BeC3 [4] for IoT applications
to manage and control mutiple IoT Devices. BeC3 offers an
intuitive interface that hides the complexity and specificities
of IoT objects, while giving unified access to their core
functionality. Using this, we abstract the peculiarities of IoT
devices in a virtual representation to get a reusable VM or a
Docker image of such IoT devices. BeC3 allows implementing
universal typical commands for IoT devices (such as ON/OFF
for smart switches, GET-TEMP for temperature sensor, GET-
LUMINOSITY for light sensors, and so on). It also offers the
possibility to control the behavior of integrated IoT devices,
such as programming a device to upload measurement data to
a remote server.

D. TICK Stack (Vertical)

In order to manage the performance of the virtualized
network functions in real-time, all of Telegraf, InfluxDB,
Chronograf and Kapacitor (TICK) [3] are used as an end-
to-end performance stack. Telegraf collects time-series data
from a variety of sources and in particular, from FlexRAN
API through JSON structured data describing the radio ac-
cess network metrics. InfluxDB delivers high performance
read/write access and efficiently stores fetched time-series
data. Chronograf is used to visualize graphs of stored data
in InfluxDB using different plots formats. Finally, we used
Kapacitor to send commands to the northbound application.
TICK stack provides extract-transform-load capability from
heterogeneous raw data and allows autonomous anomalies
detection in time-series data.
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Fig. 2. Physical Machine Metrics Evolution over Time

Fig. 2 depicts our hardware layer performance dashboard
including system uptime, number of cores of the physical
machine, system load, total memory, hard disk activity in terms
of Input/Output (I/O) read/write, network activity, processes
and swap. All these metrics depict our physical host system
capabilities (8 Central Processing Units (CPUs), 16 GB of
memory, etc), when implementing our different uses-cases,
shown in the next section. We can notice that the memory
usage increases over time and reads 35% of the available
memory due to the caching process.
Note that this prototype is depicting a Non Stand-Alone
deployment of 5G, but it could be easily upgraded to a
standalone one or any other form of the eight envisioned
deployment options of 5G. It is worth noting that our 5G
experimental prototype takes into consideration all of: self-
healing, high-availability, centralized coordination, and hori-
zontal scalability. Indeed, the swarm Cluster for 5GC, provides
self-healing capability by re-instantiating a replica of a mi-
croservice whenever the latter fails due to intermittent software
glitch or software/hardware failure of a worker machine and so
on. To do so, it automatically recreates another microservice
to compensate for the failed one and maintain the same
requested number of microservices of the service in question.
Using a cluster composed of a manager and multiple workers
ensures high-availability of the 5GC, meaning that if a worker
fails, the cluster is maintained and remaining workers and
manager absorb and balance the load, using the internal or an
external load-balancer such as HAPROXY [15] (our case). The
latter plays two roles of load-balancing and reverse-proxying.
This service-based architecture ensures seamless scalability
by means of horizontal scaling, precisely, by scaling-out or
scaling-in the number of replicas according to changing needs
in terms of computing resources. Note that the details of our
auto-scaling algorithm can be found in our previous work [15].

V. PERFORMANCE EVALUATION

A. Dynamic Slicing and Devices Auto-Rehoming

In this work, we have focused on both eMBB and mMTC
types of slices. Indeed, since wireless bandwidth is scarce
and limited, eMBB slices are anticipated to be scaled in
chunks on two fronts: bandwidth and service functions. On
the other hand, massive sensors typically collect small-data
payloads and exchange them with a base station. Due to the
limited power of embedded sensors envisioned for mMTC
slices, it is preferred that they work intermittently rather than
continuously. Accordingly, the advantages of a dynamic slicing
of radio resources are vivid in these two types of 5G network
slices, as we will see in the following.
It is worth noting that our proposed architecture could also
address the uRLLC network slices since our RAN network
functions are deployed as microservices in a container-based
virtual environment. According to our experiments [13], we
have quantified the average deployment time of a container-
based function to 1.8 𝜇s ± 0.2 𝜇s, which makes our prototype
able to meet the critical time constraints of uRLLC.

In this context, we have used our 5G experimental prototype
[3] to manage several IoT Devices including smart switches,
smart lamps and temperature/light sensors. We used our BeC3
IoT platform to provision the IoT devices at both virtual
and physical levels. Knowing that BeC3 is lightweight, we
deployed it onto a small-device (Raspberry Pi 2 model B)
to act as an IoT Gateway connected to the 5G prototype
either using Wi-fi and a tethered mobile internet from a
connected smartphone or through a USB dongle equipped with
a corresponding SIM card.

We depict multiple use cases in Fig. 3. In particular, use
case (A-i) illustrates the signal flow of a virtual wattmeter
configured to send periodic measurements to BeC3 cloud,
where the results are displayed using a virtual display, both
provisioned using BeC3. Use case (B-i) illustrates a manually
triggered event using a smart-switch to control a smart lamp
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Fig. 3. Use cases for evaluation of our prototype

Fig. 4. Radio Metrics Dashboard over Time

through mobile internet provided by our 5G experimental
prototype. The smart devices use Enocean serial protocol 3
to transmit related radio telegrams. Finally, use case (C-i)
shows an automated process of dynamic slice creation and
a rehoming of IoT devices to an mMTC slice, while parenting
smartphones to an eMBB slice.

The results of the dynamic slicing in Chronograph dash-
board can be seen in Fig. 4. For the sake of clarity, we chose a
step of 40% of the available Physical Resource Blocks (PRBs).

As the dynamicity of throughput requirements is more
interesting in the case of the eMBB slice than that for the
mMTC slice, we considered configuring dynamic auto-scaling
of PRBs on the eMBB slice. We can see, in placeholder (2),
that Slice 1, configured to use dynamic slicing, exploits the
auto-scaling by increasing its ratio from 10% to 50% then
90% of available PRBs and vice versa. We can also see the
corresponding allocated PRBs are (5, 25 and 45) out of the
available 50 PRBs of our setup, as reflected in placeholder
(9), which depicts the instant downlink PRBs. Remaining
placeholders depict the downlink/uplink percentages for both
of slice 0 and 1, in addition to the instant Power-HeadRoom
(PHR) and the downlink volume which increases along the
usage.

Fig. 5. Normalized Throughput with/without slicing ratios forecasting

B. Slicing Ratio Forecasting using Machine Learning

Using our proposed prototype, we initially acquired consid-
erable RAN data to train multiple ML models. In particular, we
have selected regression trees as our preferred ML forecasting
mechanism as we have found it to be the best performer in
terms of Root Mean Square Error (RMSE), Mean Average
Error (MAE) and coefficient of determination (𝑅2) [3].
Recall that a regression tree is built using a binary recursive
partitioning, which is an iterative process that splits the data
into partitions or branches. Then, it continues splitting each
partition into smaller groups as the mechanism moves up
through each branch.

Using our prototype, and precisely, by carrying-out a query
to the database (InfluxDB) tables, we extracted the historical
traffic profile including the timestamp, and the used PRBs by
each connected device. We then aggregated the used PRBs
per type of slice. We have also enriched such traffic profile
by appending the requirements from the slice owner. All of
these constituted our set of predictor variables. On another
hand, according to the implemented infrastructure usage policy
(relying on iterative auto-scaling), we have appended to our
enriched traffic profile the related response for each slice in
terms of allocated PRBs. Accordingly, we have fed this whole
table to the regression tree learner.

We have implemented, in the northbound web application,
our ML based forecasting mechanism to orchestrate slicing
ratios for multiple network slices based on available PRBs.
Once the training of our ML model is done, our objective
would be to dynamically provision optimum-slicing ratio out
of the available pool of PRBs to the new created slices. To do
so, we start by creating one slice hosting a smartphone and
map it to an eMBB slice. We use Youtube video streaming
application to simulate some bursty traffic. Note that this slice
is configured to use our dynamic slicing through forecasting,
whereas a second slice is dynamically created, whenever the
IoT devices have to upload some data streams. This latter
slice will be then automatically deleted after finishing the
transfer process and its related PRBs will be returned to the
PRBs pool. Accordingly, the remaining active slices can use
them when needed. We have evaluated the system performance
using two metrics, namely the normalized throughput and the
CPU utilization of the host machine.

Fig. 5 depicts the normalized throughput for the eMBB Slice
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Fig. 6. CPU utilization with/without slicing ratios forecasting

during two hours of simulation when using our autonomous
network slicing versus the case where we deactivate it. The
normalized throughput is computed as the ratio between the
obtained throughput and the maximum available one. We can
easily observe that the forecasting process allowed increasing
the throughput by approximately 30% compared to the case
where the forecasting is de-activated and only a static slicing
ratio of 50% to each of these two slices is used. We notice
that forecasting slicing ratios accelerates the provisioning
of required PRBs to serve the requirements of the running
applications.

On the other hand, we can see that this automation comes
at a cost of an increased utilization of CPU of the host system
as depicted in Fig. 6. This is explained by the increase of the
computing resources utilization, resulting from the processing
of the slice lifecycle (creation/destruction of a slice). Finally,
we note that the same normalized throughput is maintained,
although we queued a new video, starting from 50 minutes
and onwards. This is seen in the system utilization, where the
trends of CPU usage for both cases (with/without slicing ratios
forecasting) increased, reflecting such additional load.

VI. CONCLUSION

In this article, we investigated the available prototypes for
5G and proposed a novel architecture. Our architecture differs
from existing state-of-the-art monolithic ones as it relies on a
microservice-based implementation. We also complemented it
with a TICK Stack for performance monitoring and manage-
ment. On application layer, we developed two web applications
for configuration management, leveraging machine learning
forecasting techniques to auto-provision slicing ratios. We
proposed to manage the IoT devices using BeC3. Using
Docker Swarm, we implemented self-healing, high availability,
centralized coordination, and horizontal scaling mechanism.
We validated our implementation using a realistic use-case
with IoT sensors, so that we dynamically create a slice and
rehome devices to it. We observed that, using a machine-
learning forecasting model, has substantially increased the
throughput of the network, based on same radio network
design, with a drawback of an increased computing resources
utilization.
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