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Abstract

The paper presents an appropriate and efficient methodology for updating the control parameters
of very large uncertain computational models, which are used for analyzing the linear vibrations
in the frequency domain of highly complex structures for which there are an enormous number
of intertwined local and global elastic structural modes in the broad frequency band of analysis.
Moreover, the numerical cost of a single evaluation of the frequency response functions with the
computational model is assumed to be very high and only one experimental frequency response
function is available as a target. For decreasing the numerical cost of this challenging problem, a
parameterized reduced-order model is constructed. Nevertheless, this reduction is not sufficient
to be able to solve the non-convex optimization problem related to the updating. Consequently,
for avoiding the call to the computational model, the probabilistic learning on manifolds is used
for generating a learned set from a training set, which, coupled with conditional statistics, al-
lows the evaluation of the cost function without calling the computational model. A numerical
illustration is presented for validating the proposed methodology.

Keywords: updating, computational dynamics, uncertainties, machine learning, probabilistic
learning, PLoM

1. Introduction

(i) Objectives of the paper.
The framework of the developments presented in this paper is that of linear vibrations of

highly complex structures for which the uncertain high-dimensional model (HDM) can have
108, even 109 degrees of freedom (dof). The number of frequency points in the frequency band
to analyze the structure is of the order of several thousands, even 104. The number of elastic
structural modes in the frequency band of analysis is of the order of 106 with the simultaneous
presence of local and global elastic structural modes. This dynamic system depends on a control
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Figure 1: Left: spent nuclear fuel canister loaded with two fuel assemblies – Right: spent nuclear
fuel assembly with and without outer shell (pictures from [2])

parameter made up of several hundred parameters, mainly related to local stiffnesses of joints in-
side the structure. The problem consists in identifying an updated value of the control parameter
on the basis of only one available experimental frequency response function (FRF) between one
input dof and one output dof located on the boundary of the structure. This updating requires
to solve an optimization problem on an admissible set of the control parameter and by using an
adapted formulation of the cost function. The admissible set is the support of the prior probabil-
ity distribution of the uncertain control parameter. This situation, which we have just described,
is that of the fully-loaded spent nuclear fuel canisters studied in [1, 2, 3] and depicted in Fig.1.
Those are multiscale structures made up of repeated components at various scales, which require
fine mesh discretizations and which also exhibit numerous local structural elastic modes that are
associated with the isolated vibrations of each of the numerous components. In [3], an HDM was
constructed based on nearly half-a-million modes from a finite element model of about 130 mil-
lion dof. Adapted algorithms were developped allowing a single run of the HDM to be performed
in about 40 minutes using a cluster of 50 nodes. In this application, it is of particular interest to
be able to perform the updating of physical parameters that describe the structural integrity of
the internal components and structural connections, which are critical to nuclear safety.

This challenging problem is particularly difficult because the dynamical system is more than
under-observed (in fact only one experimental FRF is available) and one could even think that it
is badly posed. However, the FRF is known over a wide frequency band, at a large number of
frequency points, which partially removes the under observability. The difficulty of the consid-
ered problem also comes from the fact that the numerical cost of one evaluation of a few FRFs
with the HDM, for a single fixed value of the control parameter, and for all the frequency points,
is huge, even unrealistic.

It is therefore necessary to use a methodology that makes it possible to circumvent these diffi-
culties by considering several ingredients. The first ingredient consists in reducing the numerical
cost of a single evaluation of the HDM by constructing a parameterized reduced-order model
(ROM) as a function of the control parameter. Such a reduction can be performed either using
the proper orthogonal decomposition (POD) of the responses of the dynamic system computed
for a given small set of the control parameter values, or using the modal synthesis approach with
the parameterized elastic structural modes, formulated with the classical approach or introducing
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a multi-frequency model reduction, with or without dynamic substructuring.
The POD approach is very well adapted to nonlinear dynamic systems formulated in the time

domain and allows the construction of a basis that is independent of the control parameter, vector
basis that is used for projecting the HDM in order to construct a parameterized ROM (see for
instance [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]).

Since the problem under consideration is linear and is directly formulated in the frequency
domain, we prefer to use the modal synthesis approach, which is based on the elastic structural
modes that depend on the control parameter, and which is more accurate in the considered case.
For the computational aspects related to the elastic structural modes and modal synthesis, we
refer the reader, for instance, to [14, 15, 16] and for the continuum-mechanics aspects to [17].
Due to the presence of a very large number of global and local elastic structural modes in the
frequency band of analysis, a multi-frequency model reduction (see [18, 19, 20]) or a multiscale
modal analysis [2] could also be used.

For the structures considered, the techniques of dynamic substructuring are often very effec-
tive. As explained in the Review Paper [21], the concept of substructures was first introduced by
Argyris and Kelsey in 1959 [22] and by Przemieniecki in 1963 [23] who introduced the static
boundary functions. This work was extended by Guyan, Irons, and Hurty [24, 25, 26, 27]. Fi-
nally, Craig and Bampton in 1968 [28] adapted the Hurty method in order to represent each sub-
structure of the same manner consisting in using the elastic structural modes of the substructure
with fixed geometrical interface and the static boundary functions on its geometrical interface.
These aspects in the formulation of the continuum mechanics can be found in [17].

For the complex structures under consideration that we have described at the beginning of
this section, the simultaneous use of the substructuring technique coupled with a multi-frequency
model reduction would be efficient. Nevertheless, in order to simplify the presentation of this pa-
per, we have limited the developments to the framework of the classical modal synthesis without
using substructuring technique and multi-frequency model reduction. As the reader will be able
to see, the implementation of these two ingredients in the methodology proposed could be per-
formed without significant difficulties.

Even using the parameterized ROM, the numerical cost of a single evaluation of the cost
function of the optimization problem, for updating the HDM, is far too high. Indeed, any
optimization algorithm for this type of nonconvex problem will have to make a large number
of evaluations of the cost function or even of its gradient. This means that it is necessary to
build a ”surrogate model” that relates the control parameter to the frequency-sampled FRF. Such
surrogate models can be chosen in the class of deterministic or statistical representations [29].
There are many methods in the class of deterministic representations based on polynomial and
spline regressions or on the use of meshless representations that make it possible to calculate
partial derivatives (see for instance [30, 31, 32, 33, 34, 35]). Nevertheless, these methods are
not well adapted neither to the high-dimensional problems nor to the statistical framework. For
the class of statistical representations, and in particular in the framework of uncertainty quantifi-
cation [36, 37], there are many possibilities. The use of Gaussian processes to build surrogate
models, such as kriging methods, is very popular [38, 39, 40] but these may have limitations
induced by high dimensions and by the geometric complexity of the manifold that we seek
to represent by a surrogate model. Certainly, another popular method, which is very efficient
for many challenging problems, is the use of the polynomial chaos expansion (see for instance
[41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]). The Bayesian inference could also be consid-
ered as a powerful statistical tool for building a surrogate model defined by a statistical inverse
problem (see [54, 55, 56, 57, 58, 59, 36, 60] for general aspects and [61, 62, 63, 64, 65, 66, 60]
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for more specific aspects related to statistical inverse problems). In the framework of Artificial
Intelligence [67], machine learning tools such as the Neural Networks [68] and Deep Learning
[69] are very appropriate representations for building surrogate models but generally require big
data. For many problems in computational sciences and engineering based on large computa-
tional models for simulating physics as a function of a set of control parameters, big data are
generally not available due to the high numerical cost for performing a large number of evalua-
tions using the computational model (this is the framework of this paper).

(ii) Strategy used in the paper. In this work, we propose to use the probabilistic learning on
manifolds (PLoM) that was proposed in [70, 71, 72] as a complementary approach to existing
methods in machine learning for sampling underlying distributions on manifolds [73, 74, 75, 76,
77, 78, 79, 80]. It allows for solving unsupervised and supervised problems under uncertainty
for which the training sets are small. As we have already explained, this situation is encountered
in many problems of physics and engineering sciences with expensive function evaluations. The
PLoM was successfully adapted to tackle these challenges for several related problems including
nonconvex optimization under uncertainty [81, 82, 83, 84, 85], updating digital twin [86], calcu-
lation of Sobol’s indices [87], quantifying uncertainties with small data [88, 89, 90, 91]. More
recently, extensions have been proposed for analyzing the case of high stochastic dimension by
using the PLoM with partition [72] and also for taking into account constraints in the PLoM
algorithm defined by experimental statistical moments [92] or by nonlinear partial differential
equations [93], for computational fluid dynamics and nonlinear solid dynamics.

In this paper, we present a methodology for updating the uncertain computational model.
As it is well known, the updating problem requires to solve an optimization problem for which
several formulations are possible in the statistical context for constructing the ”cost function”: the
least-square method, the maximum likelihood, or the Bayesian approach. The last two cannot
easily be used because only one target is available. We address this challenge by using the
algorithm that we have presented in [81] and validated in [82, 83, 84], but, on the one hand by
replacing the PLoM algorithm [70] by the novel algorithm of PLoM [92, 72] in order to apply
the constraints related to the normalization and on the other hand by constructing a cost function
on the basis of conditional statistics estimated with the learned set generated with PLoM. This
approach allows for maintaining the number of function evaluations at the level essentially equal
to that of the construction of the training set.

Finally, the presented numerical application is an illustration, which is representative of all
the reported difficulties of the problem posed, but which does not have the complexity of the
structures mentioned at the beginning of this paragraph. This choice was made so that the reader
can reproduce all the results presented from a simply and completely described dynamic system.

(iii) Novelty of the paper. This paper presents an appropriate and efficient methodology for up-
dating high-dimensional uncertain computational models in the domain of linear vibrations, with
a formulation in the frequency domain, for a broad frequency band, for which each evaluation
is expensive, and for which only one experimental frequency response function is available as a
target. We formulate a nonconvex optimization problem, which is solved using a probabilistic
learning tool and conditional statistics, which have been specifically developed for the case of a
training set constituted of a small number of points. In this framework, the methodology pro-
posed is novel. It should be noted that we are searching for improving a computational model in
the framework of an ill-posed problem, related to the nonconvexity of the optimization problem
formulated for the updating, to the under observability, and to the knowledge of only one ex-
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perimental FRF. Nevertheless, despite this serious difficulty, we propose an approach that allows
for updating the model. As explained in the description of the strategy, the updating is first per-
formed by using the training set. Then, alternatively, the PLoM method is used as a resampling
tool for trying to improve the updating with respect to the one given by the training set. Through
the presented applications, it will be seen that this additional resampling may or may not improve
the updating. The main explanation to this phenomena is not due to the capability of PLoM, but
is due to the lack of monotonicity of the optimum solution as a function of the size of the training
set. This point will be further discussed in the application.

(iv) Organization of the paper. In Section 2, we list all the hypotheses used for the proposed
methodology in order to carry out the updating of the computational model. Section 3 is devoted
to the definition of the parameterized computational model for the linear vibrations formulated
in the frequency domain. Section 4 deals with the construction of the parameterized ROM that
is obtained by projection on the parameterized elastic structural modes. The convergence of
the modal synthesis is controlled for each value of the control parameter yielding parameterized
ROM whose dimension depends on the control parameter. Section 5 begins with the construc-
tion of the probabilistic model of the control parameter. Then the training set is built using the
stochastic ROM deduced from the parameterized ROM and the probabilistic model of the control
parameter. This training set will allow the learned set to be generated, which will be used to solve
the optimization problem. Section 6 deals with the formulation of the updating of the stochastic
parameterized ROM. The cost function is constructed with a least-square formulation and the use
of the statistical conditioning of the random parameterized frequency response function, given a
value of the control parameter. For each value of the control parameter, which is proposed by the
optimization algorithm, this statistical conditioning is performed with the learned set generated
by PLoM and an algebraic formulation derived from the nonparametric statistics. The numerical
application is presented in Section 7. All the numerical values of the parameters and data that
are necessary for reproducing the results are given. The results obtained are presented, which are
accompanied by a discussion. The PLoM algorithm is summarized in Appendix A.

Notations
Lower-case letters such as q or η are deterministic real variables.
Boldface lower-case letters such as q or η are deterministic vectors.
Upper-case letters such as X or H are real-valued random variables.
Boldface upper-case letters such as X or H are vector-valued random variables.
Lower-case letters between brackets such as [x] or [η] are deterministic matrices.
Boldface upper-case letters between brackets such as [X] or [H] are matrix-valued random vari-
ables.

δαβ: Kronecker’s symbol.
ι: imaginary unit in set C.
nu: number of dof in the computational model.
nω: number of frequency sampling points.
nw: number of control parameters.
Cn: Hermitian vector space on C of dimension n.
[In]: identity matrix in Mn.
Mn,N : set of (n × N) real matrices.
Mn: set of square (n × n) real matrices.
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M+0
n : set of positive symmetric (n × n) real matrices.

M+n : set of positive-definite symmetric (n × n) matrices.
Rn: Euclidean vector space on R of dimension n.
[x]k j: entry of matrix [x].
[x]T : transpose of matrix [x].
<x , y>: Euclidean or Hermitian inner product.
∥x∥: Euclidean or Hermitian norm <x , x>1/2.

2. Hypotheses used for developing the methodology

(H1) We consider the linear structural vibrations of a complex heterogeneous linear mechanical
system with respect to the geometry, the boundary conditions, and the materials. We are inter-
ested in characterizing the vibrations in the frequency domain Ω that is a bounded interval of
R.

(H2) The structure is a multi-scale system inducing the presence of a huge number of local and
global elastic structural modes in the frequency band Ω.

(H3) The frequency sampling set Ωs = {ω1, . . . , ωnω } ⊂ Ω is made up of a large number nω of
frequency sampling points.

(H4) Due to (H2), the HDM requires the use of a very large number nu of degrees of freedom.

(H5) The HDM depends on a control parameter w = (w1, . . . ,wnw ) belonging to an admissible
set Cw ⊂ Rnw in which nw is relatively small and for which a nominal value w is given in Cw.
The control parameter is uncertain and its nominal value must be updated by using experimental
information.

(H6) For a fixed value of w in Cw, we consider no frequency response functions {ω 7→ FRFk(ω; w),
k = 1, . . . , no} from Ω into C in which no is relatively small (a few units). The quantity of interest
is the real matrix [q(w)] ∈Mnω,no depending on the control parameter w and on the frequency
sampling such that [q(w)]mk = 20 log10(|FRFk(ωm; w)|) with m ∈ {1, . . . , nω} and k ∈ {1, . . . no}.
The numerical cost of one evaluation performed with the HDM is assumed to be high.

(H7) It is assumed that only one experimental FRF (the target) is available and is sampled using
the frequency points of Ωs. This single experimental FRF is associated with the last observation
of the HDM whose index is no. It means that the number no of observations is possibly greater
than the number of targets (that is only of one). This sampled experimental FRF is then denoted
by {FRFtarg(ωm),m = 1, . . . , nω}. The experimental quantity of interest (the target) is then defined
as the real vector qtarg = (qtarg

1 , . . . , qtarg
nω ) ∈ Rnω such that qtarg

m = 20 log10(|FRFtarg(ωm)|) for m ∈
{1, . . . , nω}.

3. Computational model and frequency response functions

From Hypotheses (H1), (H3), and (H4), the finite element discretization with nu degrees of
freedom of the boundary value problem yields the HDM that is written, in the frequency domain
and for ω ∈ Ω, as

(−ω2 [M(w)]+ι ω [D(w)] + [K(w)]) u(ω; w) = [B] f(ω) , (1)
o(ω; w) = [A] u(ω; w) , (2)
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in which w ∈ Cw is the control parameter, u(ω; w) ∈ Cnu is the complex vector of the response
for all the degrees of freedom, [M(w)], [D(w)], and [K(w)] are the mass, damping, and stiffness
matrices that are assumed to be in M+nu

(set of all the positive-definite symmetric (nu × nu) real
matrices), where [B] is the controllability real matrix in Mnu,n f in which n f is the number of
excited dofs, [A] is the observability real matrix in Mno,nu , where f(ω) is the complex vector of
applied loads in Cn f , and where o(ω; w) is the complex vector of the observations in Cno .

Taking into account Hypothesis (H7), let us define no frequency response functions {ω 7→
FRFk(ω; w) :Ω → C, k = 1, . . . , no}, which all have the same input dof, iinput, and for which the
no output dofs are {ok(ω; w), k= 1, . . . , no}. We then have n f = 1, f(ω) = f (ω)= 1 for all ω, and
[B]i,1 = δi,iinput for all i∈ {1, . . . , nu}. Therefore, we have, FRFk(ω; w) = ok(ω; w). For ω∈Ωs, the
quantity of interest is the real matrix [q(w)]∈Mnω,no such that [q(w)]mk = 20 log10(|FRFk(ωm; w)|).

4. Parameterized reduced-order model

Due to Hypotheses (H3) (nω large) and (H4) (nu very large), and as we have explained in Sec-
tion 1, we have to construct a reduced-order model (ROM). However, since the HDM depends
on control parameter w, a parameterized ROM has to be built. For that we use the classical
approach of modal synthesis consisting in projecting Eqs. (1) and (2) on a finite family of the
elastic structural modes of the associated homogeneous conservative system. As we have pre-
viously explained, a multi-frequency model reduction with or without substructuring techniques
can be used for complex structural dynamics problems, but in this paper, for simplifying the pre-
sentation, we limit the development to the classical modal synthesis. For all w fixed in Cw, we
introduce the generalized eigenvalue problem associated with Eq. (1),

[K(w)] [Φ(w)] = [M(w)] [Φ(w)] [Λ(w)] , (3)

in which [Λ(w)] is the diagonal matrix of the smallest eigenvalues 0<λ1(w)≤ . . .≤ λN(w)(w) in
which N(w)≪nu is defined below by using a convergence criterion. The columns of the matrix
[Φ(w)] in Mnu,N(w) are the eigenvectors (the elastic structural modes) associated with the eigen-
values that are the square of the eigenfrequencies. This matrix satisfies the usual orthogonality
properties [Φ(w)]T [M(w)] [Φ(w)] = [IN(w)] and [Φ(w)]T [K(w)] [Φ(w)] = [Λ(w)]. Introduc-
ing the complex vector v(ω; w) in CN(w) of the generalized coordinates such that u(ω; w) =
[Φ(w)] v(ω; w), the parameterized ROM can then be written as

o(ω; w,N(w)) = [A(w)] v(ω; w,N(w)) , (4)

(−ω2 [IN(w)]+ι ω [D(w)] + [Λ(w)]) v(ω; w,N(w)) = [B(w)] f(ω) , (5)

in which [A(w)] = [A][Φ(w)] ∈Mno,N(w) is the reduced observability matrix, where [B(w)] =
[Φ(w)]T [B] ∈MN(w),nu is the reduced controllability matrix, and where [D(w)] = [Φ(w)]T [D(w)]
[Φ(w)] ∈ M+N(w) is the positive-definite reduced damping matrix. For estimating N(w), the usual
L2 criterion cannot be used because it requires the computation of o(ωm; w) for all ω ∈ Ωs by
using Eqs. (1) and (2) of the HDM, which is way too expensive. Two methods can be used to
analyze the convergence of the ROM with respect to N(w). The first one consists in analyzing
the convergence of the sequence {o(ω; w,N(w))}N(w) with respect to N(w) by using the follow-
ing criterion (of the Cauchy type): for ε given independent of w, find Nopt(w) such that for all
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N(w) ≥ Nopt(w) and N′(w) ≥ Nopt(w), we have

2
∑

m ∥o(ωm; w,N(w)) − o(ωm; w,N′(w))∥2∑
m ∥o(ωm; w,N(w)) + o(ωm; w,N′(w))∥2

≤ ε .

The second one is as follows. At the desired cutoff frequency of the modal basis, the LDL
factorization of the dynamic stiffness matrix (without damping) is computed. The number of
negative terms in the diagonal matrix of this factorization is equal to the number of eigenvalues
below the cutoff frequency. This way, for all w, the N(w) structural elastic modes cover the same
frequency band. It should thus be noted that the dimension Nopt(w) of the ROM depends on w.
In the application presented in Section 7, it is the latter method that will be used.

5. Probabilistic model of the control parameter and generation of the training set using the
stochastic parameterized reduced-order model

The control parameter w = (w1, . . . ,wnw ) with values inCw ⊂ Rnw is modeled by a Rnw -valued
random variable W = (W1, . . . ,Wnw ) defined on a probability space (Θ,T ,P), the probability
distribution PW(dw) of which is given and has a support that is Cw. The mean value w = E{W} =∫
Rnw w PW(dw) of W is thus known and considered as the nominal value of the control parameter.

The random generator of PW(dw) allows for generating Nd independent realizations {w1
d, . . . ,

wNd
d } of W. For each w j

d ∈ Cw with j fixed in {1, . . . ,Nd}, the parameterized ROM of dimension
Nopt(w j

d), defined in Section 4, is used for computing the observations and then deducing, using
the end of Section 3, the quantity of interest [q j

d] ∈ Mnω,no such that, for m = 1, . . . , nω and k =
1, . . . , no, we have [q j

d]mk = [q(w j
d)]mk = 20 log10(|FRFk(ωm; w j

d)|). The training set is then defined
by the Nd independent realizations {([q j

d],w j
d), j = 1, . . . ,Nd} of random variable ([Q],W) with

values in Mnω,no × Rnw . For generating the learned set using the PLoM whose algorithm is
summarized in Appendix A, matrix [q j

d] is reshaped in a vector q j
d ∈ R

nq with nq = nω × no.

6. Optimization problem for model updating

6.1. Defining the cost function and formulation of the optimization problem for model updating

From Hypotheses (H6) and (H7), the quantity of interest, associated with the one experi-
mental FRF sampled in the nω frequency points of Ωs, is the real vector qtarg = (qtarg

1 , . . . , q
targ
nω )

belonging to Rnω . When computed with the stochastic computational model, the corresponding
quantity (see Hypothesis (H7)) is the Rnω -valued random variable ([Q]1no , . . . , [Q]nωno ) such that
[Q]mno = [q(W)]mno with m ∈ {1, . . . , nω}, which depends on the Rnw -valued random control
parameter W.

We propose the following formulation for the model updating. The updated value wopt ∈ Rnw

of the nominal value w ∈ Rnw of the control parameter is constructed as the solution of the
optimization problem,

wopt = arg min
w0∈Cw

J(w0) , (6)

in which Cw ⊂ Rnw is the admissible set of the control parameter and where J is the cost function.
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A first formulation of the cost function could be defined for all w0 ∈ Cw by

J(w0)=
1

nω

nω∑
m=1

(qtarg
m −E{[Q]mno |W=w0})2 . (7)

In Eq. (7), E{[Q]mno |W = w0} is the conditional mathematical expectation of the real-valued
random variable [Q]mno given W = w0 for w0 in Cw. Since there are no uncontrolled random
variables in the considered system, if W is fixed to a given value w0, then [Q]mno is determin-
istic and consequently, the conditional probability measure of [Q]mno given W = w0 is a Dirac
measure. Nevertheless, since the training set has a finite number Nd of points, the estimation
of the joint probability measure of ([Q]mno ,W) is performed using the Gaussian kernel density
estimation method of the nonparametric statistics. Consequently, such a data smoothing allows
for introducing a regularization of the joint probability measure whose support is the manifold
defined by the graph {([q]mno (w),w),w ∈ Cw}. Therefore, the joint probability measure of ran-
dom variable ([Q]mno ,W) admits a density with respect to the Lebesgue measure on R × Rnw .
In the framework of such a smoothing, it can then be assumed that the conditional probability
measure of [Q]mno given W = w0 can be written as

P[Q]mno |W(dq|w0) = p[Q]mno |W(q|w0) dq

in which q 7→ p[Q]mno |W(q|w0) is the conditional probability density function of [Q]mno with re-
spect to the Lebesgue measure dq on R, given W = w0 (it will be the case, see Section 6.2).
Consequently,

E{[Q]mno |W=w0} =

∫
R

q p[Q]mno |W(q|w0) dq. (8)

Note that the conditional random variable [Q]mno |W = w0 is a R-valued random variable. In
general, the maximum of the conditional pdf, q 7→ p[Q]mno |W(q|w0), is not reached at the mean
value E{[Q]mno |W=w0}. Hence, there is an interest in considering a second formulation of the
cost function that is defined as follows. For w0 fixed in Cw and for m fixed in {1, . . . , nω}, let
qML

m (w0) be defined by
qML

m (w0) = arg max
q

p[Q]mno |W(q|w0) . (9)

Therefore, Eq. (7) is replaced by the following one,

J(w0)=
1

nω

nω∑
m=1

(qtarg
m −qML

m (w0)})2 . (10)

6.2. Estimating the conditional statistics using PLoM

As previously explained, the PLoM method is used for generating the learned set made up
of Nar ≫ Nd realizations {([qℓar],wℓar), ℓ = 1, . . . ,Nar} of random variable ([Q],W) with values in
Mnω,no × Rnw , without calling the computational model. The PLoM algorithm [70, 71, 92, 72] is
summarized in Appendix A, in which the random matrix [Q] with values in Mnω,no is reshaped
in the random vector Q with values in Rnq with nq = nω × no.

For m fixed in {1, . . . , nω} and for w0 fixed in Cw, the conditional mathematical expectation

E{[Q]mno |W=w0}

9



is estimated using the learned set {([qℓar]mno ,wℓar), ℓ = 1, . . . ,Nar}. In order to simplify the notation,
in this subsection, the subscripts m and no will be removed and consequently, Qmno = [Q]mno ,
qmno = [q]mno , q

mno
= [q]mno , [qℓar]mno , and so on, will simply be noted as Q, q, q, qℓar, and so on. Let

q and σQ be the empirical mean value and standard deviation of random variable Q estimated
with {qℓar, ℓ = 1, . . . ,Nar}. Similarly, for i ∈ {1, . . . , nw} let wi and σi be the empirical mean
value and standard deviation of the real-valued random variable Wi estimated with {wℓar,i, ℓ =

1, . . . ,Nar}. We introduce the normalized random variables Q̃ and W̃ = (W̃1, . . . , W̃nw ) such that,
for i = 1, . . . , nw,

Q = q + σQ Q̃ , Wi = wi + σi W̃i .

We define w̃0
= (w̃0

1, . . . , w̃
0
nw

) such that

w0
i = wi + σi w̃0

i , i = 1, . . . , nw .

Consequently, Eqs. (8) and (9) can be calculated by using the following equations,

E{Q |W = w0} = q + σQ E{Q̃ | W̃ = w̃0
} , (11)

in which
E{Q̃ | W̃= w̃0

}=
1

pW̃(w̃0)

∫
R

q̃ pQ̃,W̃ (̃q, w̃0) dq̃ , (12)

and
qML(w0) = arg max

q̃
pQ̃|W̃ (̃q|w̃0) . (13)

In Eq. (12), pW̃(w̃0) =
∫
R pQ̃,W̃ (̃q, w̃0) dq̃ and where (̃q, w̃) 7→ pQ̃,W̃ (̃q, w̃) is the pdf on R ×

Rnw of random variable (Q̃, W̃) with respect to dq̃ dw̃. The classical Gaussian KDE method
[94, 95, 96, 97] is used for estimating pQ̃,W̃ (̃q, w̃) on R × Rnw as

pQ̃,W̃ (̃q, w̃) =
1

Nar

Nar∑
ℓ=1

1

sSB

√
2π

exp{−
1

2s2
SB

(̃q − q̃ℓar)
2}

×
1

(sSB

√
2π)nw

exp{−
1

2s2
SB

∥w̃ − w̃ℓar∥
2} , (14)

in which sSB is the following Silverman bandwidth, sSB = (4/(Nar(3+nw)))1/(5+nw), and where, for
ℓ = 1, . . . ,Nar, q̃ℓar = (qℓar − q)/σQ and for i = 1, . . . , nw, w̃ℓar,i = (wℓar,i − wi)/σi. From Eqs. (12),
(13),and (14), it can be deduced that

E{Q̃ | W̃= w̃0
}=

∑Nar
ℓ=1 q̃ℓar exp{− 1

2s2
SB
∥w̃0
−w̃ℓar∥

2}∑Nar
ℓ=1 exp{− 1

2s2
SB
∥w̃0
−w̃ℓar∥

2}
, (15)

qML(w0) = arg max
q̃

Nar∑
ℓ=1

exp{−
1

2s2
SB

((̃q − q̃ℓar)
2 + ∥w̃0

−w̃ℓar∥
2)} . (16)
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6.3. Choice of the optimization algorithm

For each value w0 proposed by the optimization algorithm, the evaluation of the cost func-
tion is performed using PLoM as we have explained in Sections 6.1 and 6.2. Nevertheless, an
algorithm has to be chosen for solving the optimization problem defined either by Eq. (6) with
Eqs. (7) and (8) or by Eq. (6) with Eqs. (10) and (9). Note that in the application of Section 7, we
will consider the optimization problem defined by the second set of equations. The optimization
algorithms have extensively been developed for several decades and are today really efficient
(see for instance [98] for problems in a deterministic framework). Concerning the algorithms
for solving optimization problems in a statistical framework, many methods have been proposed
such as the gradient-based learning that is adapted to convex problems [99, 100], the global
search algorithms such as the stochastic algorithms, the genetic algorithm, and the evolutionary
algorithms [101, 102]. If dimension nw is small, a grid search algorithm can also be used (see
the numerical application presented in Section 7).

6.4. Optimization strategy

We assume here that the optimization problem defined by Eq. (6) with Eqs. (10) and (9) is
considered (which will be the case in Section 7). Once the optimal control parameter wopt is
found from solving this optimization problem, the HDM is rerun once, using the control param-
eter wopt . We then introduce an error function edB,k associated with observation number k, which
is given, using the trapezoidal rule, by:

edB,k(w)=

 1
2(nω − 1)

nω−1∑
m=1

(
f k
m+1(w)+ f k

m(w)
)

1/2

, (17)

in which f k
m(w) =

(
[q(w)]mk − qtarg

m

)2
. The error edB,no (wopt) characterizes the quality of the model

updating with respect to the target. It is recalled that the cost function in Eq. (6) relies on the
estimation of the conditional statistics using PLoM. The PLoM method is used for generating
Nar = nMC × Nd realizations based on Nd calls to the HDM (see Appendix A) in which nMC is
an integer greater than 1. It should be noted that increasing Nd may not lead to an improved
updating because of the lack of monotonicity in Nd of the error function defined by Eq. (17)
(as mentioned in Section 1 (iii)). The global strategy is then to solve the optimization problem
several times by considering subsets of the training set (the PLoM method being used for each
subset), because a subset can potentially yield a better updating than the training set (due to the
lack of monotonicity). For each optimization problem related to a given subset, we estimate the
optimal value wopt of w and one call to the HDM with w = wopt is then required for estimating
the error defined by Eq. (17). Let Nc be the maximum number of calls to the HDM that we
can afford. A number Nd < Nc of calls to the HDM are done to obtain the training set. Let
Ncd = Nc −Nd be the number of calls to the HDM that are left. This means that Ncd optimization
problems (with associated PLoM computation) can be carried out for improving the updating.

7. Numerical application

The mechanical system considered in this application has been voluntarily chosen as a simple
one and is comprehensively described so that the results presented can be reproduced.
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7.1. Defining the computational model

As a numerical application, a structure made up of plates in bending mode is considered,
see Fig. 2. It is constituted of two structural levels, such that it exhibits both global and local

Figure 2: Multiscale plate structure including the position of the input and output nodes of the
considered FRF (big black dots)

structural elastic modes. This structure is similar to the one analyzed in [103] in which global
and local modes are plotted. This way, despite its simplicity, the structure presents similar char-
acteristics as the structures of interest as described in Section 1. The structure is rectangular with
length 0.26 m (x axis) and width 0.2 m (z axis), and it includes twelve square slots with dimen-
sion 0.04 m, three of them being empty (holes) and nine of them being thin panels. These twelve
slots are regularly spaced, such that the matrix frame (or frame) is of width 0.02 m. The structure
is modeled using isotropic Kirchhoff plate elements. The nominal properties of the structure are
now given. The plate thickness h1 of the frame is of h1 = 2 × 10−3 m, its Young modulus is
E1 = 210 × 109 GPa, its Poisson ratio is ν1 = 0.3, and its mass density is ρ1 = 2600 kg/m3.
For the nine panels, the Young modulus is E2 = 5 × 109 GPa, the Poisson ratio is ν2 = 0.3,
and the mass density is ρ2 = 5200 kg/m3. Regarding their thickness, it is h2 = 1.1 × 10−4 m
for the bottom-left, bottom-right, and top-mid panels, whereas it is h′2 = 9 × 10−5 m for the six
remaining panels. As boundary conditions, the four corners are fixed. The finite element model
has nu = 163,032 dof. The quantity of interest is the FRF between the transverse displacement
dof of the two nodes depicted in Fig. 2. Taking the bottom left corner as origin, the coordinates
(m) of the two nodes are (x1 = 0.01, z1 = 0.08) and (x2 = 0.23, z2 = 0.155). We then have no = 1.
The FRF is uniformly sampled using nω = 5000 frequency points.

7.2. Defining the probabilistic model of the control parameter W
The computational model depends on a control parameter w = (w1, . . . ,wnw ) with dimension

nw = 4. Let k1 = E1/(3(1−2ν1)), g1 = E1/(2(1+ν1)), k2 = E2/(3(1−2ν2)), and g2 = E2/(2(1+ν2))
denote the bulk and shear moduli of the frame and of the panels, respectively. The nw = 4
components of the control parameter w are given by w1 = Log(k1), w2 = Log(g1), w3 = Log(k2),
and w4 = Log(g2) . The Rnw -valued random variable W = (W1, . . . ,Wnw ) associated with w is
defined as follows.

• Let K1 denote the random bulk modulus of the frame. Its mean value is k1 and its co-
efficient of variation is denoted as δK1 . The probability distribution of K1 is chosen as a
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Gamma distribution with shape parameter αK1 = δ
−1/2
K1

and rate parameter βK1 = αK1/k1 .
Random variable W1 is given by W1 = Log(K1) .

• Similarly, let G1 denote the random shear modulus of the frame. Its mean value is g1
and its coefficient of variation is denoted as δG1 . Random variable G1 follows a Gamma
distribution with shape parameter αG1 = δ

−1/2
G1

and rate parameter βG1 = αG1/g1 . Random
variable W2 is given by W2 = Log(G1) .

• Let K2 denote the random bulk modulus of the panels. Its mean value is k2 and its co-
efficient of variation is denoted as δK2 . The probability distribution of K2 is chosen as a
Gamma distribution with shape parameter αK2 = δ

−1/2
K2

and rate parameter βK2 = αK2/k2 .
Random variable W3 is given by W3 = Log(K2) .

• Similarly, let G2 denote the random shear modulus of the panels. Its mean value is g2
and its coefficient of variation is denoted as δG2 . Random variable G2 follows a Gamma
distribution with shape parameter αG2 = δ

−1/2
G2

and rate parameter βG2 = αG2/g2 . Random
variable W4 is given by W4 = Log(G2) .

7.3. Parameterized reduced-order computational model and training set computation

The training set is obtained based on the realizations of random control parameter W. The
admissible set Cw of W is such that k1 ∈ ]0,+∞], k2 ∈ ]0,+∞], ν1 ∈ ]0.15 , 0.45], and ν2 ∈
]0.15 , 0.45]. For each material, according to the paper [104], the bulk and shear moduli are
statistically independent and it is shown that we have:

δG1 =
1√

−4 + 5/δK1

, (18)

δG2 =
1√

−4 + 5/δK2

. (19)

In addition, it is assumed that the random mechanical properties are independent from one ma-
terial to the other. For the training set, we choose δK1 = 0.15 and δK2 = 0.5 . This means that the
material variability is greater for the panels than for the main frame. The nominal values given in
Section 7.1 are used and allow to obtain the random realizations of W through the steps detailed
in Section 7.2. As explained in Section 1, for the case of an HDM, the number Nc of calls to the
computational model is limited by the computational resources. In this application, we then also
choose a small value Nc = 200 of the maximum number of calls to the HDM. The training set is
then generated by Nd = 175 independent realizations of W. The value of Nd has been chosen to
let 12 optimization problems to be solved with and without PLoM (2 × 13 + 175 = 201 ∼ 200).
For a fixed realization of W, the computational model is used for computing the corresponding
realization of the FRF. As explained in Section 4, this involves computing all the structural elas-
tic modes up to a given cutoff frequency, for which the number of elastic modes is determined by
using the LDL factorization. The FRF is computed for nω = 5000 uniformly sampled frequen-
cies in Ω = 2π×]0, 1000] rad/s. In order to get a good convergence of the modal representation
for all the values of the control parameter considered in the training set, a cutoff frequency of
1500 Hz is considered. A modal damping model is used with the same damping ratio ξ = 0.01.
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7.4. Remark concerning the representativeness of the presented example

The following comments can be done concerning the representativeness of the presented
example with respect to the nuclear engineering (NE) application mentioned in Section 1. Re-
garding the elastic modes, in the present application, there are significantly less (a few hundreds).
Nevertheless, for both cases, the elastic modes include a relatively small number of global modes,
which are preponderant in the structural response. This means that for both cases, the influence
of local modes is rather diffuse and sometimes imperceptible for one given mode. The frequency
content of the structural response is not that much more complex for the case of the NE applica-
tion as for the case of the present application. Regarding the low number of parameters used (here
four) compared to NE applications, for which there would be, for example, a hundred parame-
ters, the proposed methodology would remain the same. Between the two cases, the difference
would be the choice of the optimization algorithm. In either case, the number of evaluations of
the cost function would be too large. We therefore need a surrogate model, which we proposed
by building a statistical surrogate model using PLoM. Regarding the under-observability of the
model, only one FRF is observed (only one target FRF) and for this FRF, only one ”experimen-
tal” realization is considered available. This is a highly under-observed case and for the NE
application, the under-observability is slightly less because several FRF are observed at several
locations of the outer shell.

7.5. Model updating

In this Section, two cases are presented, corresponding to two different choices of target FRF.

Case 1. For this case, we consider a target FRF generated by the computational model with
Etarget

1 = 238.7 GPa, νtarget
1 = 0.248, Etarget

2 = 3.7 GPa, and νtarget
2 = 0.351. We consider a sampling

of Nd up to 175, such that Nd ∈ SNd = {25, 38, 50, 63, 75, 88, 100, 113, 125, 138, 150, 163, 175}.
For fixed Nd, we define nMC such that Nar = nMC ×Nd is the closest to 20,000. For fixed (Nd, nMC)
couple with Nd ∈ SNd , the PLoM method is used to generate Nar = nMC × Nd learned realiza-
tions, based on which the optimization problem defined by Eqs. (6), (10), and (9) is solved and
yields wopt that is used to update the computational model and obtain the updated FRF (as ex-
plained in Section 6.4). Concerning the PLoM parameters used in the algorithm summarized in
Appendix Appendix A, the value of εPCA is fixed to 10−3. For the 13 values of Nd belonging to
SNd , which vary from 25 to 175, the reduced-order dimension ν of the PCA varies from 22 to
82, the optimal value mopt of the truncated diffusion-maps basis is given by mopt = ν + 1, and the
optimal value εopt varies from 40 to 204. As an illustration, for Nd = 175, for which ν = 82,
mopt = 83, and εopt = 204, Fig. 3 displays the distribution of the eigenvalues µα of the PCA of X
and Fig. 4 displays the distribution of the eigenvalues λα of the transition matrix. Regarding the
optimization algorithm, a grid search is performed, with 35 points per axis (there are four axes,
for E1, ν1, E2, and ν2). The updated FRF is compared to the target FRF using the error defined by
Eq. (17). In parallel, the exact same procedure is also carried out using the training set instead of
the learned set. The total number of additional calls to the computational model is twice the size
of set SNd , that is 26, which makes it a total of 201 calls to the computational model. It can be
seen in Fig. 5 that the updating is best for Nd = 125 using the learned set. The error is of 3.4 dB
and the updated parameters are Eopt

1 = 239.4 GPa, νopt
1 = 0.278, Eopt

2 = 3.6 GPa, and νopt
2 = 0.374.

The quality of the updated model is put into evidence in Fig. 6 where the nominal FRF, the target
FRF, and the updated FRF using the learned set with Nd = 125 and Nar = 20,000 are depicted. It
can be seen that the proposed methodology is successful in updating the computational model.
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Figure 3: For Nd = 175, ν = 82, mopt = 83, and εopt = 204, distribution of the eigenvalues µα of
the PCA of X.
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Figure 4: For Nd = 175, ν = 82, mopt = 83, and εopt = 204, distribution of the eigenvalues λα of
the transition matrix in log10 scale.
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Figure 5: Case 1: for each value of Nd belonging to SNd , value of the error obtained using the
learned set with Nar = Nd × nMC ∼ 20 000 realizations (dashed line) and using the training set
with Nd realizations (solid line)

Case 2. For this case, we consider a target FRF generated with the computational model with
Etarget

1 = 254 GPa, νtarget
1 = 0.312, Etarget

2 = 5.8 GPa, and νtarget
2 = 0.273. The entire procedure

is kept identical and the results are shown in Figs. 7 and 8. It can be seen in Fig. 7 that the
updating is best for Nd = 138 using the training set (the fact that the training set yields a better
optimum than the learned set is discussed in Section 7.6 as a complement to the reasons already
given in Section 1-(iii)). The error is of 2.2 dB and the updated parameters are Eopt

1 = 249.9 GPa,
ν

opt
1 = 0.328, Eopt

2 = 5.4 GPa, and νopt
2 = 0.358. The quality of the updated model is put into
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Figure 6: Comparison between the nominal FRF (solid line), the target FRF (dash-dotted line),
and the updated FRF (dashed line)
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Figure 7: Case 2: for each value of Nd belonging to SNd , value of the error obtained using the
learned set with Nar = Nd × nMC ∼ 20 000 realizations (dashed line) and using the training set
with Nd realizations (solid line)

evidence in Fig. 8 where the nominal FRF, the target FRF, and the updated FRF using the training
set with Nd = 138 are depicted. It can be seen that the proposed methodology is successful in
updating the computational model.
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Figure 8: Comparison between the nominal FRF (solid line), the target FRF (dash-dotted line),
and the updated FRF (dashed line)

7.6. Discussion on the results presented

First, we recall the framework of the proposed updating methodology based on a single target
FRF. For a given large computational model, only Nd realizations can be computed, with Nd

having a small value. In this context, the objective is to improve the computational model using
the single target FRF. So, the metholodogy that we have proposed is the following. For such a
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given value of Nd, the training set and a learned set are generated. The optimization problem
is solved on the one hand with the training set and on the other hand with the learned set. For
this fixed value of Nd, the best updated model is the one having the smallest error between the
target FRF and the updated FRF (error defined by Eq. (17)). In this framework of the use of
the methodology, the notion of convergence with respect to Nd has no meaning. Figures 5 and
7 effectively show that the error has large fluctuations as a function of Nd. Such fluctuations
are due to the small value of Nd (the largest is 175), to the fact that only a single target FRF
is available, that there are multiple control parameters, and that the optimization problem is
nonconvex. Consequently, there is no uniqueness of the optimal control parameters. Clearly, if
the training set could be constructed for a very large value N∗d of Nd, the error could perhaps, in
this case, decrease for Nd > N∗d . For instance, for the application presented, the updating has also
been performed using the training set with Nd = 2000 without obtaining a clear convergence of
the error, and the available computing resources did not permit to consider an even greater value
of Nd.

8. Conclusions

We have presented a formulation and a methodology for the updating of high-dimensional
computational models with uncertainties of complex structures, which present an enormous num-
ber of global modes and local modes in the frequency band of analysis. The model updating is
performed in an under-observed framework for which only one experimental frequency response
function is available. The methodology we have proposed is based on the introduction of a pa-
rameterized ROM and on the use of a probabilistic learning algorithm, the PLoM that has been
developed to deal with small data cases, and which allows to solve the optimization problem
without using the resolution of the HDM for which a single evaluation is very expensive. The
methodology presented has been validated on a representative example from the point of view of
the difficulties encountered for the dynamic systems described in the introduction. Obviously the
structure considered in the example presented is much simpler than those of the targeted appli-
cations, but this choice was made so that the results presented can be reproduced. Finally, as the
example presented is really simple, a multi-frequency model reduction with or without substruc-
turing techniques is not necessary for constructing the parameterized ROM. This allowed us to
simplify the presentation of the methodology while remaining to the essentials. However, these
methodological additions can be implemented without difficulty in the proposed method. We
refer the reader to Section 7.6 for the discussion about the framework of the use of the proposed
method.

Appendix A. Summary of the probabilistic learning on manifolds (PLoM) algorithm and
its parameterization

The PLoM approach [70, 71, 92], which has specifically been developed for small data (in
opposite to big data) starts from a training set Dd made up of a relatively small number Nd of
points. It is assumed that Dd is generated with an underlying stochastic manifold related to a
Rn-valued random variable X = (Q,W), defined on a probability space (Θ,T ,P), in which Q is
the quantity of interest that is a Rnq -random variable, where W is the control parameter that is a
Rnw -random variable, and where n = nq + nw. Another Rmu - valued random variable U defined
on (Θ,T ,P) can also be considered, which is an uncontrolled parameter and/or a noise. Random
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variable Q is assumed to be written as Q = f(U,W) in which the measurable mapping f is not
explicitly known. The joint probability distribution PW,U(dw, du) of W and U is assumed to
be given. Note that in this paper, we have not considered any uncontrolled variable. The non-
Gaussian probability measure PX(x) = PQ,W(dq, dw) of X = (Q,W) is concentrated in a region
of Rn for which the only available information is the cloud of the points of training set Dd. The
PLoM method makes it possible to generate the learned set Dar for X whose nMC ≫ Nd points
(learned realizations) are generated by the non-Gaussian probability measure that is estimated
using the training set. The concentration of the probability measure is preserved thanks to the
use of a diffusion-maps basis that allows to enrich the available information from the training
set. Using the learned set Dar, PLoM allows for carrying out any conditional statistics such as
w 7→ E{Q|W = w} from Cw in Rnq , and consequently, to directly construct metamodels in a
probabilistic framework.

The training setDd is made up of the Nd independent realizations x j
d = (q j

d,w
j
d) in Rn = Rnq×Rnw

for j ∈ {1, . . . ,Nd} of random variable X = (Q,W). The PLoM method allows for generating the
learned set Dar made up of Nar ≫ Nd learned realizations {xℓar, ℓ = 1, . . . ,Nar} of random vector
X. As soon as the learned set has been constructed, the learned realizations for Q and W can be
extracted as (qℓar,wℓar) = xℓar for ℓ = 1, . . . ,Nar.

(A.1) Reduced representation. The Nd independent realizations {x j
d, j = 1, . . . ,Nd} are repre-

sented by the matrix [xd] = [x1
d . . . x

Nd
d ] in Mn,Nd . Let [X] = [X1, . . . ,XNd ] be the random matrix

with values in Mn,Nd , whose columns are Nd independent copies of random vector X. Using the
PCA of X, random matrix [X] is written as,

[X] = [x] + [φ] [µ]1/2 [H] , (A.1)

in which [H] = [H1, . . . ,HNd ] is a Mν,Nd -valued random matrix, where ν ≤ n, and where [µ] is the
(ν × ν) diagonal matrix of the ν positive eigenvalues of the empirical estimate of the covariance
matrix of X. The (n×ν) matrix [φ] is made up of the associated eigenvectors such [φ]T [φ] = [Iν].
The matrix [x] in Mn,Nd has identical columns, each one being equal to the empirical estimate
x ∈ Rn of the mean value of random vector X. The columns of [H] are Nd independent copies
of a random vector H with values in Rν. The realization [ηd] = [η1

d . . . η
Nd
d ] ∈ Mν,Nd of [H] is

computed by [ηd] = [µ]−1/2[φ]T ([xd]− [x]). The value ν is classically calculated in order that the
L2- error function ν 7→ errX(ν) defined by

errX(ν) = 1 −
∑ν
α=1 µα

E{∥X∥2}
, (A.2)

be smaller than εPCA. If ν < n, then there is a statistical reduction.

(A.2) Construction of a reduced-order diffusion-maps basis. For preserving the concentration of
the learned realizations in the region in which the points of the training set are concentrated, the
PLoM relies on the diffusion-maps method [105, 106]. This is an algebraic basis of vector space
RNd , which is constructed using the diffusion maps. Let [K] and [b] be the matrices such that, for
all i and j in {1, . . . ,Nd}, [K]i j = exp{−(4 εDM)−1∥ηi

d −η
j
d∥

2} and [b]i j = δi j bi with bi =
∑Nd

j=1[K]i j,
in which εDM > 0 is a smoothing parameter. The eigenvalues λ1, . . . , λNd and the associated
eigenvectors ψ1, . . . ,ψNd of the right-eigenvalue problem [P]ψα = λα ψα are such that 1 = λ1 >
λ2 ≥ . . . ≥ λNd and are computed by solving the generalized eigenvalue problem [K]ψα =
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λα [b]ψα with the normalization < [b]ψα,ψβ>= δαβ. The eigenvector ψ1 associated with λ1 = 1
is a constant vector. For a given integer κ ≥ 0, the diffusion-maps basis {g1, . . . , gα, . . . , gNd } is a
vector basis of RNd defined by gα = λκα ψα. For a given integer m, the reduced-order diffusion-
maps basis of order m is defined as the family {g1, . . . , gm} that is represented by the matrix
[gm] = [g1 . . . gm] ∈ MNd ,m with gα = (gα1 , . . . , g

α
Nd

) and [gm]ℓα = gα
ℓ
. This basis depends on two

parameters, εDM and m, which have to be identified. It is proven in [71], that the PLoM method
does not depend on κ that can therefore be chosen to 0.

We have to find the optimal value mopt ≤ Nd of m and the smallest value εopt > 0 of εDM such
that (see [72])

1 = λ1 > λ2(εopt) ≃ . . . ≃ λmopt (εopt) ≫ λmopt+1(εopt) ≥ . . . ≥ λNd (εopt) > 0 , (A.3)

with an amplitude jump equal to an order of magnitude (a factor 10 as demonstrated in [71])
between λmopt (εopt) and λmopt+1(εopt). A further in-depth analysis makes it possible to state the
following algorithm to estimate εopt and mopt. Let εDM 7→ Jump(εDM) be the function on ]0,+∞[
defined by

Jump(εDM) = λmopt+1(εDM)/λ2(εDM) . (A.4)

The algorithm is the following:
- set the value of m to mopt = ν + 1;
- identify the smallest possible value εopt of εDM in order that Jump(εopt) ≤ 0.1 and such that
Equation (A.3) be verified.

(A.3) Reduced-order representation of random matrices [H ] and [X ]. The diffusion-maps vec-
tors g1, . . . , gm ∈ RNd span a subspace of RNd that characterizes, for the optimal values mopt

and εopt of m and εDM, the local geometry structure of data set {η j
d, j = 1, . . . ,Nd}. So the PLoM

method introduces the Mν,Nd -valued random matrix [Hm] = [Zm] [gm]T with m ≤ Nd, correspond-
ing to a data-reduction representation of random matrix [H], in which [Zm] is a Mν,m-valued ran-
dom matrix. The MCMC generator of random matrix [Zm] belongs to the class of Hamiltonian
Monte Carlo methods, is explicitly described in [70], and is mathematically detailed in Theo-
rem 6.3 of [71]. For generating the learned set, the best probability measure of [ Hm] is obtained
for m = mopt and using the previously defined [gmopt ]. For these optimal quantities mopt and
[gmopt ], the generator allows for computing nMC realizations {[zℓar], ℓ = 1, . . . , nMC} of [Zmopt ] and
therefore, for deducing the nMC realizations {[ηℓar], ℓ = 1, . . . , nMC} of [Hmopt ]. The reshaping of
matrix [ηℓar] ∈Mν,Nd allows for obtaining Nar = nMC×Nd learned realizations {ηℓ

′

ar, ℓ
′ = 1, . . . ,Nar}

of H. These learned realizations allow for estimating converged statistics on H and then on X,
such as pdf, moments, or conditional expectation of the type E{ξ(Q) |W = w} for w given in Rnw

and for any given vector-valued function ξ defined on Rnq .

(A.4) Criterion for quantifying the concentration of the probability measure of random matrix
[Hmopt ]. For m ≤ Nd, the concentration of the probability measure of random matrix [Hm] is
defined (see [71]) by

d2
Nd

(m) = E{∥[Hm] − [ηd]∥2}/∥[ηd]∥2 . (A.5)

LetMopt = {mopt,mopt + 1, . . . ,Nd} in which mopt is the optimal value of m previously defined.
Theorem 7.8 of [71] shows that minm∈Mopt d2

Nd
(m) ≤ 1 + mopt/(Nd − 1) < d2

Nd
(Nd), which means

that the PLoM method, for m = mopt and [gmopt ] is a better method than the usual one corre-
sponding to d2

Nd
(Nd) = 1 + Nd/(Nd − 1) ≃ 2. Using the nMC realizations {[ηℓar], ℓ = 1, . . . , nMC} of

19



[Hmopt ], we have the estimate d2
Nd

(mopt) ≃ (1/nMC)
∑nMC

ℓ=1{∥[η
ℓ
ar] − [ηd]∥2}/∥[ηd]∥2.

(A.5) Generation of learned realizations {ηℓ
′

ar, ℓ
′ = 1, . . . , Nar} of random vector H. The MCMC

generator is detailed in [70]. Let {([Z(t)], [Y(t)]), t ∈ R+} be the unique asymptotic (for t → +∞)
stationary diffusion stochastic process with values in Mν,mopt ×Mν,mopt , of the following reduced-
order ISDE (stochastic nonlinear second-order dissipative Hamiltonian dynamic system), for
t > 0,

d[Z(t)] = [Y(t)] dt ,

d[Y(t)] = [L([Z(t)])] dt −
1
2

f0 [Y(t)] dt

+
√

f0 [dWwien(t)] ,

with [Z(0)] = [ηd] [a] and [Y(0)] = [N ] [a], in which

[a] = [gmopt ] ([gmopt ]
T [gmopt ])

−1 ∈MNd ,mo pt .

(1) [L([Z(t)])] = [L([Z(t)] [gmopt ]
T )] [a] is a random matrix with values in Mν,mopt . For all

[u] = [u1 . . . uNd ] in Mν,Nd with u j = (u j
1, . . . , u

j
ν) in Rν, the matrix [L([u])] in Mν,Nd is defined,

for all k = 1, . . . , ν and for all j = 1, . . . ,Nd, by

[L([u])]k j =
1

p(u j)
{∇u j p(u j)}k , (A.6)

p(u j) =
1

Nd

Nd∑
j′=1

exp{−
1

2ŝ 2
ν

∥
ŝν
sν
η j′ − u j∥2} ,

∇u j p(u j)=
1

ŝ 2
ν Nd

Nd∑
j′=1

(
ŝν
sν
η j′− u j)

× exp{−
1

2ŝ 2
ν

∥
ŝν
sν
η j′− u j∥2} ,

in which ŝν is the modified Silverman bandwidth sν, which has been introduced in [50],

ŝν =
sν√

s2
ν +

Nd−1
Nd

, sν =
{

4
Nd(2 + ν)

}1/(ν+4)

.

(2) [Wwien(t)] = [Wwien(t)] [a] where {[Wwien(t)], t ∈ R+} is the Mν,Nd -valued normalized Wiener
process.
(3) [N ] is the Mν,Nd -valued normalized Gaussian random matrix that is independent of process
[Wwien].
(4) The free parameter f0, such that 0 < f0 < 4/ŝν, allows the dissipation term of the nonlinear
second-order dynamic system (dissipative Hamiltonian system) to be controlled in order to kill
the transient part induced by the initial conditions. A common value is f0 = 4 (note that ŝν < 1).
(5) We then have [Zmopt ] = limt→+∞ [Z(t)] in probability distribution. The Störmer-Verlet
scheme is used for solving the reduced-order ISDE, which allows for generating the learned
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realizations, [z1
ar], . . . , [z

nMC
ar ], and then, generating the learned realizations [η1

ar], . . . , [η
nMC
ar ] such

that [ηℓar] = [zℓar] [gmopt ]
T .

(6) The learned realizations {xℓ′ar, ℓ
′ = 1, . . . ,Nar} of random vector X are then calculated (see

Eq. (A.1)) by xℓ′ar = x + [φ] [µ]1/2 ηℓ
′

ar.

(A.6) Constraints on the second-order moments of the components of H. In general, the mean
value of H estimated using the Nar learned realizations {ηℓ

′

ar, ℓ
′ = 1, . . . ,Nar}, is sufficiently close

to zero. Likewise, the estimate of the covariance matrix of H, which must be the identity ma-
trix, is sufficiently close to a diagonal matrix. However, sometimes the diagonal entries of the
estimated covariance matrix can be lower than 1. Normalization can be recovered by imposing
constraints

{E{(Hk)2} = 1, k = 1, . . . , ν} ,

in the algorithm presented in paragraph (v). For that, we use the method and the iterative al-
gorithm presented in [72] (that is based on Sections 5.5 and 5.6 of [92]). The constraints are
imposed by using the Kullback-Leibler minimum cross-entropy principle. The resulting opti-
mization problem is formulated using a Lagrange multiplier v = (v1, . . . , vν) associated with the
constraints. The optimal solution of the Lagrange multiplier is computed using an efficient iter-
ative algorithm. At each iteration, the MCMC generator detailed in paragraph (v) is used. The
constraints are rewritten as

E{h(H)} = b ,

in which the function h = (h1, . . . , hν) and the vector b = (b1, . . . , bν) are such that hk(H) =
(Hk)2 and bk = 1 for k in {1, . . . , ν}. To take into account the constraints in the algorithm of
paragraph (v), Eq. (A.6) is replaced by the following one,

[Lv([u])]k j =
1

p(u j)
{∇u j p(u j)}k − 2 vku j

k .

The iteration algorithm for computing vi+1 as a function of vi is the following,

vi+1 = vi − αi[Γ′′(vi)]−1 Γ′(vi) , i ≥ 0 ,

v0 = 0ν ,
(A.7)

in which Γ′(vi) = b− E{h(Hvi )} and [Γ′′(vi)] = [cov{h(Hvi )}] (the covariance matrix), and where
αi is a relaxation function (less than 1) that is introduced for controlling the convergence as a
function of iteration number i. For given i2 ≥ 2, for given β1 and β2 such that 0 < β1 < β2 ≤ 1,
αi can be defined by:
- for i ≤ i2, αi = β1 + (β2 − β1)(i − 1)/(i2 − 1);
- for i > i2, αi = β2.
The convergence of the iteration algorithm is controlled by the error function i 7→ err(i) defined
by

err(i) = ∥b − E{h(Hvi )}∥/∥b∥ . (A.8)

At each iteration i, E{h(Hvi )} and [cov{h(Hvi )}] are estimated by using the Nar learned realizations
of Hmopt (vi) obtained by reshaping the learned realizations.
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[75] A. C. Öztireli, M. Alexa, M. Gross, Spectral sampling of manifolds, ACM Transactions on Graphics (TOG) 29 (6)

(2010) 1–8. doi:10.1145/1882261.1866190.
[76] Y. Marzouk, T. Moselhy, M. Parno, A. Spantini, Sampling via measure transport: An introduction, Handbook of

uncertainty quantification (2016) 1–41doi:10.1007/978-3-319-11259-6\_23-1.
[77] M. D. Parno, Y. M. Marzouk, Transport map accelerated markov chain Monte Carlo, SIAM/ASA Journal on

Uncertainty Quantification 6 (2) (2018) 645–682. doi:10.1137/17M1134640.
[78] G. Perrin, C. Soize, N. Ouhbi, Data-driven kernel representations for sampling with an unknown block dependence

structure under correlation constraints, Computational Statistics & Data Analysis 119 (2018) 139–154. doi:

10.1016/j.csda.2017.10.005.
[79] P. Tsilifis, R. Ghanem, Bayesian adaptation of chaos representations using variational inference and sampling on

24

http://dx.doi.org/10.1137/140968495
http://dx.doi.org/10.1016/j.jcp.2016.12.015
http://dx.doi.org/10.1016/j.jcp.2016.12.015
http://dx.doi.org/10.1137/20M1315774
http://dx.doi.org/10.1016/j.jcp.2017.01.031
http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1007/s11222-011-9288-2
http://dx.doi.org/10.1080/17509653.2016.1142191
http://dx.doi.org/10.1007/s11222-020-09954-6
http://dx.doi.org/10.1007/s11222-020-09954-6
http://dx.doi.org/10.1016/j.jcp.2006.10.010
http://dx.doi.org/10.1017/S0962492910000061
http://dx.doi.org/10.1017/S0962492910000061
http://dx.doi.org/10.1016/j.cma.2011.07.005
http://dx.doi.org/10.1007/978-3-319-12385-1_7
http://dx.doi.org/10.1007/978-3-319-12385-1_7
http://dx.doi.org/10.1016/j.jcp.2017.08.005
http://dx.doi.org/10.1007/s00180-019-00936-5
http://dx.doi.org/10.1201/9781315273570
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.jcp.2016.05.044
http://dx.doi.org/10.3934/fods.2020013
http://dx.doi.org/10.1002/nme.6856
http://dx.doi.org/10.1109/CVPR.2008.4587670
http://dx.doi.org/10.1145/1882261.1866190
http://dx.doi.org/10.1007/978-3-319-11259-6_23-1
http://dx.doi.org/10.1137/17M1134640
http://dx.doi.org/10.1016/j.csda.2017.10.005
http://dx.doi.org/10.1016/j.csda.2017.10.005


geodesics, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2217)
(2018) 20180285. doi:10.1098/rspa.2018.0285.

[80] Y. Kevrekidis, Manifold learning for parameter reduction, Bulletin of the American Physical Society 65. doi:

10.1016/j.jcp.2019.04.015.
[81] R. Ghanem, C. Soize, Probabilistic nonconvex constrained optimization with fixed number of function evalua-

tions, International Journal for Numerical Methods in Engineering 113 (4) (2018) 719–741. doi:10.1002/nme.
5632.

[82] R. Ghanem, C. Soize, C. Thimmisetty, Optimal well-placement using probabilistic learning, Data-Enabled Dis-
covery and Applications 2 (1) (2018) 1–16. doi:10.1007/s41688-017-0014-x.

[83] C. Soize, Design optimization under uncertainties of a mesoscale implant in biological tissues using a probabilistic
learning algorithm, Computational Mechanics 62 (3) (2018) 477–497. doi:10.1007/s00466-017-1509-x.

[84] R. Ghanem, C. Soize, C. Safta, X. Huan, G. Lacaze, J. C. Oefelein, H. N. Najm, Design optimization of a scramjet
under uncertainty using probabilistic learning on manifolds, Journal of Computational Physics 399 (2019) 108930.
doi:10.1016/j.jcp.2019.108930.

[85] J. O. Almeida, F. A. Rochinha, A probabilistic learning approach applied to the optimization of wake steering
in wind farms, Journal of Computing and Information Science in Engineering 23 (1) (2022) 011003. doi:

10.1115/1.4054501.
[86] R. Ghanem, C. Soize, L. Mehrez, V. Aitharaju, Probabilistic learning and updating of a digital twin for composite

material systems, International Journal for Numerical Methods in Engineeringdoi:10.1002/nme.6430.
[87] M. Arnst, C. Soize, K. Bulthies, Computation of sobol indices in global sensitivity analysis from small data sets

by probabilistic learning on manifolds, International Journal for Uncertainty Quantification 11 (2) (2021) 1–23.
doi:10.1615/Int.J.UncertaintyQuantification.2020032674.

[88] C. Farhat, R. Tezaur, T. Chapman, P. Avery, C. Soize, Feasible probabilistic learning method for model-form
uncertainty quantification in vibration analysis, AIAA Journal 57 (11) (2019) 4978–4991. doi:10.2514/1.

J057797.
[89] C. Soize, R. Ghanem, C. Safta, X. Huan, Z. P. Vane, J. C. Oefelein, G. Lacaze, H. N. Najm, Enhancing model

predictability for a scramjet using probabilistic learning on manifolds, AIAA Journal 57 (1) (2019) 365–378.
doi:10.2514/1.J057069.

[90] C. Soize, C. Farhat, Probabilistic learning for modeling and quantifying model-form uncertainties in nonlinear
computational mechanics, International Journal for Numerical Methods in Engineering 117 (2019) 819–843. doi:
10.1002/nme.5980.

[91] J. Guilleminot, J. E. Dolbow, Data-driven enhancement of fracture paths in random composites, Mechanics Re-
search Communications 103 (2020) 103443. doi:10.1016/j.mechrescom.2019.103443.

[92] C. Soize, R. Ghanem, Physics-constrained non-Gaussian probabilistic learning on manifolds, International Journal
for Numerical Methods in Engineering 121 (1) (2020) 110–145. doi:10.1002/nme.6202.

[93] C. Soize, R. Ghanem, Probabilistic learning on manifolds constrained by nonlinear partial differential equations
for small datasets, Computer Methods in Applied Mechanics and Engineering 380 (2021) 113777. doi:10.

1016/j.cma.2021.113777.
[94] T. Duong, M. L. Hazelton, Cross-validation bandwidth matrices for multivariate kernel density estimation, Scan-

dinavian Journal of Statistics 32 (3) (2005) 485–506. doi:10.1111/j.1467-9469.2005.00445.x.
[95] T. Duong, A. Cowling, I. Koch, M. Wand, Feature significance for multivariate kernel density estimation, Com-

putational Statistics & Data Analysis 52 (9) (2008) 4225–4242. doi:10.1016/j.csda.2008.02.035.
[96] M. Filippone, G. Sanguinetti, Approximate inference of the bandwidth in multivariate kernel density estimation,

Computational Statistics & Data Analysis 55 (12) (2011) 3104–3122. doi:10.1016/j.csda.2011.05.023.
[97] N. Zougab, S. Adjabi, C. C. Kokonendji, Bayesian estimation of adaptive bandwidth matrices in multivariate

kernel density estimation, Computational Statistics & Data Analysis 75 (2014) 28–38. doi:10.1016/j.csda.
2014.02.002.

[98] I. Zelinka, V. Snasael, A. Abraham, Handbook of optimization: from classical to modern approach, Vol. 38,
Springer Science & Business Media, 2013.

[99] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proceedings
of the IEEE 86 (11) (1998) 2278–2324. doi:10.1109/5.726791.

[100] J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, Vol. 65,
John Wiley & Sons, 2005.

[101] C. C. Coello, Evolutionary multi-objective optimization: a historical view of the field, IEEE Computational Intel-
ligence Magazine 1 (1) (2006) 28–36. doi:10.1109/MCI.2006.1597059.

[102] A. Konak, D. W. Coit, A. E. Smith, Multi-objective optimization using genetic algorithms: A tutorial, Reliability
Engineering & System Safety 91 (9) (2006) 992–1007. doi:10.1016/j.ress.2005.11.018.

[103] C. Soize, A. Batou, Stochastic reduced-order model in low-frequency dynamics in presence of numerous local
elastic modes, Journal of applied mechanics 78 (6). doi:10.1115/1.4002593.

25

http://dx.doi.org/10.1098/rspa.2018.0285
http://dx.doi.org/10.1016/j.jcp.2019.04.015
http://dx.doi.org/10.1016/j.jcp.2019.04.015
http://dx.doi.org/10.1002/nme.5632
http://dx.doi.org/10.1002/nme.5632
http://dx.doi.org/10.1007/s41688-017-0014-x
http://dx.doi.org/10.1007/s00466-017-1509-x
http://dx.doi.org/10.1016/j.jcp.2019.108930
http://dx.doi.org/10.1115/1.4054501
http://dx.doi.org/10.1115/1.4054501
http://dx.doi.org/10.1002/nme.6430
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2020032674
http://dx.doi.org/10.2514/1.J057797
http://dx.doi.org/10.2514/1.J057797
http://dx.doi.org/10.2514/1.J057069
http://dx.doi.org/10.1002/nme.5980
http://dx.doi.org/10.1002/nme.5980
http://dx.doi.org/10.1016/j.mechrescom.2019.103443
http://dx.doi.org/10.1002/nme.6202
http://dx.doi.org/10.1016/j.cma.2021.113777
http://dx.doi.org/10.1016/j.cma.2021.113777
http://dx.doi.org/10.1111/j.1467-9469.2005.00445.x
http://dx.doi.org/10.1016/j.csda.2008.02.035
http://dx.doi.org/10.1016/j.csda.2011.05.023
http://dx.doi.org/10.1016/j.csda.2014.02.002
http://dx.doi.org/10.1016/j.csda.2014.02.002
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/MCI.2006.1597059
http://dx.doi.org/10.1016/j.ress.2005.11.018
http://dx.doi.org/10.1115/1.4002593


[104] J. Guilleminot, C. Soize, On the statistical dependence for the components of random elasticity tensors
exhibiting material symmetry properties, Journal of Elasticity 111 (2) (2013) 109–130. doi:10.1007/

s10659-012-9396-z.
[105] R. Coifman, S. Lafon, Diffusion maps, Applied and Computational Harmonic Analysis 21 (1) (2006) 5–30. doi:

10.1016/j.acha.2006.04.006.
[106] S. Lafon, A. B. Lee, Diffusion maps and coarse-graining: A unified framework for dimensionality reduction,

graph partitioning, and data set parameterization, IEEE transactions on pattern analysis and machine intelligence
28 (9) (2006) 1393–1403. doi:10.1109/TPAMI.2006.184.

26

http://dx.doi.org/10.1007/s10659-012-9396-z
http://dx.doi.org/10.1007/s10659-012-9396-z
http://dx.doi.org/10.1016/j.acha.2006.04.006
http://dx.doi.org/10.1016/j.acha.2006.04.006
http://dx.doi.org/10.1109/TPAMI.2006.184

	Introduction
	Hypotheses used for developing the methodology
	Computational model and frequency response functions
	Parameterized reduced-order model
	Probabilistic model of the control parameter and generation of the training set using the stochastic parameterized reduced-order model
	Optimization problem for model updating
	Defining the cost function and formulation of the optimization problem for model updating
	Estimating the conditional statistics using PLoM
	Choice of the optimization algorithm
	Optimization strategy

	Numerical application
	Defining the computational model
	Defining the probabilistic model of the control parameter W
	Parameterized reduced-order computational model and training set computation
	 Remark concerning the representativeness of the presented example
	Model updating
	Discussion on the results presented

	Conclusions
	Summary of the probabilistic learning on manifolds (PLoM) algorithm and its parameterization

