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Abstract—Current challenges in the field of air and water
pollution monitoring require the capability to detect simul-
taneously a large variety of chemical compounds at very
low concentration using low-cost, compact sensor nodes.
While carbon nanotube-based (CNT) sensor arrays have
long been proposed as a solution to this challenge, their
sensing performances usually suffer from the large number
of interferents in real-life conditions. Here we discuss an
uncertainty-based calibration and prediction framework
which allows to recover multi-parameter sensing even in
a highly perturbed environment. We study a 10 x 2 CNT-
sensor array for pH and active chlorine monitoring in drink
water. While in deionized water pH and active chlorine
are easily monitored, in tap water only the active chlorine
level can be recovered by standard calibration. By contrast,
using our Bayesian approach, both active chlorine and pH
are recovered with mean absolute error comparable with
reference sensors.

Index Terms—Sensor calibration, uncertainty quantifica-
tion, carbon nanotubes, drink water monitoring

I. INTRODUCTION

The development of nanosensors for the monitoring of
air and water chemicals is the focus of much attention to
achieve dense and real-time monitoring of pollution in
urban or environmental context. Among these, carbon-
nanotubes-based electronic noses and tongues are par-
ticularly promising [1] for their high sensitivity, their
adaptability to a wide range of chemicals and their
integrability into highly compact sensor arrays. However,
while intense efforts have been focused on achieving
selectivity of these sensors against interfering parameters
(environmental factors such as temperature, or other
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chemicals in the air or water matrix), nanosensors per-
formances are almost always degraded in real context
compared to lab calibration due to these interferents.
Moreover, they may display significant device-to-device
variability in sensitivities from the manufacturing pro-
cess (5% to 30%). Often requiring low-signal electronics,
they may often be significantly affected by measurement
noise.

Calibration allows to quantify the response of such
sensors. To achieve manageable duration of calibration
work, calibration datasets usually contain a number of
input-output pairs which is relatively small compared
to the number of influential factors. The inputs include
measurements of environmental variables, as well as
concentrations of one or more chemicals of interest
measured by reference sensors. The outputs are the
responses of the sensors, noting that to monitor the
concentration of several chemicals, several types of
sensors are required. The consequence to the limited
number of calibration points is that calibration models
may be quite inaccurate or may not integrate fully
the perturbing factors, especially in a context with
significant measurement uncertainties.

In the present paper, we propose a method based on
a Bayesian framework for calibration and performance
assessment of multi-parameter sensor arrays. It allows
to account reliably for perturbing factors and high mea-
surement uncertainties. We apply the method to the
use case of drink water quality monitoring. The goal
is to detect both active chlorine (HCIO) and pH in
tap water using a sensor array containing 20 carbon-
nanotube (CNT) based chemistors of two different types
in a single lem? chip mounted into a 15cm long,



2.5cm wide sensor node computer-connected through
USB [5]]. In this specific use case, during lab calibration
experiments, the two types of devices showed strong,
differentiated sensitivities to HCIO and pH in deionized
water. However, in tap water, the differentiation between
types was strongly reduced and the sensitivity to pH
appeared about 10 times lower than HCIO. Henceforth,
while HCIO could still be easily predicted from the
sensor array, the pH response could not be easily re-
covered by standard calibration approaches such as two-
parameter regression. This paper shows that the Bayesian
formalism summarized hereunder also allows to recover
reliable pH predictions not accessible by usual methods.

II. THEORETICAL BACKGROUND
A. Notations and objectives
The following notations are introduced.

e = € X C R? is the vector of interest gathering the
concentration of HCIO and pH,

e y €Y CR? is the vector gathering the 20 sensor
outputs,

e z € 7Z C R% is the vector gathering d, > 1 envi-
ronmental quantities (such as temperature) expected
to influence the measurements.

o {20, y(’z)}?:1 gathers n observed input-
output triplets, such that:

y(i) _ M(m(i)7z(i)7€;(ci)7€gi)’€§i))’ (1)

with M an unknown function, and s(;), e,(f) and
sl(f) three measurement uncertainties, respectively
affecting the values of (¥, z(*) and y®.
The objective is therefore to estimate function M given
the available data and uncertainties (training phase), in
order to be able to predict the value of x* in another
input-output triplet {x*, z*, y*}, for which only z* and
y* are observed (testing phase).

B. Bayesian formalism

In order to integrate the different sources of uncertainty
affecting the system, a Bayesian formalism is proposed
for the calibration and operation of sensors. It is based on
the assumptions that there is some unknown probability
distribution over the product space X xZ x Y, and that the
training set is made up of samples from this probability
distribution. The relationship between the inputs and the
outputs of each sensor is written, for 1 < 5 <20 :

y](v) =h(x® + e 20 4 NTpU) 4 E% +&5, ()

where h is a chosen vector-valued function (e.g. the
calibration model), 8 := (b(l),...7b20) gathers the

unknown parameters of the calibration model, and & :=
(&1,...,&0) is the model error, modeled by a random
quantity. Whereas the statistical properties of egf), sg),
egf) are supposed to be known, it is important to notice
that the distribution of £ is unknown.

Under these formalism and assumptions, standard
Bayesian techniques (see [2], [3]] for more details) can be
used to first estimate the distributions of 3 and £ given
labeled data (z(?), z(" (@), and secondly to estimate
the distribution of * given 3,0, y*, z*.

C. Performance analysis

For the performance assessment, we propose in the
following to extract two kinds of quantities from the a
posteriori distribution of a*, as illustrated in Figure [T}

o the most likely values of the target chemicals,
noted xjjap, i.e. the value of x maximizing the
distribution of x*,

o the 95% confidence intervals for each component

of x*.
The  performance of the ensemble  (sen-
sors+calibration/prediction method) will thus be

evaluated against three sets of metrics.

e The error-based metrics, such as mean absolute
error (MAE) or slope, offset and regression coeffi-
cient of the linear regression between predicted and
measured quantities, allow to quantify the “global”
error between the predicted chemical concentrations
Zyap and their known value 7 measured using
reference devices (see [4]] for more metrics).

o These global error-based metrics may hide strong
disparities in the dataset (e.g. outliers). To detect
these, probability distribution of errors may be used.
They are particularly useful from an application
perspective (e.g. percentage of errors below a target
threshold, percentage of outliers).

o« We will also consider uncertainty-based metrics,
that is global statistics on the confidence intervals
(mean, standard deviation), as well as their proba-
bility distribution, to be compared with the mea-
surement uncertainties provided by the reference
devices.

ITI. APPLICATION
A. Description of the dataset

We consider a dataset made of 23 points out of 3 cali-
bration experiments in tap water at ambient temperature.
The free chlorine concentration is increased from O up to
about 2mg/L over 7 to 8 points, at different pH ranging
from 6 to 8. The uncertainty on pH is estimated at
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Figure 1. Graphical evaluation of the predictive capacity of the model.

0.15, on chlorine at 0.05mg/L. The target chemical is
active chlorine, HCIO, whose mass concentration cgcio
(in mg/L) is derived from chlorine mass concentration
ccnt (in mg/L), pH and temperature (T, in °C) according
to the following formula:

3)

with pKa(T') = 7.5—0.01 x (T'—30). The uncertainty on
HCIO concentration is derived as the standard deviation
of a set of HCIO values calculated from 1000 sets of
(chlorine, pH, temperature) values, themselves randomly
generated using their known uncertainties.

-1
CHCIO = Cchl (1 +0.98 x 10PH—pKa(T))

B. Identification of the calibration model h

The form of the calibration model is not known before-
hand. A polynomial form is selected - for generality sake
- for each of the variables (HCIO, pH, temperature).
Then we look empirically, using training and testing
equal to the full dataset, for the polynomial form with the
lowest degree of freedom enabling both HCIO and pH
prediction with non-null slope and regression coefficients
between measured and predicted values. Second order
polynomials for each of the variables is found to provide
the most consistent results.

C. Inverse problem - Performance analysis

For prediction, the dataset is split randomly at 70%/30%
between training and testing and prediction performances
are calculated after applying different conditions to the
dataset. To ensure representative results, the metrics are
calculated over 50 or 20 random splits. They are then
averaged after (if needed) removal of large outliers. The
number of large outliers is indicative of the stability of

Table T
PREDICTION RESULTS FOR HCLO AND PH.
F£repetitions 50 50 20 20
#points 23 19 21 17
Range HCIO | No Thr. No Thr. <Img/L <Img/L
Accur. HCIO | No Thr. <0.08mg/L| No Thr. <0.08mg/L
[[ #outlier [ 10% [ 6% [ 0% [ 5% i
Slope HCIO 1.4+0.5 1.4+0.5 1.054+0.32 | 1.244+0.36
R2 0.734+0.15 | 0.81+0.12 | 0.68+0.26 | 0.81£0.17
MAE (mg/L) | 0.16£0.08 | 0.134+0.09 | 0.0940.03 | 0.07£0.03
<0.1mg/L 52% 66% 63% 77%
<3-0 error 44% 26% 50% 51%
Slope pH 0.654+0.37 | 1.040.2 0.364+0.43 | 0.9440.22
R? 0.24+0.56 | 0.85+0.08 | -0.8£1.9 0.6540.25
MAE 0.4240.17 | 0.18+0.05 | 0.50+0.21 | 0.23£0.07
< 0.25 57% 75% 48% 1%
< 3-0 error 11% 39% 8% 42%

the tested parametrization of the method. An excerpt of
the metrics of 4 interesting test configurations is provided
in Table [ They show, as observed also when using
a standard calibration process on HCIO, that HCIO is
predictable for all configurations; the performance is sig-
nificantly better when testing over a small concentrations
of HCIO. Unlike with traditional calibration, pH is here
clearly predictable with good overall performance, but
only when an upper threshold is placed on the absolute
error on HCIO. This is attributed to the much lower
sensitivity in pH than HCIO: when high uncertainties
are accepted on HCIO values, the sensitivity to pH
is masked by the measurement uncertainty on HCIO
concentrations.

IV. CONCLUSIONS

To summarize, this paper shows that using a Bayesian
framework to carry out sensor array calibration enables
to recover reliably low sensitivity parameters which are
hidden by measurement uncertainties when using other
methods. Such an approach could thus open new and
very interesting possibilities for a low-cost and more
systematic monitoring of water quality.

REFERENCES

[1] Qi, P. et al. (2003). Nano letters, 3(3), 347-351.

[2] T. Hastie et al. "The Elements of Statistical Learning : Data
Mining, Inference, and Prediction”, Springer, New York, 2001.

[3] R. Y. Rubinstein, ”Simulation and the Monte Carlo Method”,
Wiley, 1981.

[4] Delaine, F. et al. Sensors, 20(16), 4577

[5] Zucchi, Gaél, et al. U.S. Patent Application No. 16/604,423.



	Introduction
	Theoretical background
	Notations and objectives
	Bayesian formalism
	Performance analysis

	Application
	Description of the dataset
	Identification of the calibration model bold0mu mumu hhfalsehhhh
	Inverse problem - Performance analysis

	Conclusions
	References

