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Abstract

For the homogenization of fibre composites, the equivalent inclusion method is proposed as an alternative to costly
full-field methods and less accurate mean-field or effective-field approaches. We take advantage of the slenderness
of the inhomogeneities to overcome the “curse of dimensionality” that was evidenced previously for this method.
The resulting method is shown on a number of examples to be both accurate and computationally efficient. It is also
extremely versatile, as it applies to a large variety of physical problems (beyond electric conductivity considered here).

Keywords: Homogenization, Conductivity, Equivalent inclusion method, Lippmann–Schwinger equation,
Cylindrical inclusions

1. Introduction

At fixed volume, the collective effect of fibers embedded in a homogeneous matrix often surpasses the collec-
tive effect of spherical inclusions, embedded in the same matrix. Fibers are therefore frequently used in composite
technology to improve the mechanical [6], thermal [5] or even electromagnetic [17] properties of the surrounding
matrix.

For engineering design purposes, predicting this collective effect is an essential task. However, this homogeniza-
tion process (predicting the effective properties of the composite from the properties of its constituents) turns out to
be technically challenging for slender fibers.

On the one hand, classical mean-field or effective-field homogenization methods [23, 33, 26, 14] do apply to
elongated (spheroidal) inhomogeneities. However, these models fail to account for local orientation correlations that
are bound to occur when the volume fraction of fibers becomes higher. This is due to the fact that these models are
based on the solution to the problem of Eshelby [11], which disregards direct interactions between inhomogeneities.

On the other hand, full-field simulations of the composite are possible in theory [29, 25, 15]. However, the
spatial discretization is governed by the (small) transverse dimensions of the inhomogeneities. As a consequence,
microstructures are difficult to mesh and the resulting simulation has a very large number of unknowns.

Clearly, there is some space for an intermediate method between mean-field/effective-field and full-field methods,
that should be more accurate than mean-field or effective-field methods, while requiring less computational resources
than full-field methods. The equivalent inclusion method (referred to as the EIM below) developed by Moschovidis
and Mura [24] is shown in this paper to be an attractive contestant in the case of slender (elongated) inhomogeneities.
Indeed, based on ideas that are similar to the early work of Eshelby [11], Moschovidis and Mura [24] introduce an
approximation of the interactions between inhomogeneities, an ingredient which is lacking in mean-field or effective-
field approaches. The cluster method introduced by Molinari and El Mouden [22] is based on essentially the same
ideas (see also [10] and [32]). The EIM has been applied by various authors [12, 4, 28, 13, 37], for various types
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of physical settings (such as linear elasticity, thermal conductivity or fluid mechanics). It has also been extended to
non-spherical [10] or inhomogeneous [32] inclusions.

Several variants of the method have also been considered [38, 36]. In particular, Brisard et al. [7] introduced a
Galerkin-based variational form of the EIM. At that time, exponential convergence with respect to the polynomial
order was observed. However, for 3D assemblies of spherical inhomogeneities, the number of unknowns becomes
impractically high. Since fibers are essentially 1D (rather than 3D) objects, EIM simulations do not necessarily face
the same “curse of dimensionality”. In this paper, we extend the EIM to slender inhomogeneities. We show how
the various influence coefficients can be evaluated. We also show on small systems that the method is remarkably
accurate, for a very low computational cost.

It should be noted that the present paper is dedicated to electric conductivity; it readily extends to linear elasticity
[7]. In fact, we believe it applies to any type of physical problems where a Green operator (in the sense of Appendix A)
can be defined.

This paper is organized as follows. An overview of the EIM is first provided in Sec. 2. The main contribution of
this paper is presented in Sec. 3, where slender inhomogeneities are considered. Performance of the resulting method
is assessed on one- and two-cylinder systems in Secs. 4 and 5, respectively. It is shown that the discretization must
be enriched in the radial direction. Larger systems are considered in Sec. 6. Sec. 7 closes this paper with a few
concluding remarks and a discussion of future research directions.

2. Background: the variational form of the EIM

The present section provides an overview of the EIM introduced by Eshelby [11] and Moschovidis and Mura [24]
and its variational form [7]. The modified Lippmann–Schwinger equation is introduced in Sec. 2.1. The Galerkin
discretization of this equation, leading to the EIM, is presented in Sec. 2.2.

Remark 1. Brisard et al. [7] have initially formulated the variational form of the EIM within the framework of linear
elasticity. Transposition to linear conductivity is straightforward, with the following equivalences: stress↔ electric
flux, strain↔ electric field, displacement↔ electric potential.

2.1. The modified Lippmann–Schwinger equation
Within the framework of electric conductivity, we consider a representative volume element (RVE) Ω of a random

heterogeneous material. The conductivity at x ∈ Ω is σ(x) (symmetric, positive definite, second-order tensor); E(x),
ϕ(x) and j(x) denote the electric field, the electric potential1 and the volumic current, respectively, at point x. The
apparent conductivity of the RVE Ω, σapp, is found from the solution to the following boundary-value problem

Ω : div j = 0, (1)
Ω : j = σ · E, (2)
Ω : E = grad ϕ, (3)

with boundary conditions that are not specified for the time being. Eq. (1) expresses conservation of the electric
current; Eq. (2) is Ohm’s law; finally, Eq. (3) ensures that the electric field is curl-free.

Classical boundary conditions include [39, 16]: homogeneous current boundary conditions (Neumann), homoge-
neous electric field boundary conditions (Dirichlet) and periodic boundary conditions. As discussed previously within
the framework of linear elasticity [8, 7], these classical boundary conditions must be replaced with mixed boundary
conditions for the EIM. The RVE Ω is embedded in a homogeneous, infinite matrix with conductivity σ0; χ denotes
the indicator function of Ω (χ(x) ∈ {0, 1} and χ(x) = 1 iff x ∈ Ω). The macroscopic electric field E being prescribed,
the mixed boundary conditions are twofold. At infinity, first

∥x∥ → +∞ : E(x)→ E, (4)

1Strictly speaking, ϕ(x) is the opposite (in the sense of the negative inverse, see https://en.wikipedia.org/wiki/Additive_inverse,
last retrieved 2023-01-11) of the electric potential.
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then on the boundary ∂Ω of the RVE

x ∈ ∂Ω : ⟦j(x)⟧ · n(x) = j · n(x), (5)

where j ∈ R3 is an auxiliary constant, which is found by enforcing that the macroscopic electric field coincides with
the prescribed value E

⟨E⟩ = E, (6)

where angle brackets denote volume averages over the RVE Ω

⟨•⟩ = 1
|Ω|
∫

Ω

•(x) d3x. (7)

As shown previously [8], the motivation for these seemingly complex boundary conditions is the reformulation of
problem (1)–(6) as a unique integral equation of the Lippmann–Schwinger type [40]

(
σ − σ0

)−1 · τ + Γ∞0 (τ − χ⟨τ⟩) = E, (8)

where the main unknown is the polarization τ

τ = (σ − σ0) · E. (9)

In the above modified Lippmann–Schwinger equation, first introduced by Willis [34], Γ∞0 denotes the Green
operator, associated with the conductivity σ0 (see definition in Appendix A). It maps the field τ onto the field Γ∞0 (τ).
For an isotropic reference material (σ0 = σ0 1), we have the following expression of the Green operator [9, 31]

Γ∞0 (τ)(x) = P0 · τ(x) + PV
x

∫

y∈Ω
G0(y − x) · τ(y) d3y, where P0 =

1
3σ0

and G0(r) =
1 − 3n ⊗ n

4πσ0r3 (10)

(r = ∥r∥ and n = r/r). In the above equation, “PVx” refers to the principal value at x for spherical excluded regions

PV
x

∫

y∈Ω
f (y) d3y = lim

δ→0

∫
y∈Ω
∥y−x∥≥δ

f (y) d3y (11)

Note that the polarization vanishes at any point x where σ(x) = σ0 [see Eq. (9)]. Therefore, the corrected
polarization (τ − χ⟨τ⟩) is null outside Ω

x ∈ R3 \Ω : τ(x) − χ(x)⟨τ⟩ = 0 (12)

and has null volume average over Ω

〈
τ − χ⟨τ⟩〉 = 0. (13)

From the volume average ⟨τ⟩ of the solution τ to the modified Lippmann–Schwinger equation (8), the apparent
conductivity is readily retrieved. Indeed, using Eq. (9)

σapp · E = ⟨σ · E⟩ = ⟨σ0 · E + τ⟩ = σ0 · ⟨E⟩ + ⟨τ⟩ = σ0 · E + ⟨τ⟩ (14)

Remark 2. Note that equivalence between problem (1)–(6) and the modified Lippmann–Schwinger equation (8) holds
for RVEs Ω of ellipsoidal shape [8].

Of course, the limit for large RVEs of the apparent conductivity does not depend on the radii of the ellipsoid. In
the remainder of this paper, the microstructures under consideration are statistically isotropic. It is therefore natural
to use spherical RVEs.
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2.2. Discretization of the Lippmann–Schwinger equation
We follow a Galerkin procedure to derive an approximate solution to the Lippmann–Schwinger equation (8).

Contracting Eq. (8) with a test function ϖ ∈ V and volume averaging over Ω delivers the following variational
problem

Find τ ∈ V such that, for allϖ ∈ V : a(τ,ϖ) = E · ⟨ϖ⟩ (15)

where V is the set of square integrable vector fields supported in Ω [8], and a is the following bilinear form

a(τ,ϖ) =
〈
ϖ · (σ − σ0)−1 · τ〉 + 〈ϖ · Γ∞0 (τ − χ⟨τ⟩)〉. (16)

Discretization of the above variational problem then follows a standard Galerkin procedure. Introducing the
discretization parameter p ∈ N (to be defined below) and the finite-dimensional discretization subspace Vp of V, we
consider the following variational problem

Find τp ∈ Vp such that, for allϖp ∈ Vp : a(τp,ϖp) = E · ⟨ϖp⟩. (17)

which differs from problem (15) only by the space to which the trial and test functions belong. Since the dimension
of Vp is finite, solving problem (17) amounts to solving a linear system. The resulting solution τp approximates the
solution to the initial problem (15).

The variational form of the EIM results from the specialization of the above procedure to matrix-inhomogeneity
media, and a specific class of discretization spaces Vp. We therefore consider a spherical RVE Ω ⊂ R3 that hosts N
inhomogeneitiesΩ1, . . . ,ΩN embedded in a homogeneous matrixΩ0. The inhomogeneities do not overlap. Therefore,
Ω0,Ω1, . . . ,ΩN realize a partition of the RVE Ω; the corresponding indicator functions χα (α = 0, . . . ,N) are

χα(x) =


1 if x ∈ Ωα,
0 otherwise.

(18)

It will be convenient to introduce volume averages over inhomogeneity Ωα

⟨•⟩α = 1
Vα

∫

Ωα

•(x) d3x, (19)

where Vα denotes the volume of Ωα. Finally, fα = Vα/V denotes the volume fraction occupied by inhomogeneity α
within the RVE. It results from these definitions that, for a quantity • that vanishes over the matrix Ω0,

⟨•⟩ = f0⟨•⟩0 +
N∑

α=1

fα⟨•⟩α. (20)

Within the framework of the EIM, the reference material must coincide with the matrix. In other words, the RVE
Ω is embedded in an infinite, homogeneous material with same conductivity σ0 as the matrix. Similarly, each inho-
mogeneity α = 1, . . . ,N has homogeneous conductivity σα. The local conductivity σ(x) can therefore be expressed
as

σ(x) = χ0(x)σ0 + χ1(x)σ1 + . . . + χN(x)σN , (21)

and we have in particular

⟨σ⟩α = σα, for all α = 0, . . . ,N. (22)

The discretization space Vp is generated by a finite number of linearly independent functions supported on the
inhomogeneities. More precisely, we seek the following decomposition for the trial function τp

τp(x) =
N∑

α=1

Kp−1∑

k=0

τk
αΨ

k
α(x), (23)
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where Ψk
α is a vector shape function supported in Ωα, and τk

α are scalar unknowns in R. Kp ∈ N must be specified.
Unless otherwise noted, greek indices (α, β, . . .) span the 1, . . .N range in the remainder of this paper (note that

the matrix α = 0 is not included in the sum), while latin indices (k, l, . . .) span the 0, . . .Kp − 1 range.
Typically, the Ψk

α might be identical for k = 0, . . . ,Kp − 1 up to a rigid body motion (see below): Ψk
α = Ψ

k ◦ Fα,
where Fα is an isometry of R3. Since the Ψk

α are supported in Ωα, we have

⟨Ψk
α⟩β = 0 for all β = 0, . . . ,N such that β , α. (24)

Plugging this decomposition into the discrete variational problem (17), and testing with test functions ϖp ∈ Vp

decomposed similarly

ϖp(x) =
∑

α

∑

k

ϖk
αΨ

k
α(x), (25)

the following linear system is derived in Appendix B
∑

l

Rkl
α τ

l
α +
∑

β,l

(
T kl
αβ − fβMk

α · P0 ·Ml
β

)
τl
β =Mk

α · E, (26)

where

Rkl
α =
〈
Ψk
α · (σα − σ0)−1 ·Ψl

α

〉
α, (27)

T kl
αβ =

〈
Ψk
α · Γ∞0

(
Ψl
β

)〉
α, (28)

Mk
α =
〈
Ψk
α

〉
α. (29)

When α , β, T kl
αβ represents the Ψk

α-weighted average of the (opposite of the) electric field induced on inclusion α
by the polarization Ψl

β applied to inclusion β. Hence, T kl
αβ will be called interaction coefficient.

When α = β, T kl
αα represents the Ψk

α-weighted average of the (opposite of the) electric field induced on inclusion α
by the polarization Ψl

α applied to the same inclusion α. Then, we note T kl
αα = S kl

α and S kl
α will be called self-influence

coefficient.
Gathering the α = β terms in Eq. (26) finally delivers the set of N × Kp linear equations
∑

l

[
Rkl
α + S kl

α − fαMk
α · P0 ·Ml

α

]
τl
α +
∑

β,α,l

(
T kl
αβ − fβMk

α · P0 ·Ml
β

)
τl
β =Mk

α · E, (30)

which form the EIM. Finally, Eq. (14) is applied to the solution to the above linear system to derive the EIM estimate
of the apparent conductivity, σEIM

σEIM · E = σ0 · E +
∑

α,k

fατk
αMk

α. (31)

2.3. Integral expression of the interaction and self-influence coefficients
In the present section, we combine Eq. (28), which defines the influence coefficients, with Eq. (10), which gives

an integral expression of the Green operator. We start from Eq. (28)

T kl
αβ =

〈
Ψk
α · Γ∞0

(
Ψl
β

)〉
α =

1
Vα

∫

yα∈Ωα
Ψk
α(yα) · Γ∞0 (Ψl

β) d3yα, (32)

we then use Eq. (10) (assuming the reference material to be isotropic)

T kl
αβ =

1
3σ0
⟨Ψk

α ·Ψl
β⟩α +

1
Vα

∫

yα∈Ωα
Ψk
α(yα) · PV

yα

∫

yβ∈Ωβ
G0(yβ − yα) ·Ψl

β(yβ) d3yβd
3 yα, (33)

where it is noted that the nested integral is performed over Ωβ, rather than Ω, owing to Ψl
β being supported in these

domains. At this point, two cases must be discussed.
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Ω

ϕ = E · x

j = σ0 · E

j = σα · E

Figure 1: Determination of the apparent conductivity of the RVE Ω requires the solution to the boundary value problem (1), (2) and (3), as depicted
in the above sketch.

Interaction coefficients. When α , β, the inhomogenities Ωα and Ωβ do not overlap. Since Ψk
α · Ψl

β is supported in
Ωα ∩ Ωβ = ∅, its volume average vanishes. Furthermore, the nested integral in Eq. (33) is regular. We therefore have
the following expression of the interaction coefficient

T kl
αβ =

1
Vα

∫

yα∈Ωα

∫

yβ∈Ωβ
Ψk
α(yα) ·G0(yβ − yα) ·Ψl

β(yβ) d3yβ d3yα. (34)

Furthermore, for isotropic reference materials, Eq. (10) applies, and

T kl
αβ = σ

−1
0
(
Ukl
αβ − Vkl

αβ

)
, (35)

with

Ukl
αβ =

1
4πVα

∫

yα∈Ωα

∫

yβ∈Ωβ

Ψk
α(yα) ·Ψl

β(yβ)
∥yβ − yα∥3

d3yβ d3yα, (36)

and

Vkl
αβ =

3
4πVα

∫

yα∈Ωα

∫

yβ∈Ωβ

[
Ψk
α(yα) · (yβ − yα

)][(
yβ − yα

) ·Ψl
β(yβ)
]

∥yβ − yα∥5
d3yα d3yβ. (37)

Self-influence coefficient. When α = β, the principal value cannot be removed

S kl
α =

Qkl
α

3σ0
+

1
Vα

∫

x∈Ωα
Ψk
α(x) · PV

x

∫

y∈Ωα
G0(y − x) ·Ψl

α(y) d3y d3x, where Qkl
α =
〈
Ψk
α ·Ψl

α

〉
α. (38)

The EIM introduced in the previous section applies to inhomogeneities of arbitrary shape. For spherical inho-
mogeneities, all spatial coordinates are equivalent. Therefore Brisard et al. [7] considered polarizations that were,
over each inhomogeneity, polynomial of all spatial coordinates. In two dimensions, such choice delivered accurate
estimates of the effective properties for a relatively low number of unknowns. However, this approach was found to
be inefficient in three dimensions, where polynomials of higher order were required, which led to an unacceptable
growth of the number of unknowns (curse of dimensionality). For slender, cylindrical heterogeneities, the polynomial
expansions are not required to be of the same order in the longitudinal and transverse directions, which alleviates this
limitation. This is discussed in the next section.
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3. The EIM for slender, cylindrical inhomogeneities

In the present section, the EIM described previously is specialized to slender, cylindrical inhomogeneities. In
Sec. 3.1, the discretization space is defined. It is emphasized that the longitudinal coordinate (along the axis of the
cylinder) plays a specific role. Then, an asymptotic expansion of the interaction coefficients is derived and evaluated
numerically in Sec. 3.2. The finite element method is finally used to precompute the self-influence coefficients in
Sec. 3.3.

3.1. The discretization space
For the sake of simplicity, monodisperse assemblies only will be considered in the derivations presented below,

and we introduce the common radius R and common total length 2L of the cylindrical inhomogeneities. Then, Ωα is
a circular cylinder centered at xα ∈ Ω, oriented by the unit-vector nα (see Fig. 2). The aspect ratio e of the cylinders
is defined as: e = L/R. For such inhomogeneities, the longitudinal coordinate zα defined as follows

zα =
(
x − xα

) · nα (39)

clearly plays a specific role. This suggests to consider polarizations that are polynomials of high-order p of the
longitudinal coordinate, and polynomials of low-order q of the two other, transverse, coordinates. Typically, q =
0, 1, 2; owing to the large slenderness of the cylinders that will be considered in the applications, the simplest case
q = 0 is investigated first. In other words, the discretization space Vp is now the space of tensor fields that are,
over each inhomogeneity Ωα, polynomial of the local longitudinal coordinate zα. The general decomposition (23)
of the trial function τp therefore applies, p is the degree of polynoms and the total number of scalar unknowns is
Kp = 3(p + 1).

Introducing the following scalar shape functions of order m ≤ p

ψm
α (x) = χα(x)zm

α , (40)

the vector shape functions are indexed as follows

Ψ
(p+1)(i−1)+m
α (x) = ψm

α (x) ei (i = 1, 2, 3). (41)

where (e1, e2, e3) is the global cartesian frame. Note that in the above indexing scheme, the polynomial order is the
“fast” index, while the spatial direction of the polarization (i = 1, 2, 3) is the “slow” index.

For 0 ≤ k < Kp, it will be convenient to introduce the functions 0 ≤ O(k) ≤ p and 1 ≤ D(k) ≤ 3 defined as
follows: D(k) − 1 (resp. O(k)) is the quotient (resp. remainder) of the Euclidean division of k by (p + 1)

k =
(
p + 1

)[D(k) − 1
]
+ O(k). (42)

The geometric moment Mk
α introduced in Eq. (29) reduces to

Mk
α = MO(k)

α eD(k), with Mm
α =

1
Vα

∫

x∈Ωα
zm
α d3x (0 ≤ m ≤ p) (43)

and, if σα is isotropic (σα = σα 1), we have

Rkl
α =
(
σα − σ0

)−1Qkl
α , with Qkl

α = δD(k) D(l)MO(k)+O(l)
α (44)

where δi j is the Kronecker symbol. Note that, for circular cylinders

Mm
α =

1 + (−1)m

2
(
m + 1

) Lm. (45)

For the practical implementation of the method, it will prove convenient to write the interaction and self-influence
coefficents in a matrix form

Tmn
αβ =



T m,n
αβ T m,n+p+1

αβ T m,n+2(p+1)
αβ

T m+p+1,n
αβ T m+p+1,n+p+1

αβ T m+p+1,n+2(p+1)
αβ

T m+2(p+1),n
αβ T m+2(p+1),n+p+1

αβ T m+2(p+1),n+2(p+1)
αβ


(46)
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and

Smn
α =



S m,n
α S m,n+p+1

α S m,n+2(p+1)
α

S m+p+1,n
α S m+p+1,n+p+1

α S m+p+1,n+2(p+1)
α

S m+2(p+1),n
α S m+2(p+1),n+p+1

α S m+2(p+1),n+2(p+1)
α

 (47)

with 0 ≤ m, n ≤ p. In the remainder of this paper, latin, superior indices to the matrices T and S will always be
assumed to span 0, ..., p.

3.2. Computation of the interaction coefficients

For two distinct inhomogeneities α , β, Eq. (35) can be replaced with

Tmn
αβ = σ

−1
0
(
Umn
αβ I3 − Vmn

αβ

)
, (48)

where I3 is the 3 × 3 identity matrix, and

Umn
αβ =

1
4πVα

∫

yα∈Ωα

∫

yβ∈Ωβ

zm
α zn

β

∥yβ − yα∥3
d3yβ d3yα, (49)

and the coefficients of Vmn
αβ are

(
Vmn
αβ

)
i j
=

3
4πVα

∫

yα∈Ωα

∫

yβ∈Ωβ
zm
α zn

β

[(
yβ − yα

) · ei
][(

yβ − yα
) · e j
]

∥yβ − yα∥5
d3yβ d3yα, (50)

for i, j = 1, 2, 3.
We were not able to derive a closed-form expression of these integrals for two cylinders. However, assuming

that the radius R is small compared to the smallest distance between the two cylinders, a multipole expansion can be
produced. For low volume fractions, this assumption is certainly verified for most pairs of cylinders. We introduce
the local cylindrical coordinates (rα, θα, zα) and (rβ, θβ, zβ) (see Fig. 2)

yα = xα + zαnα + rαer,α, (51)

where er,α is the unit radial vector, while θα is the polar angle with respect to a fixed (unspecified) direction. The
integral for UKM

αβ then reads

Umn
αβ =

1
4πVα

∫
0≤rα,rβ≤R

0≤θα,θβ≤2π
−L≤zα,zβ≤L

rα rβ zm
α zn

β

∥w∥3 dzα dzβ dθα dθβ drα drβ, (52)

and

(
Vmn
αβ

)
i j
=

3
4πVα

∫
0≤rα,rβ≤R

0≤θα,θβ≤2π
−L≤zα,zβ≤L

rα rβ zm
α zn

β wi w j

∥w∥5 dzα dzβ dθα dθβ drα drβ, (53)

where w stands for the following vector

w = rαβ + zβnβ − zαnα + rβer,β − rαer,α, (54)

with rαβ = xβ − xα. In view of performing an asymptotic expansion of the above integrals, we introduce the following
dimensionless variables

ζα =
zα
L
, ζβ =

zβ
L
, ρα =

rα
R
, and ρβ =

rβ
R
. (55)
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Observing that the volume of inhomogeneity α is Vα = 2πR2L, we get

Umn
αβ =

Lm+n+3

8π2

R2

L2

∫
0≤ρα,ρβ≤1
0≤θα,θβ≤2π
−1≤ζα,ζβ≤1

ρα ρβ ζ
m
α ζ

n
β

∥w∥3 dζα dζβ dθα dθβ dρα dρβ, (56)

(
Vmn
αβ

)
i j
=

3Lm+n+3

8π2

R2

L2

∫
0≤ρα,ρβ≤1
0≤θα,θβ≤2π
−1≤ζα,ζβ≤1

ρα ρβ ζ
m
α ζ

n
β wi w j

∥w∥5 dζα dζβ dθα dθβ dρα dρβ, (57)

where

w = Lζβnβ − Lζαnα + rαβ + R
(
ρβer,β − ραer,α

)
. (58)

Owing to our assumption that the radius of the cylinders is small compared to the smallest cylinder-to-cylinder
distance, it is observed that R∥ρβer,β − ραer,α∥ ≪ ∥Lζβnβ − Lζαnα + rαβ∥ in the above expression. Then

Umn
αβ =

Lm+n+3

8π2

R2

L2

∫ ρα ρβ ζ
m
α ζ

n
β

∥w0∥3 dζα dζβ dθα dθβ dρα dρβ, (59)

(
Vmn
αβ

)
i j
=

3Lm+n+3

8π2

R2

L2

∫ ρα ρβ ζ
m
α ζ

n
βw0

i w0
j

∥w0∥5 dζα dζβ dθα dθβ dρα dρβ, (60)

where the integration bounds have been omitted and

w0 = rαβ + Lζβnβ − Lζαnα. (61)

Upon integration with respect to 0 ≤ ρα, ρβ ≤ 1 and 0 ≤ θα, θβ ≤ 2π

Umn
αβ =

Lm+n+3

8
R2

L2

∫ 1

−1

∫ 1

−1

ζm
α ζ

n
β

∥w0∥3 dζα dζβ, (62)

(
Vmn
αβ

)
i j
=

3Lm+n+3

8
R2

L2

∫ 1

−1

∫ 1

−1

ζm
α ζ

n
βw0

i w0
j

∥w0∥5 dζα dζβ. (63)

In the above expressions, both nested integrals can be evaluated numerically. However, this method becomes
inefficient for a large number of inclusions, in which case it is more advantageous to evaluate the first integral
(with respect to ζα) analytically. More details are provided in a report by Martin [21], available at https://hal.
archives-ouvertes.fr/hal-03736626 (last retrieved 2023-01-11).

3.3. Computation of the self-influence coefficients

Eq. (38) shows that the singularity cannot be removed in the integral expression of the self-influence coefficients,
which makes their analytical evaluation difficult. Rather than attempting a regularized quadrature, and observing that
this coefficient can be precomputed off-line prior to the full EIM calculation, we used a numerical approach based on
a finite element analysis.

It is recalled (see Sec. 2.2) that
(
Smn
α

)
i j = −⟨ψm

α ei · grad ϕ⟩α, where ϕ is the electric potential induced by the
polarization ψn

αe j in Ωα. In other words, we consider the solution to the following variational problem over R3: find ϕ
such that, for all ϕ̂

∫

R3
σ0 grad ϕ · grad ϕ̂ +

∫

Ωα

ψn
αe j · grad ϕ̂ = 0, (64)

where ϕ and ϕ̂ are square integrable over R3, with square integrable gradients. In the above variational problem, it is
assumed that the reference material is isotropic (σ0 = σ01).
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Figure 2: Computation of the interaction coefficients

The domain Ωα is axisymmetric, but the loading (the polarization), which depends on e j is not. Still, it is possible
to reduce the above 3d problem to a finite set of 2d problems [35, 27]. Indeed, introducing the cylindrical coordinates
(r, θ, z) within Ωα, and a local cartesian basis (g1, g2, g3) where g3 = nα, we have

e j =
[(

e j · g1
)

cos θ +
(
e j · g2

)
sin θ
]
er +
[−(e j · g1

)
sin θ +

(
e j · g2

)
cos θ
]
eθ +
(
e j · g3

)
ez. (65)

Note that ψn
α does not depend on θ, which suggests the following form of the solution, in cylindrical coordinates

ϕ(r, θ, z) = Φ1(r, z)
[(

e j · g1
)

cos θ +
(
e j · g2

)
sin θ
]
+
(
e j · g3

)
Φ3(r, z), (66)

where Φ1 and Φ3 are two functions of (r, z) only, to be determined.
Plugging the expansion (66) into the 3d variational problem (64) and testing with Φ̂(r, z) cos θ, Φ̂(r, z) sin θ and

Φ̂(r, z), successively (Φ̂: arbitrary function of r and z only) delivers the following 2d variational problems upon
integration with respect to 0 ≤ θ ≤ 2π: find Φ1 and Φ3 such that, for all Φ̂

σ0

∫ +∞

−∞

∫ +∞

0

[
r
(
∂Φ1

∂r
∂Φ̂

∂r
+
∂Φ1

∂z
∂Φ̂

∂z

)
+
Φ1Φ̂

r

]
dr dz +

∫ +L

−L

∫ R

0
ψn
α(z)
(
Φ̂ + r

∂Φ̂

∂r

)
dr dz = 0 (67)

and

σ0

∫ +∞

−∞

∫ +∞

0
r
(
∂Φ3

∂r
∂Φ̂

∂r
+
∂Φ3

∂z
∂Φ̂

∂z

)
dr dz +

∫ +L

−L

∫ R

0
r ψn

α(z)
∂Φ̂

∂z
dr dz = 0. (68)

The variational problems (67) and (68) were implemented within the FEniCS framework [20, 3]. Boundary
conditions at r → +∞ were replaced with Dirichlet boundary conditions at r = 20L (spherical simulation domain).
Then, from Φ1 and Φ3, Smn

α is computed as follows (see Appendix C)

Smn
α = S mn

α,T
(
I3 − nαnT

α

)
+ S mn

α,L nαnT
α, (69)

where nα is the 3 × 1 column vector of the coordinates of nα in the global basis (e1, e2, e3) and

S mn
α,T = −

1
2R2L

∫ +L

−L

∫ R

0
r ψm

α

(
∂Φ1

∂r
+
Φ1

r

)
dr dz and S mn

α,L = −
1

R2L

∫ +L

−L

∫ R

0
r ψm

α

∂Φ3

∂z
dr dz. (70)

Remark 3. Note that the compact expression (66) was inferred from a first analysis where the following, slightly more
general, expansion was adopted

ϕ(r, θ, z) = ϕc(r, z) cos θ + ϕs(r, z) sin θ + ϕ0(r, z), (71)

and it was observed that the variational problem that ϕc (resp. ϕs, ϕ0) solves involves (e j · g1) (resp. (e j · g2), (e j · g3))
only and ϕc and ϕs solve the same variational problem.
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Remark 4. Adessina et al. [2, 1] recently introduced a correction to the Dirichlet boundary conditions we adopted
in order to minimize finite-size effects. However, it is observed that these corrections involve the ratio of the volume
of the cylindrical inhomogeneity (Vα = 2πR2L) to the volume of the simulation domain ( 4

3π(20L)3). Therefore these
corrections are of order 1/

(
8000e2), which is negligible. We did not apply these corrections in the present case.

The EIM was specialized to slender, cylindrical inhomogeneities in the previous section. Performance of the
resulting numerical method is assessed in the remainder of this paper. We first consider the inhomogeneity problem
of Eshelby [11]. This seemingly simple problem reveals that the above defined discretization space is too small for
the EIM to deliver a good estimate of the local fiels. This leads us to consider enriched trial polarizations.

4. Application to one-inhomogeneity system

4.1. The discretization space is too small

We consider a single inhomogeneity Ω1 centered at the origin and embedded in a homogeneous, infinite matrix.
The system is subjected to a uniform electric field E = Eez at infinity, where E is a scalar constant and ez denotes
the axis of revolution of the inhomogeneity. Both matrix and inhomogeneity have isotropic conductivities σ0 and σ1,
respectively. The contrast of conductivities is σ1/σ0 = 106, while the aspect ratio is L/R = 50.

Note that in the present application, the boundary conditions apply at infinity and there is no need for the finite-
size corrections introduced by Brisard et al. [8]. In other words, the Lippmann–Schwinger equation to be solved is
[compare with Eq. (8)]

(
σ1 − σ0

)−1τ + Γ∞0 (τ) = E. (72)

After EIM discretization, the above equation reduces to the following system, which involves only self-influence
coefficients [compare with Eq. (30)]

∑

l

[(
σ1 − σ0

)−1Qkl
α + S kl

α

]
τl
α =Mk

α · E. (73)

We compared the results of EIM with finite element calculation. This calculation was done with COMSOL
Multiphysics® 5.62. Here again, boundary conditions were replaced with conditions at the boundary of a large sphere
(radius: 20L). The size of the smallest element is R/5.

The EIM electric field is uniform within the section of the cylindrical inhomogeneity. For the sake of comparison,
the FEM electric field is therefore averaged over the cross section, for various values of longitudinal coordinate z
along the inhomogeneity.

The results of this comparison are shown on Fig. 3, where only the longitudinal component of the electric field is
represented. EIM simulations were carried out for two values of the polynomial order: p = 2 and p = 16.

Even for a rather low polynomial order, p = 2, the EIM can capture the magnitude and overall variations of
the electric field along the cylinder. However, its maximum value is slightly under-estimated. Furthermore, it is
observed that increasing the polynomial order p does not improve the accuracy significantly. This suggests that the
discretization (41) is not rich enough to ensure a good approximation of the true fields. The estimated polarization
should therefore be allowed to vary within the cross-section.

It would be natural to increase the polynomial order q in the transverse direction, from q = 0 (the polarization is
constant within the cross-section) to q = 1 (the polarization is affine within the cross-section), which would lead to an
increase of the total number of unknowns, from 3N(p+ 1) to 9N(p+ 1). This enrichment (which, in a linear elasticity
setting, is consistent with the classical beam theory) will be investigated in future work.

2COMSOL Multiphysics® v. 5.6. www.comsol.com. COMSOL AB, Stockholm, Sweden, last retrieved 2023-01-11.
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Figure 3: Eshelby’s problem with contrast σ1/σ0 = 106 for aspect ratio L/R = 50. The sectional average of the longitudinal component of the
electric field Ez is plotted against the longitudinal coordinate z. E is the amplitude of the longitudinal electric field, prescribed at infinity. “FEM”:
finite element reference simulation; “EIM p = 2” (resp. p = 16): equivalent inclusion method with polynomials of the second (resp 16th) order.

For the time being, we consider a subset of this general class of trial polarizations. To the constant polarization
already considered before, we add a radial component that varies linearly with the radial distance; the total number of
unknowns is therefore 4N(p+1) only. Figs. 4 and 5 indeed show the variations of the longitudinal (Ez) and radial (Er)
components of the FEM electric field as a function of the radial distance r, for two cross-sections: z = 0 (mid-height
of the cylinder) and z = L/2 (quarter-height of the cylinder). The macroscopic (prescribed) electric field E is again
aligned with the cylinder axis ez. Note that in both figures, the values are normalized by the amplitude of the electric
field at infinity. Observation of Fig. 4 (resp. 5) suggests that the longitudinal (resp. transverse) trial polarization
should be allowed to vary quadratically (resp. linearly) with r. However, on closer inspection, it appears that the
relative variations of Ez are significantly smaller than the relative variations of Er, which suggests that there is no need
to enrich the longitudinal component of the trial polarization, while the radial component is enriched as in the next
section.

4.2. Enrichment of the trial polarization field

As discussed previously, we add to the constant trial polarization in inclusion α, a radial component, linear in rα.
Now, Kp = 4(p + 1) and Eq. (41) is complemented with

Ψ
3(p+1)+m
α (x) = ψm

α (x)rαer,α, (74)

where er,α is the radial vector of cylinder α. The development of the method with this new discretization is the same
as previously. The definition of D(k) and O(k) are unchanged but for the fact that now, D(k) can take the value 4. In
the remainder of this section, we document how the final linear system is affected by the proposed enrichment. We
have

Mk
α = 0 if D(k) = 4, (75)

and

Qkl
α =



0 if
[D(k) = 4 or D(l) = 4

]
and D(k) , D(l),

1 + (−1)O(k)+O(l)

2
(O(k) + O(l) + 1

)LO(k)+O(l) R2

2 if D(k) = D(l) = 4,
(76)

the other values of Mk
α and Qk

α being unchanged [see Eqs. (44) and (45)].
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Figure 4: Variations of the longitudinal component of the electric field Ez within the cross-section of the cylinder for the problem considered in
Fig. 3. Owing to rotational symmetry, Ez depends on r (distance to the cylinder’s axis) and z (longitudinal coordinate) only. The curves r 7→ Ez
are plotted for two values of z: z = 0 (mid-height) and z = L/2 (quarter height). E is the amplitude of the longitudinal electric field, prescribed at
infinity.
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Figure 5: Variations of the radial component of the electric field Er within the cross-section of the cylinder for the problem considered in Fig. 3.
Owing to rotational symmetry, Er depends on r (distance to the cylinder’s axis) and z (longitudinal coordinate) only. The curves r 7→ Ez are plotted
for two values of z: z = 0 (mid-height) and z = L/2 (quarter height). E is the amplitude of the longitudinal electric field, prescribed at infinity.
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Figure 6: Eshelby’s problem with contrast σ1/σ0 = 106 for aspect ratio L/R = 50. The sectional average of the longitudinal component of the
electric field Ez is plotted against the longitudinal coordinate z. E is the amplitude of the longitudinal electric field, prescribed at infinity. “FEM”:
finite element reference simulation; “EIM p = 2” (resp. p = 4, p = 8): equivalent inclusion method with polynomials of order 2 (resp. 4, 8) and
the enrichment (74). Comparison with Fig. 3 shows significant improvement of the solution.

It is again convenient to write the interaction and self-influence coefficents in a 4×4 matrix form, where the upper-
left, 3 × 3 block is unchanged. We derive the expressions of the additional coefficients of Smn

α and Tmn
αβ in Appendix

D.
Fig. 6 shows the resulting approximations of the electric field for the same problem as in Sec. 4.1. The solution is

significantly improved, and nearly undistinguishable from the FEM reference solution for p ≥ 8. This is discussed in
depth in the next section.

4.3. Analysis of the discretization error

In the present section, we quantify the error on the electric field resulting from the discretization of the polarization
field. We define the following quantity

ϵ =

[ ∫
Ω1
∥EEIM(x) − EFEM(x)∥2 d3x
∫
Ω1
∥EFEM(x)∥2 d3x

]1/2
, (77)

which measures the relative error in L2 norm. Here, the FEM fields were not computed with COMSOL Multiphysics®
5.6. Indeed, for high aspect ratios, the number of unknown becomes too large. Using the same technique as in Sec. 3.3,
the 3d problem can however again be reduced to the following 2d variational problem (again solved with the FEniCS
library): find Φ such that, for all Φ̂

∫ +∞

−∞

∫ +∞

0
rσ
(
∂Φ

∂r
∂Φ̂

∂r
+
∂Φ

∂z
∂Φ̂

∂z

)
dr dz +

∫ +∞

−∞

∫ +∞

0
rσ
∂Φ̂

∂z
dr dz = 0. (78)

The relative error ϵ is plotted versus the polynomial order p in Fig. 7 for a fixed aspect ratio L/R = 50. As
expected, ϵ decreases when p increases. However, it is not guaranteed that ϵ → 0, owing to the fact that we do not
increase the polynomial order q within the cross-section. Nevertheless, acceptable relative errors can be reached for
relatively low polynomial orders (p = 8 leads to ϵ = 0.51%). This is essential for application of the proposed method
to large assemblies of inclusions.

The relative error ϵ is also plotted versus the aspect ratio L/R in Fig. 8, for a fixed polynomial order p = 8. It is
observed that the error decreases when the aspect ratio increases. This was expected, as our assumption of constant
trial polarization within the cross-section targets slender cylinders.
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Figure 7: Eshelby’s problem with contrast σ1/σ0 = 106 for fixed aspect ratio L/R = 50. The figure shows the relative error ϵ defined by Eq. (77)
as a function of the polynomial order p.
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Figure 8: Eshelby’s problem with contrast σ1/σ0 = 106 for various aspect ratios L/R. The figure shows the relative error ϵ defined by Eq. (77) for
polynomials of order p = 8.
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Figure 9: Two coaxial cylinders with aspect ratio L/R = 50 and contrast σ1/σ0 = 106, subjected to an external electric field E = E ez. The gap
between the cylinders is 2R (center-to-center distance: 2L + 2R). The sectional average of the longitudinal component of the electric field Ez is
plotted against the longitudinal coordinate z. “FEM Eshelby”: finite element simulation for an isolated cylinder; “FEM coaxial cylinders”: finite
element reference solution; “EIM coaxial cylinders p = 8”: equivalent inclusion method with polynomials of order 8.

It has been shown in the previous section that the EIM can deliver excellent estimates of the electric field for an
isolated cylindrical inhomogeneity, provided that the trial polarization is enriched with a radial component, linear in
the radial distance. In the next section, we show that this enrichment is also extremely efficient for assemblies of two
cylinders. This is an unexpected result, since introduction of a second cylinder in general breaks the axisymmetry that
underlies the proposed enrichment [see Eq. (74)].

5. Applications to two-cylinder systems

In this section we consider three configurations of two cylinders. In all three cases, the aspect ratio of the cylinders
is L/R = 50 and the contrast is σ1/σ0 = 106. We show that even for cylinders that are very close, interactions are well
captured with relatively low polynomial orders (all EIM simulations are performed with p = 8 in the present section).

For all configurations, the EIM estimates are compared to FEM reference calculations. Here again, these calcu-
lations were done with COMSOL Multiphysics® 5.6. The boundary conditions were replaced with conditions at the
boundary of a large sphere (radius: 20L). The size of the smallest element is R/3. The results are plotted in Figs. 9,
10 and 11. We also show the solution for a unique cylinder (“FEM Eshelby”), which allows to quantify the effect of
interactions between cylinders.

Two coaxial cylinders. We first consider two coaxial cylinders subjected to an external field E = E ez at infinity,
where ez denotes the orientation of the cylinders. The gap between the cylinders is 2R (center-to-center distance:
2L + 2R). Results presented in Fig. 9 show an excellent agreement with the reference, FEM solution. Comparison
with the “Eshelby FEM” solution shows that the second cylinder increases the electric field within the first cylinder
(“positive interactions”).

Two parallel cylinders. We now consider two parallel cylinders subjected to an external field E = E ez at infinity,
where ez corresponds to the orientation of the cylinders. The gap the between cylinders is 2R (axis-to-axis distance:
4R). Again, an excellent agreement is observed (see Fig. 10). Note that in this case, interactions are “negative”: the
electric field is lower than in the case of an isolated cylinder.

Two coplanar cylinders at 45◦. We finally consider two coplanar cylinders, that make a 45◦ angle (see sketch in
Fig. 11, where the distance between the two cylinders is also indicated). The system is subjected to an external field
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Figure 10: Two parallel cylinders with aspect ratio L/R = 50 and contrast σ1/σ0 = 106, subjected to an external electric field E = E ez. The
gap between the cylinders is 2R (axis-to-axis distance: 4R). The sectional average of the longitudinal component of the electric field Ez is plotted
against the longitudinal coordinate z. “FEM Eshelby”: finite element simulation for an isolated cylinder; “FEM parallel cylinders”: finite element
reference solution; “EIM parallel cylinders p = 8”: equivalent inclusion method with polynomials of order 8.
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Figure 11: Two coplanar cylinders at 45◦, with aspect ratio L/R = 50 and contrast σ1/σ0 = 106, subjected to an external electric field E = E ez.
The sectional average of the longitudinal component of the electric field Ez is plotted against the longitudinal coordinate z. “FEM Eshelby”: finite
element simulation for an isolated cylinder; “FEM parallel cylinders”: finite element reference solution; “EIM parallel cylinders p = 8”: equivalent
inclusion method with polynomials of order 8.
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Figure 12: Two coaxial cylinders with aspect ratio L/R = 50 and contrast σ1/σ0 = 106, subjected to an external electric field E = E ez. The
gap between the cylinders is R (center-to-center distance: 2L + R). The sectional average of the longitudinal component of the electric field Ez
is plotted against the longitudinal coordinate z. FEM Eshelby: finite element simulation for an isolated cylinder; FEM coaxial cylinders: finite
element reference solution; EIM coaxial cylinders p = 8: equivalent inclusion method with polynomials of order 8. Note that the gap between the
cylinders is twice as small as in Fig. 9, which affects negatively the quality of the EIM solution.

E = E ez at infinity, where ez corresponds to the orientation of the first cylinder. Although this case breaks many
symmetries, the EIM results are just as good as previously (see Fig. 11). Interactions are again “negative”.

Contrary to the cases considered in Sec. 4, the three examples presented above involve the interaction coefficients
T kl

12 between the two inclusions of the system. Since our implementation of the method relies on a multipole expansion
of these coefficients, it is expected that the accuracy of the EIM decreases for cylinders that get closer. This is not so
for cylinders that are separated by a gap ∼ 2R. Below this limit differences with the FEM reference solution become
noticeable. This is illustrated in Fig. 12, where the gap between the two coaxial cylinders is now R.

In the previous section, the EIM was shown to perform remarkably well for a wide range of two-cylinder systems.
In the next section, this method is applied to a few larger assemblies. Both the accuracy and efficiency of the method
are assessed (in Secs. 6.1 and 6.2, respectively).

6. Application to larger systems

Unless otherwise noted, the EIM is applied in this section with the enrichment introduced in Sec. 4.2 and p = 8
(which was shown to deliver excellent results for small assemblies of cylinders).

6.1. Assessment of accuracy

In this first application, we consider two assemblies of 133 cylindrical inhomogeneities, embedded in a spherical
domain, the radius of which is adjusted so as to ensure that the total volume fraction of inhomogeneities is 1%. The
microstructures are generated by random sequential addition, making sure that one cylinder is placed vertically at the
center of the sphere. The first of the two microstructures considered here is shown in Fig. 13.

This microstructure is subjected to a macroscopic electric field E = E ez and we compute the longitudinal electric
field Ez in the central fiber. Since boundary conditions apply at infinity in the EIM, it was necessary for the FEM
simulations to embed the spherical RVE into a larger, homogeneous spherical domain (see Fig. 13). In the present
application, the radius of the external sphere is 5 × the radius of the spherical RVE. The results are shown for both
microstructures in Fig. 14. The agreement is excellent for the first sample, and very satisfactory for the second sample.
This confirms that the EIM delivers accurate results, even for complex systems. Note that for the second sample, the
longitudinal component of the electric field Ez exhibits a large gradient at z ≃ −0.7L. This “near-discontinuity” is
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Figure 13: One of the microstructures considered in Sec. 6.1. The total number of cylinders is 133, the volume fraction is 1%. The outer sphere
marks the boundary of the FE simulation domain (5× the radius of the RVE).
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Figure 14: The longitudinal component of the electric field Ez along the central cylindrical inhomogeneity, for the two microstructures considered
in Sec. 6.1. “FEM”: finite element reference solution; “EIM”: equivalent inclusion method with polynomials of order p = 8. The agreement is
generally very good, slightly better for sample 1.

induced by the presence of another cylinder in the close vicinity of the central cylinder. Of course, polynomials are
not well suited to capturing such sharp variations, which explains why the EIM estimate is somewhat less accurate in
that case.

Interestingly, we did the same comparison with our initial version of the EIM (no enrichment). The results are
displayed in Fig. 15; comparison with Fig. 14 shows that even in highly non-axisymmetric situations, the enrichment
introduced in Sec. 4.2 leads to a noticeable improvement of the results.

6.2. Assessment of efficiency
Our goal in future work is to compute the effective properties of fibrous materials. In the present section, we

discuss wether the EIM can be considered as a convincing competitor to standard finite elements. For the comparison
to be as fair as possible, the FEM will be applied in periodic boundary conditions (meshing the external sphere as in
the previous application being extremely inefficient). We therefore need to consider two microstructures with same
number (509) and volume fraction (2%) of cylinders. The first microstructure (FEM) is cubic and periodic (see Fig. 16,
left), while the second microstructure (EIM) is spherical (see Fig. 16, right).

Again, both systems are subjected to a macroscopic electric field E = E ez. Contrary to the previous section, we
do not compare the numerical results per se (the microstructures being different, the results will be different!) Rather,
we compare both methods in terms of number of unknowns and computation time.
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Figure 15: Same as in Fig. 14, without the enrichment introduced in Sec. 4.2.

Figure 16: The two microstructures considered in Sec. 6.2. Left: a periodic microstructure, to be computed by FEM; right: a spherical microstruc-
ture, to be computed by EIM. In both microstructures, the total number of cylinders is 509 and the volume fraction is 2 %.
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As for the number of unknowns, it amounts to about 15 millions for the FEM, vs. 18324 for the EIM. Clearly, the
gain is huge. In terms of computation time, the situation is less clear. Indeed, COMSOL Multiphysics® 5.6 turns out
to be only a few times slower than the EIM code. This seemingly disappointing result should be balanced with the
observation that our home-made, unoptimized, EIM code is confronted with a commercial, highly optimized FEM
code.

Improving the speed of our code is clearly a perspective of the present work. We are confident that we could
reach a 10 × improvement. Indeed, fine-grained observation of the calculation times in our EIM code shows that
the total computation time is largely dominated by the time spent in evaluating the influence tensors. Note that this
operation is embarassingly parallel3 and that appropriate multipolar methods should also help reduce dramatically the
total number of influence tensors to be computed.

To close this section, it is observed that the same comparison has been attempted for assemblies of 1018 fibers.
In that more challenging case, the FEM simulation failed, contrary to the EIM. This again advocates for the latter
method.

Remark 5. In a periodic setting, FFT-based homogenization methods [25, 30] are usually considered as an efficient
alternative to finite elements. This is not true of the present case. Indeed, the former requires uniform grids and the
cell-size is given by the cross-section of the (slender) cylinders. There is no such requirement for the latter, and the
mesh is in fact refined in the vicinity of the cylinders (see Fig. 17), which we believe makes the FEM more efficient. A
rough estimate of the number of unknowns required for a FFT-based simulation can be obtained as follows. First, the
size a of the cubic domain is given by the following expression

a3

R3 =
2πN

f
L
R
,

where N is the total number of cylinders and f the volume fraction. The total number of grid cells is N3, where
N = a/h is the number of subdivisions in each direction (h: cell size). The total number of unknowns is therefore 6N3

number of dofs (FFT) = 6N3 = 6
a3

R3

(R
h

)3
=

12πN
f

L
R

(R
h

)3
=

12π × 509 × 50
0.02

(R
h

)3
≃ 48 × 106

(R
h

)3

A reasonable minimum value of h would be h = 2R/3 (3 grid cells for one diameter); then

number of dofs (FFT)
number of dofs (FEM)

≃ 48 × 106 × 1.53

15 × 106 ≃ 10.8.

7. Conclusion and outlook

In this paper, we have specialized the equivalent inclusion method to slender cylinders. Contrary to the case
of spherical inclusions considered by Brisard et al. [7], the proposed method proves extremely efficient in three
dimensions. This is due to the fact that the slenderness of the inclusions allowed us to select shape functions that are
poorly resolved in the transverse direction, thus avoiding the “curse of dimensionality”.

First applications to isolated cylinders indicated a simple enrichment that is then assessed in more complex situa-
tions. In all the examples considered in this paper, the estimated fields are very close to the reference FEM calculations.
The cost of EIM simulations is however much lower than their FEM counterparts, as the number of degrees of free-
dom grows linearly with the number of cylinders (rather than linearly with the volume of the simulation domain for
FEM). Besides, the EIM remains meaningful for very slender cylinders, a situation where the FEM would struggle,
owing to the fineness of the required mesh.

This work opens a series of interesting perspectives. First, we will apply the equivalent inclusion method to large
assemblies of cylinders (several thousands of inclusions) in order to estimate homogenized conductivities of fibrous
media. In order to benefit from the full potential of the EIM, we will however need to optimize the assembly phase.

3https://en.wikipedia.org/wiki/Embarrassingly_parallel, last retrieved 2023-01-11.
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Figure 17: Mesh of one of the microstructures considered in Sec 6.2 for the finite element simulations. Note that the mesh is refined in the vicinity
of the cylinders, which would not have been possible with e.g. FFT-based methods (see also remark 5).

It has been observed in this paper that enriching the trial polarization with a radial component, linear in the radial
distance, delivers suprisingly good results. A second perspective is therefore investigating why this is so and what
the “optimal” enrichment is. We expect the method to apply to all physical problems where a Green operator can
be defined. We will consider the natural extension to linear elasticity as another perspective. Finally, the interaction
coefficients are approximated to first order in the present work. This probably leads to increased errors for densely
packed assemblies. Higher-order estimates of the interaction coefficients will also be investigated.
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A. On the Green operator

In this appendix, we provide a formal definition of the Green operator Γ∞0 introduced in the main text. This
operator is defined from the solution to the following problem [18, 40, 19] posed over the whole space R3

div j = 0, (A.1)
j = σ0 · E + τ, (A.2)
E = grad ϕ, (A.3)

with the requirement that E be square integrable over R3. In the above problem, τ is a prescribed square integrable
vector field. This problem is well-posed [8]. Owing to linearity, its unique solution depends linearly on the sole
loading parameter, namely: the field τ. In particular, the polarization field τ is mapped linearly onto the electric field
E. The linear mapping τ 7→ −E (note the minus sign) will be called Green operator. In other words,

[−Γ∞0 (τ)
]

is the
electric field induced over R3 by the polarization τ

B. Derivation of the linear system of the EIM

To derive the system (26), expressions (23) and (25) are substituted into the discrete variational problem (17). We
find first, using the general identity (20) (withϖ = 0 in Ω0)

⟨ϖp⟩ =
∑

α

fα⟨ϖp⟩α =
∑

α,k

fα⟨Ψk
αϖ

k
α⟩α =

∑

α,k

fαϖk
αMk

α, (B.1)
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where Mk
α is defined by Eq. (29). We now turn to the first term of the bilinear form a [see Eq. (16)] and use again

identity (20)

〈
ϖp · (σ − σ0)−1 · τp〉 =

∑

α

fα
〈
ϖp · (σ − σ0)−1 · τp〉

α =
∑

α,k,l

fα
〈
ϖk
αΨ

k
α · (σα − σ0)−1 ·Ψl

ατ
l
α

〉
α

=
∑

α,k,l

fαϖk
α

〈
Ψk
α · (σα − σ0)−1 ·Ψl

α

〉
ατ

l
α =
∑

α,k,l

fαϖk
αRkl

α τ
l
α, (B.2)

where we used in the second line that over Ωα, σ = σα, τp =
∑

lΨ
l
ατ

l
α andϖp =

∑
kΨ

k
αϖ

k
α.

Finally, owing to the linearity of the Γ∞0 operator, the last term of the bilinear form a [see Eq. (16)] reads
〈
ϖ · Γ∞0

(
τ − χ⟨τ⟩)〉 = 〈ϖ · Γ∞0 (τ)

〉 − 〈ϖ · Γ∞0 (χ⟨τ⟩)〉 = 〈ϖ · Γ∞0 (τ)
〉 − 〈ϖ · P0 · ⟨τ⟩〉

=
〈
ϖ · Γ∞0 (τ)

〉 − ⟨ϖ⟩ · P0 · ⟨τ⟩ = 〈ϖ · Γ∞0 (τ)
〉 −
∑

α,β,k,l

fα fβϖk
αMk

α · P0 ·Ml
βτ

l
β, (B.3)

where the second line results from the application of the results of Eshelby [11] to the spherical domain Ω and the
constant polarization ⟨τ⟩. The first term of Eq. (B.3) is then expanded with identity (20)

〈
ϖ · Γ∞0 (τ)

〉
=
∑

α,k

fα
〈
ϖk
αΨ

k
α · Γ∞0 (τ)

〉
α =
∑

α,β,k,l

fαϖk
α

〈
Ψk
α · Γ∞0

(
Ψl
βτ

l
β

)〉
α =
∑

α,β,k,l

fαϖk
αT kl

αβτ
l
β, (B.4)

where the coefficients T kl
αβ are defined by Eq. (28). Gathering Eqs. (B.1), (B.2) and (B.4) delivers the following

variational problem: find τk
α ∈ R (α = 1, . . . ,N and k = 0, . . . ,Kp − 1) such that, for all ϖl

β ∈ R (β = 1, . . . ,N and
l = 0, . . . ,Kp − 1)

∑

α,k

fαϖk
αRkl

α τ
l
α +
∑

α,β,k,l

fαϖk
αT kl

αβτ
l
β −
∑

α,β,k,l

fα fβϖk
αMk

α · P0 ·Ml
βτ

l
β =
∑

α,k

fαϖk
αMk

α · E, (B.5)

In turn, the above variational problem reduces to the linear system (26).

C. Retrieving the self-influence coefficient from the elementary potentials Φ1 and Φ3

Eqs. (65) and (66) show that the electric potential ϕ can be reconstructed from the elementary potentials Φ1 and
Φ3

ϕ(r, θ, z) =
[
Φ1(r, z)er + Φ3(r, z) ez

] · e j, (C.1)

and, taking the gradient

E =
∂ϕ

∂r
er +

1
r
∂ϕ

∂θ
eθ +

∂ϕ

∂z
ez =

(
∂Φ1

∂r
er ⊗ er +

∂Φ3

∂r
er ⊗ ez +

Φ1

r
eθ ⊗ eθ +

∂Φ1

∂z
ez ⊗ er +

∂Φ3

∂z
ez ⊗ ez

)
· e j. (C.2)

Smn
α is retrieved from the volume average (weighted by ψm

α ei) over the cylindrical inclusion Ωα of the above
quantity

(
Smn
α

)
i j = −

1
2πR2L

∫ +L

−L

∫ 2π

0

∫ R

0
r ψm

α ei·
(
∂Φ1

∂r
er⊗er+

∂Φ3

∂r
er⊗ez+

Φ1

r
eθ⊗eθ+

∂Φ1

∂z
ez⊗er+

∂Φ3

∂z
ez⊗ez

)
·e j dr dθ dz. (C.3)

Upon integration with respect to θ, observing that the following identities hold (with ez = nα), Eqs. (69) and (70)
and are finally retrieved

∫ 2π

0
er ⊗ er dθ =

∫ 2π

0
eθ ⊗ eθ dθ = π

(
g1 ⊗ g1 + g2 ⊗ g2

)
= π
(
1 − ez ⊗ ez

)
, (C.4)

∫ 2π

0
er ⊗ ez dθ =

∫ 2π

0
ez ⊗ er dθ = 0. (C.5)
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D. Retrieving Smn
α and Tmn

αβ
with the enriched discretization

D.1. Determination of Tmn
αβ

We first notice that
(
Tmn
αβ

)
i j

has already been computed for i, j = 1, 2, 3. We then have to compute
(
Tmn
αβ

)
i j

when
i = 4 or j = 4. Let us begin with i = 4 and j = 1, 2, 3. Eq (48) must be replaced by

Tmn
αβ = σ

−1
0

(
Umn
αβ − Vmn

αβ

)
(D.1)

where Umn
αβ is a 4 × 4 matrix and

(
Umn
αβ

)
4 j
=

1
4πVα

∫

yα∈Ωα

∫

yβ∈Ωβ

zm
α zn

β

∥yβ − yα∥3
rαer,α · e j d3yβ d3yα, (D.2)

and
(
Vmn
αβ

)
4 j
=

3
4πVα

∫

yα∈Ωα

∫

yβ∈Ωβ
zm
α zn

β rα
er,α · (yβ − yα

)

∥yβ − yα∥5
(
yβ − yα

)
j d3yβ d3yα, (D.3)

for i, j = 1, 2, 3. We perform the same multipole expansion as in Section 3.2, when R is small compared to the smallest
inter-fiber distance. Eqs (59) and (60) then have to be replaced by

(
Umn
αβ

)
4 j
=

Lm+n+3

8π2

R3

L2

∫ ρ2
α ρβ ζ

m
α ζ

n
β

∥w0∥3 er,α · e j dζα dζβ dθα dθβ dρα dρβ, (D.4)

(
Vmn
αβ

)
4 j
=

3Lm+n+3

8π2

R3

L2

∫ ρ2
α ρβ ζ

m
α ζ

n
β

∥w0∥5 (er,α · w0)w0
j dζα dζβ dθα dθβ dρα dρβ. (D.5)

Because of the integration on cylinder α upon θα, the two terms are null. It is the same when j = 4 because of the
integration upon θβ. Then, when i = 4 or j = 4,

(
Tmn
αβ

)
i j

is null.

D.2. Determination of Smn
α

As for Tmn
αβ ,
(
Smn
α

)
i j has already been computed for i, j = 1, 2, 3. We then have to consider the cases i = 4 or j = 4.

Let us begin with i = 4 and j = 1, 2, 3. Here Eqs (C.1) and (C.2) are still valid, but Eq (C.3) must be replaced with

(
Smn
α

)
4 j = −

1
2πR2L

∫ +L

−L

∫ 2π

0

∫ R

0
r2 ψm

α er ·
(
∂Φ1

∂r
er⊗er+

∂Φ3

∂r
er⊗ez+

Φ1

r
eθ⊗eθ+

∂Φ1

∂z
ez⊗er+

∂Φ3

∂z
ez⊗ez

)
·e j dr dθ dz.

(D.6)

and then
(
Smn
α

)
4 j = −

1
2πR2L

∫ +L

−L

∫ 2π

0

∫ R

0
r2 ψm

α

(
∂Φ1

∂r
er +

∂Φ3

∂r
ez

)
· e j dr dθ dz. (D.7)

Let us now consider the case j = 4. The polarization is now ψn
αr er. It is axisymmetric. Then Eq (66) must be

replaced with ϕ(r, θ, z) = Φ4(r, z), where Φ4 solves the following variational problem

σ0

∫ +∞

−∞

∫ +∞

0
r
(
∂Φ4

∂r
∂Φ̂

∂r
+
∂Φ4

∂z
∂Φ̂

∂z

)
dr dz +

∫ +L

−L

∫ R

0
r2 ψn

α(z)
∂Φ̂

∂r
dr dz = 0. (D.8)

We then take the gradient of Φ4

E =
∂Φ4

∂r
er +

∂Φ4

∂z
ez (D.9)

and when i = 1, 2, 3,

(
Smn
α

)
i4 = −

1
2πR2L

∫ +L

−L

∫ 2π

0

∫ R

0
r ψm

α

∂Φ4

∂z
ei · ez dr dθ dz. (D.10)

whereas when i = 4:
(
Smn
α

)
44 = −

1
2πR2L

∫ +L

−L

∫ 2π

0

∫ R

0
r2 ψm

α

∂Φ4
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dr dθ dz. (D.11)
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