
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Simulation intervals for uniprocessor real-time schedulers with
preemption delay

Joël Goossens
Université libre de Bruxelles (ULB)

Brussels, Belgium
joel.goossens@ulb.be

Damien Masson
Univ Gustave Eiffel, CNRS, LIGM
F-77454, Marne-la-Vallée, France

damien.masson@esiee.fr

ABSTRACT

In the framework of embedded and time-critical systems we con-
sider the scheduling of preemptive real-time periodic tasks upon
uniprocessor. We consider the notion of simulation interval, a fi-
nite time interval such that the schedule starts to repeat in a cycle.
The interest is to design a time interval which includes all pos-
sible (reachable) schedule states. Our study focuses on a model
where preemption costs are explicitly considered, i.e., the time re-
quired by the real-time operating system (rtos) or the hardware
to load the context of execution of preempted jobs. We present
and prove correct a simulation interval for asynchronous arbitrary
deadline tasks with preemption delays and that holds for any deter-
ministic and memoryless scheduler upon uniprocessor. This first
contribution is valid for all schedulers one can imagine (but deter-
ministic and memoryless), including non-preemptive schedulers,
not work-conserving, not necessarily popular “real-time” ones. We
then consider a particular case, regarding the preemption delays,
for edf scheduling for which we extend the work of Leung and
Merril [25] showing that [0,𝑂max + 2 · 𝐻) is a simulation interval
(significantly shorter than the general result). We also show that
[0, 𝑆𝑛 + 𝐻) from [17] remains a simulation interval for fixed task
priority (ftp) schedulers. Before concluding we open a discussion
on the scope of the results, paths for reducing pessimism as well as
other potential results opened by this work.

CCS CONCEPTS

• Computer systems organization → Real-time operating

systems.

KEYWORDS

Scheduling theory, uniprocessor, preemption delay

ACM Reference Format:

Joël Goossens and Damien Masson. 2022. Simulation intervals for uniproces-
sor real-time schedulers with preemption delay. In Proceedings of The 30th

International Conference on Real-Time Networks ans Systems (RTNS ’22).ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/1122445.1122456

Figure 1: A periodic schedule of periodic tasks.

◎

1 INTRODUCTION

In this research we study the scheduling of asynchronous arbitrary
deadline preemptive hard real-time periodic task sets upon unipro-
cessor systems. We consider preemptive tasks/jobs in the sense that
a higher priority task/job can preempt the current task/job in order
to execute the highest priority one. The originality of this work,
regarding the state-of-the-art, is the fact that the task model con-
siders preemption delays, i.e., the duration required by the real-time
operating system (rtos) or the hardware to resume a task/job after
a preemption.

We study the notion of simulation interval with the following
definition:

Definition 1 (Simulation interval). A finite and safe time

interval [0, 𝑏) such that the schedule start to repeat in a cycle.

In this work, we consider the notion of simulation interval for
feasible schedule. Note that infeasible schedules are not necessarily
periodic, but this question is beyond the scope of this work.

A simulation interval is a window of time during which all reach-
able states of the system have been observed. A schedule consists
of two parts, a first one called the transient phase, the time interval
[0, 𝑋), during which the succession of states appears only once, and
a second one called the steady phase, the time interval [𝑋,𝑋 + 𝑘𝐻),
during which the succession of states is periodic. Most of the time1
the period of the schedule is a multiple of the hyperperiod (see
1In particular cases, it is possible to define schedulers whose periodicity does not
depend on the arrival of tasks, but in practice they make no sense.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RTNS ’22, June 07–08, 2022, Paris, France

© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

2022-03-08 15:18. Page 1 of 1–10. 1

https://orcid.org/0000-0001-9524-8911
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

RTNS ’22, June 07–08, 2022, Paris, France Goossens and Masson

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Section 3 for a formal definition). This is illustrated in Figure 1,
with 𝑋 and 𝑘 as unknown constants and 𝐻 as the hyperperiod. We
are interested in finding exact values for 𝑋 and 𝑘 or at least an
upper-bound for 𝑋 + 𝑘 · 𝐻 .

The notion of simulation interval should not be confused with
the notion of feasibility interval:

Definition 2 (feasibility interval). A finite interval [𝑎, 𝑏)
such that if all the deadlines of jobs released in the interval are met,

then the system is schedulable.

Informally speaking, the feasibility interval includes the worst-
case schedule states regarding schedulability like, e.g., the first busy
period for synchronous arbitrary deadlines and fixed task priority
(ftp) schedulers [24] while the simulation interval includes all
possible (reachable) schedule states.

We will also use the notion of exact simulation interval:

Definition 3 (Exact simulation interval). An exact simu-
lation interval is a simulation interval [0, 𝑏) such that there is no

simulation interval [0, 𝑐) with 𝑐 < 𝑏.

Organization. The remainder of this paper is structured in the
following manner. Section 2 presents a motivations of our work.
Section 3 presents our task model and assumptions. Section 4 de-
scribes related work. Section 5 presents our contributions. Section 6
presents discussions on the scope of the results, paths for reducing
pessimism as well as other potential results opened by this work.
Lastly, Section 7 concludes our work.

2 MOTIVATIONS

We motivate here the two axis of our work: first why we are inter-
ested in the simulation intervals, then why we consider preemption
delays in our model.

2.1 Simulation Intervals

The need to have a simulation interval is justified each time we
need to study the significant part of a schedule and thus avoid the
anecdotal (non representative) part. This could be for performance
or benchmark studies. Design tools (such as Cheddar [32, 33] or
Tina [6]) often require to provide the simulation interval as input.
When the worst-case scenario is known (or sometimes several cases
to cover the worst-case, with a brute-force approaches see e.g. [20])
the notion of simulation interval allows to have an exact schedu-
lability test. For example Nasri et al. [29] use it to have an exact
simulation-based schedulability test for the fifo scheduler and
tasks with offsets. Unfortunately, regarding the tasks duration, the
worst-case scenario does not necessarily corresponds to consider
the worst-case execution time (wcet — see Section 3), i.e., sched-
ulers are not necessarily 𝐶-sustainable [9]. We will discuss this
aspect before our conclusion (see Section 6). In offline approaches
such as in the work of Xu and Parnas [38], it is fundamental to know
a simulation interval in order to build and evaluate the whole sched-
ule (i.e., until the end of the steady state). Regarding our scheduling
problem, asynchronous periodic tasks with preemption delays, un-
fortunately the synchronous case is not the worst-case scenario.
This fact motivates specifically the study of asynchronous scenarios.

2.2 Preemption Delays

A common assumption in scheduling theory, implicitly or not, since
the seminal work of Liu and Layland [27], is that we neglect the time
needed for preemption, i.e., the time needed for the system (bare
metal or operating system) to switch from one task to another. More
generally, all disturbances related to the hardware or the operating
system, which could be called scheduling costs, are mostly neglected
when studying the schedulability of real-time systems. Precisely,
it is often implicitly assumed that these costs are an integral part
of the worst-case execution time (wcet) and therefore indirectly
included in the analysis [27]. However, in the case of preemption,
the cumulative time spent in operating system routines or interrupt
handlers depends on the number of preemptions and therefore
on the scheduling. One could argue that the scheduling costs can
easily be integrated in the wcet with the argument that the price
is paid by the task that initiates the preemption and not by the task
that suffers it (the price is the cost of the context switch to execute
the new task plus the one to resume the preempted task). Then,
since with fixed task priority (ftp) schedulers or even fixed job
priority schedulers such as edf, a task can only preempt one task
per activation (when it is activated), so the cost is limited and can
be integrated into the wcet.

A more detailed study of the mechanisms at the origin of what
can be called the scheduling cost goes against this argument.

We can distinguish several components to the scheduling cost,
for example:

• 𝐶in the cost of adding a job to the queue,
• 𝐶start the cost of starting a job,
• 𝐶restart the cost of restarting a job after a preemption,
• 𝐶out the cost of terminating a job.

Depending on the system,most of these components are constant
or can be bounded and occur only once per job. For example, if
the system is handling the arrival of tasks with interrupts and
has sufficient priority levels for interrupts, 𝐶in is only paid when
the job effectively starts, so it does not interfere with the other
jobs (this is called integrated management). 𝐶start and 𝐶out depend
on the jobs, they correspond respectively to the loading of the
execution context of the job and to its release. Depending on the
implementation, they can cover different types of overhead for the
system, but it is reasonable to think that they can be integrated
into the wcet. 𝐶restart is more problematic, as it depends on each
task, and is paid after each preemption. Because of that, it is not
necessarily equivalent, in terms of duration, for a task 𝜏𝑖 to preempt
a task 𝜏 𝑗 or another task 𝜏𝑘 . We so think it is important to add
𝐶restart to the model and the analysis.

Another issue with these scheduling costs is that they corre-
spond, or may correspond, to the execution of operating system
routines, and therefore to non-preemptive or at least “atomic” sec-
tions of code, i.e., they can be interrupted, but they will then have
to be re-executed in their totality.

The model considered in this paper is a first step towards a model
that fully integrates the operating system (or the hardware) inter-
ference during task preemption. In order to simplify the problem
we have arbitrarily chosen to consider only 𝐶restart, which we note
𝛼𝑖 for the task 𝜏𝑖 (see Section 3). We also chose to consider its exe-
cution completely non-preemptive, i.e., once the system starts to

2 2022-03-08 15:18. Page 2 of 1–10.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Simulation intervals for uniprocessor real-time schedulers with preemption delay RTNS ’22, June 07–08, 2022, Paris, France

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

reload the context of a previously preempted task 𝜏𝑖 , no preemption
can take place for a duration equal to 𝛼𝑖 . In future work, we may
relax this constraint partially to allow preemption on the condi-
tion that we must re-execute the reloading section completely later.
We will also have to consider the same constraints for the other
components of the scheduling cost.

3 MODEL AND ASSUMPTIONS

In this work we consider the scheduling of asynchronous periodic
task set with preemption delays upon uniprocessor. More precisely,
we assume there is a delay 𝛼𝑖 ∈ {N∪ 0} when a job of 𝜏𝑖 is resumed

after a preemption. It represents the time required to load the con-
text of execution of the preempted job. We assume this activity
non-preemptive.

More formally a task 𝜏𝑖 is characterised by the tuple (𝑂𝑖 , 𝐶𝑖 , 𝑇𝑖 ,

𝐷𝑖 , 𝛼𝑖). A system Sys = {𝜏1, . . . , 𝜏𝑛} is a task set, where every task
𝜏𝑖 is defined by:

• 𝑂𝑖 ∈ {N∪ 0} the task offset, i.e., the release date of the first
job of 𝜏𝑖 ,

• 𝐶𝑖 ∈ N the worst-case execution time (wcet), i.e., the max-
imum cumulative cpu units required for a job of 𝜏𝑖 to be
executed,

• 𝑇𝑖 ∈ N the task period, the 𝑘th job 𝜏𝑖,𝑘 of 𝜏𝑖 is released at
the instants 𝑂𝑖 + (𝑘 − 1)𝑇𝑖 , 𝑘 ∈ N,

• 𝐷𝑖 ∈ N is the relative deadline and represents the tim-
ing constraint of a task: the 𝑘th, (𝑘 ∈ N) job 𝜏𝑖,𝑘 of 𝜏𝑖
must be completely executed in the window [𝑂𝑖 + (𝑘 −
1)𝑇𝑖 ,𝑂𝑖 + (𝑘 − 1)𝑇𝑖 + 𝐷𝑖). We consider arbitrary deadline

where there is no constraint between task deadline and
period. Particular cases include constrained deadlines where
∀𝑖 ∈ {1 . . . 𝑛}, 𝐷𝑖 ≤ 𝑇𝑖 , and implicit deadlines where ∀𝑖 ∈
{1 . . . 𝑛}, 𝐷𝑖 = 𝑇𝑖 . When considering arbitrary deadline it
is admitted to have 𝐷𝑖 > 𝑇𝑖 , we assume to schedule the
various active jobs of the same task in the fifo order (the
oldest job first).

• 𝛼𝑖 ∈ {N ∪ 0} represents the time required by the rtos/hw
to load non-preemptively the context of execution of each
preempted job of task 𝜏𝑖 .

The following parameters can be deduced2:
• 𝐻 � lcm(𝑇1, . . . ,𝑇𝑛) is the hyperperiod of the system,where

lcm denotes the least common multiple,
• 𝐻𝑖 � lcm{𝑇𝑗 | 𝑗 = 1, . . . , 𝑖},
• 𝑂max � max𝑖=1,...,𝑛 (𝑂𝑖) is the largest offset,
• 𝛼max � max𝑖=1,...,𝑛 (𝛼𝑖) is the largest preemption delays,
• 𝑈 �

∑𝑛
𝑖=1𝐶𝑖/𝑇𝑖 is the processor utilization factor.

We will use the notations:
• (𝑎)0 meaning (𝑎)0 � max(𝑎, 0),
• [𝑥,𝑦) denoting an half-open interval: {𝑧 | 𝑥 ≤ 𝑧 < 𝑦}

Please notice that, in our model, we consider discrete time.

4 RELATEDWORK

We will start by reviewing the works on simulation intervals, and
then we will look at the works considering the overheads related
to the scheduler and in particular to preemptions.
2where � means “equals by definition”.

4.1 Simulation intervals

In the uniprocessor context, assuming an utilisation factor less than
or equal to 1 and for systems of independent tasks with constrained
deadlines and scheduled with edf, the pioneering work [25] shows
that the interval [0,𝑂max + 2𝐻) is a simulation interval. Moreover,
the transient phase is included in the window [0,𝑂max +𝐻) and the
steady phase is contained in the scheduling produced in the interval
[𝑂max + 𝐻,𝑂max + 2𝐻).

For fixed task priority (ftp) schedulers, it is shown in [26] that the
same interval applies. The result is extended to arbitrary deadlines
in [18]. A better bound is presented in [17] and is [0, 𝑆𝑛 +𝐻) where
𝑆𝑛 is given by the recursive equation 𝑆1 � 𝑂1, 𝑆𝑖 � max(𝑂𝑖 ,𝑂𝑖 +
⌈ (𝑆𝑖−1−𝑂𝑖)0

𝑇𝑖
⌉𝑇𝑖).

A more general result, which holds for resource-sharing tasks
with precedence constraints, constrained deadlines, and assumes
only a work-conserving scheduler, was first shown in [13] then
extended to parallel tasks in [3]. In that work, it is shown that an
exact simulation interval (see Definition 3) is [0, \𝑐 + 𝐻) where \𝑐
is the date of the last idle time of the transient phase. Moreover, it is
shown that \𝑐 belongs to the interval [0,𝑂max +𝐻). It follows that
the steady phase corresponds to the first time window of length 𝐻

containing exactly𝐻 (1−𝑈) idle times in the interval [0,𝑂max+2𝐻).
Several works have also addressed the problem for uniform mul-

tiprocessor platforms with global scheduling. In [14], it is shown
that for constrained deadlines, in the synchronous case the simula-
tion interval is bounded by [0, 𝐻), while in the asynchronous case
the interval [0, 𝑆𝑛 + 𝐻) given in [17] still held. In [15], the authors
modify the definition of 𝑆𝑛 to give a simulation interval for arbitrary
deadlines. The bound becomes [0, 𝑆𝑛 +𝐻) where 𝑆𝑛 is given by the
recursive equation 𝑆1 � 𝑂1, 𝑆𝑖 � max(𝑂𝑖 ,𝑂𝑖 + ⌈ (𝑆𝑖−1−𝑂𝑖)0

𝑇𝑖
⌉𝑇𝑖) +𝐻𝑖 .

The result is extended to heterogeneous (unrelated) multiprocessor
systems in [16]. A result is given in the case of offline schedulers
for systems with precedence constraints in [4]. It is generalized to
edf and to independent tasks in [30]: [0,𝑂max + 𝐻

∏𝑛
𝑖=1 (𝐶𝑖 + 1)).

Finally, a very general result for any deterministic and memory-
less scheduler is given in [19] and is [0, 𝐻 ∏𝑛

𝑖=1 ((𝑂𝑖 +𝐷𝑖 −𝑇𝑖)0+1)).
This interval works for task systems with multiple dependencies,
defined as structural constraints (mutual exclusions, precedence
constraints, self-suspension, non-preemptive tasks, etc.).

In a recent paper [22], the authors propose a method to reduce
the size of the simulation interval. They provide an exact simulation

interval. However, the computation of this interval is heavily time
consuming, involving a factorial time complexity computation of a
set of points defined by an exponential number of linear constraints.
The authors show that, despite its intractable time consuming com-
putation, the size of the exact interval grows much slower than the
one from [19] with the number of tasks.

4.2 Taking into account the cost of preemptions

Many works have proposed ways to integrate scheduling delays
or even other overheads related to the hardware platform or the
operating system. Different approaches exist. Some of them consist
in bounding this interference in order to add it to the schedulability
analysis as part as the wcet or as a blocking term, inputting cost
overheads either to the preempted tasks, the preempting ones or

2022-03-08 15:18. Page 3 of 1–10. 3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

RTNS ’22, June 07–08, 2022, Paris, France Goossens and Masson

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

both. Some other approaches propose different task models with
associated analyses. Finally some works adapt the scheduler algo-
rithm to make it aware of the existence of such delays.

It is interesting to note that a part of the scheduling delays are
external to the chosen scheduling policy, i.e., the overheads are
imposed by the hardware platform or the operating system. They
must nevertheless be taken into consideration in the schedulability
analysis or more generally in the scheduler performance evalua-
tion. As we point it out in this paper, they have an impact on the
simulation interval and the periodicity of the schedule.

The first works to have been interested in the impact of the sched-
uler implementation and the kernel on scheduling are those of [21].
In that paper, the authors describe four distinct generic methodolo-
gies for implementing a scheduler: Integrated Interrupt Event-Driven
Scheduling, Nonintegrated Interrupt Event-Driven Scheduling, Timer-

Driven Scheduling and Timer-Driven Scheduling with counter. The
first one assumes that tasks are activated by external hardware inter-
rupts. The second one is a special case where there is no prioritised
interrupts on the platform. The third one corresponds to what is also
referred to in the literature as tick scheduling where the scheduler
is woken up periodically every quantum of time and processes the
events that have occurred since its last wake-up. In addition to the
overhead experienced at each tick, due to the granularity of the trig-
gering timer, transient priority inversions can also occur. The last
one is a refinement of the previous one where instead of a periodic
timer, an updated counter is used allowing a wake-up only when
scheduling events occur (next activation, deadline, etc.). For each
of them, they detail the cost components inherent to the scheduler,
and extend the sufficient popular schedulability condition for ftp
and constrained deadlines (∀𝑖 , ∃𝑡 ≤ 𝐷𝑖 s.t.

∑𝑖
𝑗=1

⌈
𝑡
𝑇𝑗

⌉
𝐶 𝑗 + 𝐵𝑖 ≤ 𝑡)

to take them into account either in the 𝐶 𝑗 term or in the 𝐵𝑖 one.
The extended conditions are first given under the assumption of a
preemptive kernel, then a non-preemptive kernel, which adds an
extra component to the blocking term 𝐵𝑖 .

The works in [11] point out the pessimism of the sufficient con-
ditions developed in the preceding works and gives a finer analysis
of the overhead of a scheduler implemented according to the tick
scheduling paradigm.

Other works (see, e.g., [5, 8, 37]) have considered the problem
of limiting the number of preemptions or the one of computing
a bound on the number of possible preemptions, permitting an
integration of a maximum blocking time linked to the system inter-
ference in the schedulability analysis.

Another source of disturbance related to preemptions analysed
in the literature is related to the use of caches. While caches permit
a reduction of response times, they also introduce a significant
source of variability in wcets due to the possibility for the task to
suffer additional delays due to cache misses. The runtime overhead
associated with cache misses caused by an early preemption is
called Cache Related Preemption Delay (crpd)[12]. The strategy
for taking crpds into account is to bound them for inclusion in the
feasibility analysis of ftp schedulers. To calculate a bound, one can
use Evicting Cache Blocks (ecbs, the blocks used by the preempting
task and which can replace those of a preempted task [12]) or
Useful Cache Blocks (ucbs, the blocks used by a preempted task
which are reused later, and therefore potentially deleted during a

preemption [23]). Some works combine the two approaches [1, 34,
35]. The case of edf is studied in [28] by extending the feasibility
test based on the Demand Bound Function (dbf). It is shown in [31]
that optimal scheduling with crpds taken into account is an NP-
hard problem. More recently, a feasibility interval is given for this
problem in [36].

What distinguishes our study from these works is that we con-
sider the overhead of preemption not as a special case where the
wcet is increased, but by adding a non-preemptive code block after
each preemption.

In his PhD thesis and in [39], Meumeu proposes an approach
to include the cost of reloading a task after a preemption in the
feasibility analysis of a system scheduled with ftp. In his model,
this reloading cost is different for each task, and consists in an
“atomic” sequence of operations (it can be preempted but then all the
sequence must be re-executed later). He shows that with this model,
the critical instant cannot be characterised, that the worst-case
response time of a task can occur in the transient phase, and that
the Optimal Priorities Assignment algorithm (opa) compatibility
conditions [2] are not respected. He proposes an optimal priority
assignment algorithm.

In his PhD Thesis, Bimbard [7] considers the kernel overheads
of an osek kernel (fixed priority scheduling), taking into account
activation, termination and preemption delays. For a given task,
activation and termination are extra duration added to the wcet
of a task while preemption delays are taken into account at each
activation of higher priority task. A worst case response time anal-
ysis is proposed with a bound on the number of preemptions that
makes the synchronous scenario still the worst case scenario at the
price of some pessimism.

This Research. In this paper (i) we model preemption delays as
task-dependant non preemptive additional code sections executed
for a task when it is resumed after a preemption, (ii) we present
and prove correct a simulation interval for asynchronous arbitrary
deadline tasks with such preemption delays and that holds for
any deterministic and memoryless scheduler upon uniprocessor,
(iii) for particular case, regarding the preemption delays, and edf
scheduling we extend the work of Leung and Merril [25] showing
that [0,𝑂max + 2 · 𝐻) is a simulation interval (significantly shorter
than the general result). Lastly, (iv) for ftp schedulers we also
extend the work [17] and we show show that [0, 𝑆𝑛 +𝐻) remains a
simulation interval.

5 CONTRIBUTIONS

A first contribution of this paper is to provide a simulation interval

(see Definition 1) for the scheduling of periodic tasks with preemp-
tion delays. We build upon the work of [19] where the authors
provided a simulation interval and more interestingly a technique
to do so.

The former work concerned multiprocessor platforms and de-
pendent tasks. Here the novelty is to consider preemption delays
for uniprocessor platform. In Section 5.1 we will introduce the
technique of [19], in Section 5.2 we present and prove correct a
simulation interval for tasks with preemption delays and that holds
for any deterministic and memoryless scheduler (see Definition 5).

4 2022-03-08 15:18. Page 4 of 1–10.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Simulation intervals for uniprocessor real-time schedulers with preemption delay RTNS ’22, June 07–08, 2022, Paris, France

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

5.1 Summarising the technique of [19]

The authors consider multiprocessor scheduling of preemptive peri-
odic real-time tasks without preemption delays. They first formalise
the notions of system state, system pre-state and deterministic and

memoryless scheduler with Definitions 4 and 5.

Definition 4 (State and pre-state of a system [19]). The
state of a system of 𝑛 tasks can be defined as a (2𝑛)-tuple

𝑆 �
〈
𝐶rem1 , . . . ,𝐶rem𝑛

,Ω1, . . . ,Ω𝑛

〉
,

where

• Ω𝑖 is the local clock of 𝜏𝑖 , undefined before 𝑂𝑖 , initialized at

0 at the time 𝑂𝑖 , being reset at every new request of the task.

Formally, at time 𝑡 ≥ 𝑂𝑖 , Ω𝑖 � (𝑡 −𝑂𝑖) mod 𝑇𝑖 ,

• while 𝐶rem𝑖
is the cumulative remaining work to process for

𝜏𝑖 (can be greater than𝐶𝑖 since it is allowed to have 𝐷𝑖 > 𝑇𝑖).

We will see that we need to consider arbitrary deadlines even if the

original system under study have constrained deadlines (see Lemma 7

for details) consequently we assume to schedule the various jobs of

the same task in the fifo order (the oldest job first).

The pre-state of a system of 𝑛 tasks can be defined as a (2𝑛)-tuple
𝑆 �

〈
𝐶rem1 , . . . ,𝐶rem𝑛

,Ω1, . . . ,Ω𝑛

〉
, where:

• Ω𝑖 is the same local clock as in the state 𝑆 of the system,

• 𝐶rem𝑖
is the remaining work to process for 𝜏𝑖 not taking the

releases at the considered instant into account.

We can formalize the remaining work in state and pre-state, for any

𝑡 ≥ 𝑂𝑖 as follows:

𝐶rem𝑖
(𝑡) � 0,∀𝑡 ≤ 𝑂𝑖

𝐶rem𝑖
(𝑡) � 𝐶rem𝑖

(𝑡) +𝐶𝑖 if Ω𝑖 = 0
𝐶rem𝑖

(𝑡) otherwise
𝐶rem𝑖

(𝑡 + 1) � 𝐶rem𝑖
(𝑡) − 1 if 𝜏𝑖 executed on [𝑡, 𝑡 + 1)

𝐶rem𝑖
(𝑡) otherwise

Definition 5 (Deterministic andmemoryless scheduler [19]).
A scheduler is deterministic andmemoryless if, and only if, the sched-
uling decision

3
at time 𝑡 is unique and univocally defined by the

state of the system at time 𝑡 .

Consequently, the state of the system must contain all infor-
mation required by the scheduler to take its decision but only the
strictly required and minimum information in order to bound as
much as possible the number of distinct states.

Then the authors show that considering only the synchronous
scenario of a transformed and arbitrary deadline task set is sufficient
to enumerate all feasible schedules of a system, thanks to Lemma 7
(and Definition 6).

Definition 6 (Set of feasible schedules [19]). We define the

function F such that F (𝑆) is the set of all feasible schedules obtained
by deterministic and memory-less schedulers for task system 𝑆 .

Lemma 7 (Lemma 1 in [19]). Let 𝑆 be a set of independent tasks

with ∀𝑖 ∈ 1, . . . , 𝑛,𝑂𝑖 ≥ 0. We denote 𝑂𝑖 the offset of the task 𝜏𝑖
and 𝐷𝑖 its relative deadline. Let 𝑆

′
be the same system, except for the

release dates given by𝑂 ′
𝑖
= 0 and the relative deadlines 𝐷 ′

𝑖
= 𝐷𝑖 +𝑂𝑖 .

3By scheduling decision at time 𝑡 we mean what the scheduler/system decides to do
during the slot [𝑡, 𝑡 + 1) : idle the processor, execute a task, reload a preempted task.

The set of feasible schedules of 𝑆 is included in the set of feasible

schedules of 𝑆 ′, i.e., F (𝑆) ⊆ F (𝑆 ′).

Please notice that, while the original system 𝑆 can be composed
of constrained deadlines, the synchronous system 𝑆 ′ could be com-
posed of arbitrary deadlines.

Based on the notions of state and pre-state of a system, the au-
thors show, in Lemma 8, that if two states or pre-states are identical,
then the scheduling decision of any deterministic and memoryless
schedulers are identical, consequently the schedule repeats. This
allows the authors to bound the number of distinct (pre-)states in
Lemma 9.

Lemma 8 (Lemma 2 in [19]). For synchronous task systems, if two

pre-states are identical, then the scheduling decision of a deterministic

and memoryless scheduler is the same.

Lemma 9 (Lemma 3 in [19]). Any feasible schedule of a synchro-
nous arbitrary deadline independent task system generated by a

deterministic and memoryless scheduler reaches a cycle
4
at or prior to

𝐻 ·
𝑛∏
𝑖=1

((𝐷𝑖 −𝑇𝑖)0 + 1) .

Lastly, the authors combine Lemma 7 and Lemma 9 to provide
and prove correct a simulation interval for asynchronous systems
with the Theorem 10.

Theorem 10 (Theorem 1 in [19]). Any feasible schedule of an

asynchronous independent tasks system generated by a deterministic

and memoryless scheduler reaches a cycle
4
at or prior to

𝐻 ·
𝑛∏
𝑖=1

((𝑂𝑖 + 𝐷𝑖 −𝑇𝑖)0 + 1) .

Recap. For the determination of simulation intervals, the tech-
nique of [19], is based on the formalization of the notion of system
state in a mininalist way which combined with a deterministic and
memoryless scheduler leads to enumerate and bound the distinct
possible (reachable) states.

5.2 A first contribution: a simulation interval

for deterministic schedulers with

preemption delay

In this section we extend the work of Goossens et al. in [19] in the
sense that for each task 𝜏𝑖 we have an additional 𝛼𝑖 parameter the
reload delay.

Following the same arguments as Goossens et al. in [19] we
design and proof correct the following simulation interval:

Theorem 11 (Simulation interval). Any feasible schedule of
asynchronous arbitrary deadline periodic tasks with preemption de-

lays generated by a deterministic and memoryless scheduler upon

uniprocessor platform with a reload delay of 𝛼𝑖 for the task 𝜏𝑖 reaches

a cycle
4
at or prior to:

𝐻 · (𝑛 + 1) · (𝛼max + 1)
𝑛∏
𝑖=1

((𝑂𝑖 + 𝐷𝑖 −𝑇𝑖)0 + 1). (1)

4 i.e., all reachable states are visited.
2022-03-08 15:18. Page 5 of 1–10. 5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

RTNS ’22, June 07–08, 2022, Paris, France Goossens and Masson

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

In order to prove that property we need first to extend Defini-
tion 4, the system (pre-)state to consider preemption delay. We have
to design it as minimal as possible to limit as much as possible the
number of distinct (pre-)states. Our proposition is to consider two
additional parameters:

• 𝑟 ∈ {0, 1, . . . , 𝑛} the task index of the running/reloaded
task (if any) or 0 if the processor is idle. As we have non-
preemptive reloading phases, the decision at time 𝑡 + 1
depends on the decision taken at time 𝑡 .

• rem-reload ∈ {0, 1, . . . , 𝛼max} the remaining reload time (0
means that a task executes).

More formally:

Definition 12 (State and pre-state of a system). The state
of a system of 𝑛 tasks can be defined as a (2𝑛)-tuple

𝑆 �
〈
𝐶rem1 , . . . ,𝐶rem𝑛

,Ω1, . . . ,Ω𝑛

〉
,

𝑟 ∈ {0, 1, . . . , 𝑛}, and rem-reload ∈ {0, 1, . . . , 𝛼max}. See Definition 4

for details (concerning the already defined attributes).

We will now formalize the remaining reload time in state, as fol-

lows:

rem-reload(𝑡 + 1) �

rem-reload(𝑡) − 1 if rem-reload(𝑡) > 0 (2)
𝛼ℓ if 𝑟 (𝑡 + 1) = ℓ > 0 ∧ 𝑟 (𝑡) ≠ ℓ ∧

(𝐶remℓ
(𝑡 + 1)%𝐶ℓ) ≠ 0 (3)

0 otherwise (4)

Equation 3 corresponds to the begin of an reload region such
that 𝜏ℓ was preempted in the past. Indeed we consider arbitrary
deadlines consequently several jobs of the same task can be active
simultaneously, 𝐶remℓ

(𝑡 + 1) represents the cumulative remaining
computation time. Notice that if 𝐶remℓ

(𝑡 + 1) is not a multiple of
𝐶ℓ a job of 𝜏ℓ is resumed otherwise this is a new job of 𝜏ℓ since at
time 𝑡 a different task (𝑟 (𝑡) ≠ ℓ) was executed/reloaded5.

Lemma 13. Any feasible schedule of a synchronous arbitrary dead-
line task system generated by a deterministic and memoryless sched-

uler with preemption delay reaches a cycle
4
at or prior to

𝐻 (𝑛 + 1) (𝛼max + 1)
𝑛∏
𝑖=1

(
(𝐷𝑖 −𝑇𝑖)0 + 1

)
.

Proof. For parameters in common between Definition 4 and
Definition 12 (𝐶rem𝑖

’s and Ω𝑖 ’s) from [19] we know that, regarding
the states and pre-states, that in the worst case after

∏𝑛
𝑖=1 (𝐷𝑖 −

𝑇𝑖)0 + 1 hyperperiods the state or the pre-state repeats. We must
complete the arguments considering the two extra parameters (𝑟
and rem-reload): we need that value 𝑟 repeats as well as the value
rem-reload. Since 𝑟 is limited to 𝑛 + 1 values and rem-reload is
limited to 𝛼max + 1 values. We conclude that after a maximum of
(𝑛 +1) · (𝛼max +1)

∏𝑛
𝑖=1

(
(𝐷𝑖 −𝑇𝑖)0 + 1

)
hyperperiods the schedule

(if feasible) repeats. □

In order to have similar result for asynchronous systems we need
to extend Lemma 7 for systems with reload delay.

5if the scheduler has decided to idle the processor at time 𝑡 (i.e., 𝑟 (𝑡) = 0) we decide
arbitrarily to make a reload in this case.

Lemma 14. Let 𝑆 be a set of independent tasks with ∀𝑖 ∈ 1, . . . , 𝑛,
𝑂𝑖 ≥ 0. We denote 𝑂𝑖 the offset of the task 𝜏𝑖 and 𝐷𝑖 its relative

deadline. Let 𝑆 ′ be the same system, except for the release dates given

by𝑂 ′
𝑖
= 0 and the relative deadlines 𝐷 ′

𝑖
= 𝐷𝑖 +𝑂𝑖 . The set of feasible

schedules of 𝑆 is included in the set of feasible schedules of 𝑆 ′.

Proof. A feasible schedule for 𝑆 is also a feasible schedule for
the system 𝑆 ′, since the absolute deadlines are identical, we just
release jobs earlier which doesn’t affect the validity of the solution.

□

Theorem 11 follows from Lemma 14 and Lemma 13.

5.3 Shorter interval for edf and ftp schedulers

in a particular case

Introduction. In this section we will study the particular case of
constrained deadlines and binary delays (0 ≤ 𝛼𝑖 ≤ 1, see Defini-
tion 17). We will see that it is not straightforward to define shorter
intervals — in comparison with [0, 𝐻 · (𝑛+1) · (𝛼max+1)

∏𝑛
𝑖=1 ((𝑂𝑖 +

𝐷𝑖 − 𝑇𝑖)0 + 1)) — with preemption delays. We will first consider
the case of edf and see why the Leung and Merril [25] interval,
[0,𝑂max+2𝐻), for edf scheduling is not a simulation (or feasibility)
interval. We will exhibit the phenomenon which occurs because of
preemption delays and which invalidates the Leung and Merril’s
properties. Lastly, we consider the case of ftp schedulers.

Let’s first recap the work of Leung and Merril. In [25], the au-
thors consider the edf scheduling of periodic constrained deadline
task sets upon uniprocessor. They design and prove correct the
[0,𝑂max +2𝐻) simulation (and feasibility) interval. They first prove
Lemma 1 required to prove Lemma 2 the main property:

Lemma 15 (Lemma 1 in [25]). Let 𝑆 be schedule of a task system 𝑅

constructed by the edf algorithm. Then for each tasks 𝜏𝑖 and for each

time instant 𝑡1 ≥ 𝑂𝑖 , we have 𝑒𝑖,𝑡1 ≥ 𝑒𝑖,𝑡2 , where 𝑡2 � 𝑡1 +𝐻 , and 𝑒𝑖,𝑡
is the amount of time for which 𝜏𝑖 has executed since its last request.

Lemma 16 (Lemma 2 in [25]). Let 𝑆 be schedule of a task system

𝑅 constructed by the edf algorithm. If 𝑅 is feasible, then 𝐶𝑆 (𝑅, 𝑡1) =
𝐶𝑆 (𝑅, 𝑡2), where 𝑡1 = 𝑂max + 𝐻 , 𝑡2 = 𝑂max + 2𝐻 and 𝐶𝑆 (𝑅, 𝑡), to be
the n-tuple (𝑒1,𝑡 , . . . , 𝑒𝑛,𝑡).

In the following, we will show that, unfortunately, Lemma 15 and
consequently Lemma 16 are not satisfied with preemption delays.

Consider, for instance, the system described by Table 1. Figure 2
corresponds to the edf schedule, in this case the periodicity starts
immediately (at time origin) but the period is 2 ·𝐻 = 24. In Figure 2,
we represent a task request by a ↓ (down arrow); we represent the
task deadline with a ⃝ (circle); white rectangles represent task
execution, grey rectangles represent reload activities (⊲⊳ represents
priority inversion a notion that will be introduced later).

This example contradicts Leung andMerril’s property (Lemma 15)
required to prove that schedule repeats from𝑂max+𝐻 with a period
𝐻 , since we have: 0 = 𝑒4,7 < 𝑒4,19 = 1.

Informally speaking, the progress of task 𝜏4 at time instant 7 is
strictly smaller than the progress of task 𝜏4 an hyperperiod later
(at time instant 19).

Consequently the system state at time instant 𝑂max +𝐻 = 18 is
not the same an hyperperiod later (at time instant 30), in particular
at time instant 30 task 𝜏1 must complete its non-preemptive reload

6 2022-03-08 15:18. Page 6 of 1–10.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Simulation intervals for uniprocessor real-time schedulers with preemption delay RTNS ’22, June 07–08, 2022, Paris, France

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Task set characteristics

𝑇𝑖 𝐷𝑖 𝐶𝑖 𝑂𝑖 𝛼𝑖

𝜏1 12 12 2 0 2
𝜏2 6 6 1 1 2
𝜏3 12 8 1 3 2
𝜏4 12 3 2 6 2

Figure 2: edf schedule of the system described by Table 1

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp
pppppppppppp𝜏4

? ? ? ?e e e e
7 8 18 19 31 326

⊲⊳

30

⊲⊳

𝜏3
? ? ? ?e e e e
3

⊲⊳

27

⊲⊳

𝜏2
? ? ? ? ? ? ? ?e e e e e e e

𝜏1
? ? ? ? ?e e e e

5 6

activity while at time 18 task 𝜏1 can be preempted (by task 𝜏4)
immediately. Of course we could extend the Leung and Merril’s
formal definition of system state (𝐶𝑆) to take account of reloads as
we did in the Definition 12 to formally have 𝐶𝑆 (𝑅, 𝑡1) ≠ 𝐶𝑆 (𝑅, 𝑡2)
but this is not required.

Priority inversion. We will now exhibit more precisely the phe-
nomenon which is problematic: the priority inversion. On Figure 2,
⊲⊳ represents priority inversion at time instants 3, 6, 3 + 2𝐻 =

27, 6 + 2𝐻 = 30, 3 + 4𝐻, 6 + 4𝐻, . . . where an higher priority job
is delayed by a lower priority one.

Binary delays. An interesting particular case is to consider binary
delays because priority inversion is impossible (we will prove that
in this section), and for which shorter intervals can be identified,
which is a second contribution of this paper.

Definition 17 (Binary delays). In this model the preemption

delay are equal to zero or one: ∀𝑖 𝛼𝑖 ∈ {0, 1}.

Proposition 1 (No priority inversion with binary delays).
For binary delays and discrete time systems priority inversion is im-

possible, i.e., a lower priority job/task cannot interfere in the execution

of higher priority job/task.

Proof. If we resume a task/job during the time-slot [𝑡, 𝑡 + 1)
we know there is no higher priority task/job at time 𝑡 , moreover
the resumption will be completed at time 𝑡 + 1 in order to schedule
immediately an higher priority task/job (if any). □

For this particular case we can generalise the properties of Leung
and Merril. To do this we will extend the definition of 𝐶𝑆 (𝑅, 𝑡)
(system state). Please notice that we are not interested here in
enumerating all distinct states but we need to compare states distant
by one hyper-period.

Definition 18 (𝐶𝑆 (𝑅, 𝑡)). Let 𝑆 be a schedule of the task system

𝑅. The state of a system of 𝑛 tasks can be defined as

𝐶𝑆 (𝑅, 𝑡) �
〈
𝑒1,𝑡 , . . . , 𝑒𝑛,𝑡

〉
, 𝑟 , and rem-reload

where at time instant 𝑡 :

• 𝑒𝑖,𝑡 is the amount of time for which 𝜏𝑖 has executed since its

last request,

• 𝑟 ∈ {0, 1, . . . , 𝑛} is the task index of the running/reloaded

task (if any) or 0 is the processor is idle,
• rem-reload ∈ {0, 1} is the remaining reload time of 𝜏𝑟 if

𝑟 ≠ 0 and rem-reload > 0. If 𝑟 = 0 rem-reload is undefined.

We have now the material to extend the Leung and Merril lem-
mata, However, the proofs are much more sophisticated and com-
plex.

Lemma 19. Let 𝑆 be schedule of a task system 𝑅 constructed by

the edf algorithm with binary delays. Then for each tasks 𝜏𝑖 and for

each time instant 𝑡1 ≥ 𝑂𝑖 , we have 𝑒𝑖,𝑡1 ≥ 𝑒𝑖,𝑡2 , where 𝑡2 � 𝑡1 + 𝐻 ,

and 𝑒𝑖,𝑡 is the amount of time for which 𝜏𝑖 has executed since its last

request.

Proof. Wewill show the property by contradiction. We assume,
for the purpose of the contraction, that ∃ ℓ1 s.t. 𝑒ℓ1,𝑡1 < 𝑒ℓ1,𝑡2 . Then
there must be some time instant 𝑡 ′1 < 𝑡1 such that task 𝜏ℓ1 is active at
both instants 𝑡 ′1 and 𝑡

′
2 = 𝑡 ′1 +𝐻 , and 𝜏ℓ1 is executing at time instant

𝑡 ′2 but not at time instant 𝑡 ′1. We will consider all cases where this
can happen with binary delays. For each case ((a)–(d)) we will show
that either the case is not possible or that it produces an infinite

progression of requests that precede 𝑡 ′1 which is not possible by
definition of task offsets and time origin. But first we introduce
an additional notation: 𝑆 (𝑡) denotes the schedule decision at time
𝑡 , 𝑆 (𝑡) = 𝐸𝑖 meaning the execution of 𝜏𝑖 , 𝑆 (𝑡) = 𝑅𝑖 meaning the
reloading of 𝜏𝑖 , and 𝑆 (𝑡) = 𝐼 meaning that the processor is idle.

Case a. 𝑆 (𝑡 ′1) = 𝐸ℓ2 , ℓ2 ≠ ℓ1 (and 𝑆 (𝑡 ′2 = 𝐸ℓ1)), in this case task
𝜏ℓ2 , an edf higher priority task, is active at time instant 𝑡 ′1 but not
at time instant 𝑡 ′2. But this means that 𝑒ℓ2,𝑡 ′1 < 𝑒ℓ2,𝑡 ′2

, and we may
repeat the above argument to produce an infinite progression of
task computations 𝜏ℓ3 , 𝜏ℓ4 , . . . , for which no lower bound will exist
for the time at which the task computations in the sequence are

2022-03-08 15:18. Page 7 of 1–10. 7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

RTNS ’22, June 07–08, 2022, Paris, France Goossens and Masson

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

active. But this is impossible since every task 𝜏𝑖 in the system has
an initial request time 𝑂𝑖 .

Case b. 𝑆 (𝑡 ′1) = 𝐼 (and 𝑆 (𝑡 ′2 = 𝐸ℓ1)), this is impossible since 𝜏ℓ1 is
active at time instant 𝑡 ′1 and edf is work-conserving.

Case c. 𝑆 (𝑡 ′1) = 𝑅ℓ2 , ℓ2 ≠ ℓ1 (and 𝑆 (𝑡 ′2 = 𝐸ℓ1)), task 𝜏ℓ2 is an edf
higher priority task, active at time instant 𝑡 ′1 but not at time instant
𝑡 ′2. Using the very same argument than case a we can produce an
infinite progression of task computations which leads to a contra-
diction.

Case d. 𝑆 (𝑡 ′1) = 𝑅ℓ1 (and 𝑆 (𝑡 ′2 = 𝐸ℓ1)). We will consider all sub-
cases where this can happen with binary delays.

Case d.1. 𝑆 (𝑡 ′1 − 1) = 𝐼 this impossible since at time 𝑡 ′1 − 1 there
is at least one active task (𝜏ℓ1).

Case d.2. 𝑆 (𝑡 ′1 − 1) = 𝑅 𝑗 , 𝑗 ≠ ℓ1, The sequence 𝑆 (𝑡 ′1 − 1) =

𝑅 𝑗 , 𝑆 (𝑡 ′1) = 𝑅ℓ1 is impossible, if there is no new request at time
instant 𝑡 ′1 we must have 𝑆 (𝑡 ′1) = 𝐸 𝑗 (which is not the case), if there
is an request of task 𝜏 𝑗 at time instant 𝑡1 but then we must have
𝑆 (𝑡 ′1) = 𝐸 𝑗 because it is a new job that begins its execution (which
is not the case either).

Case d.3. 𝑆 (𝑡 ′1 − 1) = 𝑅ℓ1 this impossible for binary delays.

Case d.4. 𝑆 (𝑡 ′1 − 1) = 𝐸ℓ2 , ℓ2 ≠ ℓ1. First notice that 𝜏ℓ2 cannot
be active at time 𝑡 ′2 − 1 since 𝑆 (𝑡 ′2) = 𝐸ℓ1 ; otherwise we must have
𝑆 (𝑡 ′2) = 𝑅ℓ2 or 𝑆 (𝑡 ′2) = 𝐸ℓ2 but we have 𝑆 (𝑡 ′2) = 𝑅ℓ1 ! Consequently,
task 𝜏ℓ2 , an edf higher priority task, is active at time instant 𝑡 ′1 − 1
but not at time instant 𝑡 ′2 − 1. But this means that 𝑒ℓ2,𝑡 ′1−1 < 𝑒ℓ2,𝑡 ′2−1.
Once again, using the very same argument than case a we can
produce an infinite progression of task computations which leads
to a contradiction. □

Lemma 20. Let 𝑆 be schedule of a task system 𝑅 constructed by

the edf algorithm with binary delays. If 𝑅 is edf-schedulable, then

𝐶𝑆 (𝑅, 𝑡1) = 𝐶𝑆 (𝑅, 𝑡2), where 𝑡1 = 𝑂max + 𝐻 , 𝑡2 = 𝑂max + 2𝐻 .

Proof. When 𝑅 is edf-schedulable we will first show (case a)
that ∀𝑖, 𝑒𝑖,𝑡1 = 𝑒𝑖,𝑡2 , and then we will show that (case b) if ∀𝑖, 𝑒𝑖,𝑡1 =
𝑒𝑖,𝑡2 then that the system states at time instant 𝑡1 and 𝑡2 cannot
differ on the other two parameters (𝑟 and rem-load).

Case a. We will show the property by contradiction. We as-
sume, for the purpose of the contraction, that ∃ ℓ s.t. 𝑒ℓ,𝑡1 ≠ 𝑒ℓ,𝑡2 .
By Lemma 19, we must have 𝑒ℓ,𝑡1 > 𝑒ℓ,𝑡2 . We first show that dur-
ing the time interval [𝑡1, 𝑡2) there is no idle unit. We will prove
this by contradiction as well. For the purpose of the contradic-
tion we will assume an idle unit during the time-slot [𝑡1 + Δ, 𝑡1 +
Δ + 1). This imply that all task computations requested prior to
𝑡1 + Δ have finished their execution. Consequently, ∀𝑖, 𝑒𝑖,𝑡1+Δ = 𝐶𝑖 .
By definition we have ∀𝑖, 𝑒𝑖,𝑂max+Δ ≤ 𝐶𝑖 , by Lemma 19 we have
∀𝑖, 𝑒𝑖,𝑂max+Δ ≥ 𝑒𝑖,𝑡1+Δ. We just proved that ∀𝑖, 𝑒𝑖,𝑡1+Δ = 𝐶𝑖 . Con-
sequently, ∀𝑖, 𝑒𝑖,𝑂max+Δ = 𝐶𝑖 . In other words, all task computa-
tions requested prior to 𝑂max + Δ have finished their execution, as
well. Since the task requests in the interval [𝑂max + Δ, 𝑡1 + Δ) and
[𝑡1 + Δ, 𝑡2 + Δ) are the same and since ∀𝑖, 𝑒𝑖,𝑂max+Δ = 𝑒𝑖,𝑡1+Δ = 𝐶𝑖 ,
the schedule in the interval [𝑂max + Δ, 𝑡1 + Δ) and [𝑡1 + Δ, 𝑡2 + Δ)
must be identical. Since 𝑡1 ∈ [𝑂max +Δ, 𝑡1 +Δ), 𝑡2 ∈ [𝑡1 +Δ, 𝑡2 +Δ),

and 𝑡2 − 𝑡1 = 𝐻 ; we conclude that ∀𝑖, 𝑒𝑖,𝑡1 = 𝑒𝑖,𝑡2 contradicting
our assumption that ∃ ℓ s.t. 𝑒ℓ,𝑡1 > 𝑒ℓ,𝑡2 . We have just proved
that there is no idle unit in the time interval [𝑡1, 𝑡2). Let us re-
member that we assume, for the purpose of the contradiction, that
∃ ℓ s.t. 𝑒ℓ,𝑡1 > 𝑒ℓ,𝑡2 . During a hyperperiod [𝑡1, 𝑡2) the processor is
fully busy (executing or reloading tasks) but at time 𝑡2 the task 𝜏ℓ
is delayed in comparison with time instant 𝑡1. As edf decisions do
not rely on the remaining computation times edf will make the
same decisions in the following hyperperiods which will sooner or
later lead to a deadline miss. Hence, 𝑅 cannot be edf-schedulable
on one processor. In other words, during each hyper-period what
the system is able to schedule is less than the processor demand
that arrives in each hyper-period. This does not mean that𝑈 > 1
because the processor spends time on execution and reloads but a
backlog will accumulate and sooner or later a deadline miss will
occur.

Case b. We now know that ∀𝑖, 𝑒𝑖,𝑡1 = 𝑒𝑖,𝑡2 we will show that
the system states at time instant 𝑡1 and 𝑡2 cannot differ on the
other two parameters (𝑟 and rem-load). Firstly, notice that if there
is no active task at time 𝑡1 (or equivalently 𝑡2) mandatory edf
idles the processor. Secondly, since ∀𝑖, 𝑒𝑖,𝑡1 = 𝑒𝑖,𝑡2 the active tasks
are identical at both time instants 𝑡1 and 𝑡2, edf will choose the
same task for execution/reloading (let’s say task 𝜏ℓ). If the states
differ (and consequently the edf decisions) we have to distinguish
between two cases:

• case b.1) 𝑆 (𝑡1) = 𝐸ℓ ≠ 𝑆 (𝑡2) = 𝑅ℓ , and
• case b.2) 𝑆 (𝑡1) = 𝑅ℓ ≠ 𝑆 (𝑡2) = 𝐸ℓ ,

where 𝑆 (𝑡) denotes the schedule decision at time 𝑡 (𝐸ℓ meaning the
execution of 𝜏ℓ , and 𝑅ℓ meaning the reloading of 𝜏ℓ).

Case b.1. Since 𝑆 (𝑡1) = 𝐸ℓ ≠ 𝑆 (𝑡2) = 𝑅ℓ consequently 𝑆 (𝑡1 −
1) = 𝐸ℓ , and 𝑆 (𝑡2 − 1) ≠ 𝐸ℓ . Since ∀𝑖, 𝑒𝑖,𝑡1 = 𝑒𝑖,𝑡2 , we must have
𝑒ℓ,𝑡1−1 < 𝑒ℓ,𝑡2−1 which contradicts Lemma 19 and proves the case
b.1 impossible.

Case b.2. If 𝑆 (𝑡1) = 𝑅ℓ ≠ 𝑆 (𝑡2) = 𝐸ℓ then 𝑒ℓ,𝑡1+1 < 𝑒ℓ,𝑡2+1 which
contradicts Lemma 19 and prove the property. □

Theorem 21 (Simulation interval for edf). Any edf-schedu-

lable asynchronous constrained deadline periodic tasks with binary

delays upon uniprocessor platform reaches a cycle
4
at or prior to:

𝑂max + 2 · 𝐻. (5)

Proof. This is a direct consequence of Lemma 20: if the system
(𝑅) is edf-schedulable on a single processor then𝐶𝑆 (𝑅,𝑂max+𝐻) =
𝐶𝑆 (𝑅,𝑂max + 2 · 𝐻) and consequently the schedule repeats from
𝑂max + 2 · 𝐻 . □

Please notice that, as the original Leung and Merril’s result, it
is possible to miss a (first) deadline after time instant 𝑂max + 2 · 𝐻 .
To ensure the periodicity/schedulability it is necessary to test the
condition: 𝐶𝑆 (𝑅,𝑂max + 𝐻) = 𝐶𝑆 (𝑅,𝑂max + 2 · 𝐻) . Unfortunately,
the condition 𝑈 ≤ 1 is not sufficient for system with preemption
delays.

8 2022-03-08 15:18. Page 8 of 1–10.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Simulation intervals for uniprocessor real-time schedulers with preemption delay RTNS ’22, June 07–08, 2022, Paris, France

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Binary delays and ftp schedulers. For fixed task priority (ftp)
schedulers such as Rate Monotonic, Deadline Monotonic or opa
a much shorter simulation interval than [0, 𝐻 · (𝑛 + 1) · (𝛼max +
1)∏𝑛

𝑖=1 ((𝑂𝑖 +𝐷𝑖 −𝑇𝑖)0 + 1)) and even than [0,𝑂max + 2 ·𝐻) could
be designed based on the work [17] for binary delays.

The benefit of the ftp family is that we can often and easily
prove properties by induction on the task set cardinality, but first
we recall a definition:

Definition 22 (𝑆𝑛[17]). 𝑆1 � 𝑂1, 𝑆𝑖 � 𝑂𝑖 + ⌈ (𝑆𝑖−1−𝑂𝑖)0
𝑇𝑖

⌉𝑇𝑖 .
Informally speaking 𝑆𝑖 (𝑖 > 1) corresponds to the first release of 𝜏𝑖 not
before 𝑆𝑖−1.

Theorem 23 (Simulation interval for ftp). Any ftp-schedulable
asynchronous constrained deadline periodic tasks with binary delays

upon uniprocessor platform reaches a cycle
4
at or prior to:

𝑆𝑛 + 𝐻. (6)

Proof. By induction. We first assume that, wlog, the ftp sched-
uler corresponds to 𝜏1 > 𝜏2 > · · · > 𝜏𝑛 . Let P(𝑖) be the proposition:
if the task set {𝜏1, 𝜏2, . . . , 𝜏𝑖 } is ftp-schedulable then the schedule
is periodic from 𝑆𝑖 with a period of 𝐻𝑖 .

Base case: P(1) is true: if feasible the schedule for 𝜏1 is periodic
of period 𝑇1 = 𝐻1 from the first release of 𝜏1 (𝑆1 = 𝑂1).

Inductive step: For 𝑖 > 1,P(𝑖 − 1) ⇒ P(𝑖) is true. Assume
P(𝑖 − 1) is true for purpose of induction. We need to show that
P(𝑖) is true. P(𝑖 − 1) means that if the task set {𝜏1, 𝜏2, . . . , 𝜏𝑖−1} is
ftp-schedulable then the schedule of {𝜏1, . . . , 𝜏𝑖−1} is periodic from
𝑆𝑖−1 with a period of 𝐻𝑖−1.

Now we consider the scheduling of {𝜏1, . . . , 𝜏𝑖 }, since 𝜏𝑖 is the
lowest priority task and since there is no priority inversion with
binary delays (Proposition 1) the schedule and thus periodicity
of {𝜏1, . . . , 𝜏𝑖−1} is unchanged by the requests of task 𝜏𝑖 . 𝑆𝑖 is the
first release of task 𝜏𝑖 after (or at) 𝑆𝑖−1 (𝑆𝑖 ≥ 𝑆𝑖−1), combining the
periodicity of the schedule of {𝜏1, . . . , 𝜏𝑖−1} and the periodicity of
𝜏𝑖 (from 𝑆𝑖 with a period of 𝑇𝑖) we conclude that P(𝑖) is true: if
{𝜏1, . . . , 𝜏𝑖 } is schedulable, its ftp schedule is periodic from 𝑆𝑖 with
a period of lcm{𝐻𝑖−1,𝑇𝑖 } = lcm{𝑇𝑗 | 𝑗 = 1, . . . , 𝑖} = 𝐻𝑖 . □

6 DISCUSSION

In this section, we open the discussion on other properties that
could be brought by considering binary preemption delays. We
review ways to reduce the pessimism of our simulation interval for
any deterministic and memoryless scheduler. Finally, we discuss
the future work needed to evolve our model to take into account
other interference sources from the platform on the scheduler.

6.1 𝐶-sustainability

We believe that the absence of priority inversion will lead to other
positive and better results for the particular case of binary delays.
We conjecture that work-conserving priority driven scheduler are
C-sustainable [9] for binary delays. The later property means that
considering the worst-case execution requirement (𝐶𝑖) for each task
is actually the worst-case regarding schedulability. Consequently, in
this case the simulation interval is equivalent to an exact simulation
based schedulability test. An open question here is whether the
assumption of binary delays is realistic or not? To go further, we

could also imagine systems where this hypothesis is forced by
design when choosing the clock frequencies on an embedded board,
for example, or by the tick value of the scheduler if it is a tick
scheduling type.

6.2 Reducing the pessimism of the general

result

The general result, the simulation interval [0, 𝐻 · (𝑛 + 1) · (𝛼max +
1)∏𝑛

𝑖=1 ((𝑂𝑖 + 𝐷𝑖 −𝑇𝑖)0 + 1)), can be computed very easily (linear
complexity), but is large and pessimistic. This is probably the price
to pay for such a general result which is applicable for all schedulers
one can imagine (but deterministic and memoryless). Please notice
that the scheduler is not necessarily preemptive, not necessarily
work-conserving, not necessarily “real-time”. . .

In order to reduce the size/pessimism of the interval we could
reduce the parameters of the system state. In particular, we believe
that many real-time schedulers (e.g., edf, rm, dm, ftp) do not need
the totality of the parameters. For example edf does not need the 𝑟
parameter because priorities do not change during a reload activity.

6.3 Extending the model

To extend this work, we will also need to consider slightly different
models where sections corresponding to the return of a preemp-
tion remain preemptive, but must be completely re-executed if
preempted. We will also need to extend this property to the other
components considered in Section 2.2 in order to model not only
preemptions but more generally the scheduling cost of the plat-
form/operating system. In such case, we could also consider a task
model with deadline prior to completion as proposed in [10]. Finally,
a future extension will be to consider multiprocessor platforms.

7 CONCLUSION

In this paper we have considered the notion of simulation interval
for asynchronous arbitrary deadline tasks with preemption delays.
We have designed and proved correct such an interval for any
deterministic and memoryless scheduler upon uniprocessor. We
then studied particular cases where significantly shorter simulation
intervals can be designed for popular real-time schedulers. Firstly,
for edf we extended the work of Leung and Merril, secondly for
ftp we extended the work [17], in both cases for binary delays and
constrained deadlines. We also discussed the scope of the results,
paths for reducing pessimism as well as other potential results and
future work opened by this one.

REFERENCES

[1] Sebastian Altmeyer, Robert I Davis, and Claire Maiza. 2012. Improved cache
related pre-emption delay aware response time analysis for fixed priority pre-
emptive systems. Real-Time Systems 48, 5 (2012), 499–526.

[2] N. C. Audsley. 1991. Optimal Priority Assignment and Feasibility of Static Priority

Tasks With Arbitrary Start Times. Technical Report YCS-164. Department of
Computer Science, University of York.

[3] Benjamin Bado, Laurent George, Pierre Courbin, and Joël Goossens. 2012. A
semi-partitioned approach for parallel real-time scheduling, In 20th International
Conference on Real-Time and Network Systems. ACM International Conference

Proceeding Series, 151–160. https://doi.org/10.1145/2392987.2393006
[4] Julie Baro, Frédéric Boniol, Mikel Cordovilla, Eric Noulard, and Claire Pagetti.

2012. Off-Line (Optimal) Multiprocessor Scheduling of Dependent Periodic Tasks.
In Proceedings of the 27th Annual ACM Symposium on Applied Computing (Trento,
Italy) (SAC ’12). Association for Computing Machinery, New York, NY, USA,
1815–1820. https://doi.org/10.1145/2245276.2232071

2022-03-08 15:18. Page 9 of 1–10. 9

https://doi.org/10.1145/2392987.2393006
https://doi.org/10.1145/2245276.2232071

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

RTNS ’22, June 07–08, 2022, Paris, France Goossens and Masson

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[5] Sanjoy Baruah. 2005. The limited-preemption uniprocessor scheduling of spo-
radic task systems. In 17th Euromicro Conference on Real-Time Systems (ECRTS’05).
137–144. https://doi.org/10.1109/ECRTS.2005.32

[6] Bernard Berthomieu, P-O Ribet, and François Vernadat. 2004. The tool TINA–
construction of abstract state spaces for Petri nets and time Petri nets. Interna-
tional journal of production research 42, 14 (2004), 2741–2756.

[7] F. Bimbard. 2007. Dimensionnement temporel de systèmes embarqués : application

à OSEK. Ph. D. Dissertation.
[8] Alan Burns. 1994. Preemptive Priority Based Scheduling: An Appropriate Engi-

neering Approach. In Principles of Real-Time Systems. Prentice Hall, 225–248.
[9] Alan Burns and Sanjoy Baruah. 2008. Sustainability in real-time scheduling.

Journal of Computing Science and Engineering 2, 1 (2008), 74–97.
[10] A. Burns, K. Tindell, and A.J. Wellings. 1994. Fixed priority scheduling with

deadlines prior to completion. In Proceedings Sixth Euromicro Workshop on Real-

Time Systems. 138–142. https://doi.org/10.1109/EMWRTS.1994.336852
[11] A. Burns, K. Tindell, and A. Wellings. 1995. Effective analysis for engineering

real-time fixed priority schedulers. IEEE Transactions on Software Engineering

21, 5 (1995), 475–480. https://doi.org/10.1109/32.387477
[12] J.V. Busquets-Mataix, J.J. Serrano, R. Ors, P. Gil, and A. Wellings. 1996. Adding

instruction cache effect to schedulability analysis of preemptive real-time sys-
tems. In Proceedings Real-Time Technology and Applications. 204–212. https:
//doi.org/10.1109/RTTAS.1996.509537

[13] Annie Choquet-Geniet and Emmanuel Grolleau. 2004. Minimal Schedulability
Interval for Real Time Systems of Periodic Tasks with Offsets. Theoretical

Computer Science 310, 1-3 (2004), 117–134. https://doi.org/10.1016/S0304-3975(03)
00362-1

[14] Liliana Cucu and Joël Goossens. 2006. Feasibility Intervals for Fixed-Priority
Real-Time Scheduling on Uniform Multiprocessors. In 2006 IEEE Conference on

Emerging Technologies and Factory Automation. IEEE, 397–404. https://doi.org/
10.1109/ETFA.2006.355388

[15] Liliana Cucu and Joël Goossens. 2007. Feasibility Intervals for Multiprocessor
Fixed-Priority Scheduling of Arbitrary Deadline Periodic Systems. In 2007 Design,

Automation Test in Europe Conference Exhibition. 1–6. https://doi.org/10.1109/
DATE.2007.364536

[16] Liliana Cucu-Grosjean and Joël Goossens. 2011. Exact Schedulability Tests for
Real-Time Scheduling of Periodic Tasks on Unrelated Multiprocessor Platforms.
Journal of Systems Architecture 57 (05 2011). https://doi.org/10.1016/j.sysarc.
2011.02.007

[17] J. Goossens and R. Devillers. 1997. The Non-Optimality of the Monotonic Priority
Assignments for Hard Real-Time Offset Free Systems. Real-Time Syst. 13, 2 (sep
1997), 107–126. https://doi.org/10.1023/A:1007980022314

[18] J. Goossens and R. Devillers. 1999. Feasibility intervals for the deadline driven
scheduler with arbitrary deadlines. In Proceedings Sixth International Conference

on Real-Time Computing Systems and Applications. RTCSA’99 (Cat. No.PR00306).
IEEE, 54–61. https://doi.org/10.1109/RTCSA.1999.811193

[19] Joël Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean. 2016. Periodicity
of real-time schedules for dependent periodic tasks on identical multiprocessor
platforms. Real-time systems 52, 6 (2016), 808–832.

[20] Pierre-Emmanuel Hladik. 2018. A brute-force schedulability analysis for formal
model under logical execution time assumption. In Proceedings of the 33rd Annual

ACM Symposium on Applied Computing. ACM, 609–615.
[21] Daniel I. Katcher, Hiroshi Arakawa, and Jay K. Strosnider. 1993. Engineering and

analysis of fixed priority schedulers. IEEE transactions on Software Engineering

19, 9 (1993), 920–934.
[22] Joumana Lagha, Jean-Luc Béchennec, Sébastien Faucou, and Olivier-H Roux.

2020. Toward an Exact Simulation Interval for Multiprocessor Real-Time Systems
Validation. In VALID 2020, The Twelfth International Conference on Advances in

System Testing and Validation Lifecycle (VALID2020 TheTwelfth International

Conference on Advances in System Testing andValidation Lifecycle). IARIA, Lisbon,
Portugal. https://hal-cnrs.archives-ouvertes.fr/hal-03006791

[23] Chang-Gun Lee, Hoosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha, Seong-
soo Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim. 1998. Analysis
of cache-related preemption delay in fixed-priority preemptive scheduling. IEEE
Trans. Comput. 47, 6 (1998), 700–713. https://doi.org/10.1109/12.689649

[24] J. P. Lehoczky. 1990. Fixed Priority Scheduling of Periodic Task Sets with Arbi-
trary Deadlines. In Proceedings of the Real-Time Systems Symposium. Lake Buena
Vista, Florida, USA, 201–213.

[25] Joseph Y-T Leung and M.L. Merrill. 1980. A note on preemptive scheduling of
periodic, real-time tasks. Information processing letters 11, 3 (1980), 115–118.

[26] Joseph Y.-T. Leung and Jennifer Whitehead. 1982. On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance Evaluation 2, 4
(1982), 237–250. https://doi.org/10.1016/0166-5316(82)90024-4

[27] Chung Laung Liu and James W Layland. 1973. Scheduling algorithms for multi-
programming in a hard-real-time environment. J. ACM 20, 1 (1973), 46–61.

[28] Will Lunniss, Sebastian Altmeyer, Claire Maiza, and Robert I Davis. 2013. Inte-
grating cache related pre-emption delay analysis into edf scheduling. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 75–84.

[29] Mitra Nasri, Robert I Davis, and Björn B Brandenburg. 2018. FIFO with off-
sets: High schedulability with low overheads. In IEEE Real-Time and Embedded

Technology and Applications Symposium. IEEE, 271–282.
[30] Vincent Nélis, Patrick Meumeu Yomsi, and Joël Goossens. 2013. Feasibility

intervals for homogeneous multicores, asynchronous periodic tasks, and FJP
schedulers. In 21st International Conference on Real-Time Networks and Systems,

RTNS 2013, Sophia Antipolis, France, October 17-18, 2013, Michel Auguin, Robert
de Simone, Robert I. Davis, and Emmanuel Grolleau (Eds.). ACM, 277–286. https:
//doi.org/10.1145/2516821.2516848

[31] Guillaume Phavorin, Pascal Richard, Joël Goossens, Thomas Chapeaux, and
Claire Maiza. 2015. Scheduling with preemption delays: anomalies and issues. In
International Conference on Real-Time and Networks Systems. ACM, 109–118.

[32] Frank Singhoff. 2008. About Real Time Scheduling Analysis of Ada Applications.
In Tutorial presented in the 13th International Conference on Reliable Software

Technologies, Ada-Europe.
[33] Frank Singhoff, Jerome Legrand, L Nana Tchamnda, and L Marcé. 2004. Cheddar:

a flexible real time scheduling framework. ACM Ada Letters journal, 24 (4): 1-8.
In Also published in the proceedings of the International ACM SIGAda Conference,

Atlanta, USA.
[34] Jan Staschulat and Rolf Ernst. 2005. Scalable precision cache analysis for pre-

emptive scheduling. In Proceedings of the 2005 ACM SIGPLAN/SIGBED conference

on Languages, compilers, and tools for embedded systems. 157–165.
[35] H. Tomiyama and N.D. Dutt. 2000. Program path analysis to bound cache-related

preemption delay in preemptive real-time systems. In Proceedings of the Eighth

International Workshop on Hardware/Software Codesign. CODES 2000 (IEEE Cat.

No.00TH8518). 67–71.
[36] Hai Nam Tran, Stéphane Rubini, Jalil Boukhobza, and Frank Singhoff. 2021.

Feasibility interval and sustainable scheduling simulation with CRPD on unipro-
cessor platform. Journal of Systems Architecture 115 (2021), 102007. https:
//doi.org/10.1016/j.sysarc.2021.102007

[37] YunWang andM. Saksena. 1999. Scheduling fixed-priority tasks with preemption
threshold. In Proceedings Sixth International Conference on Real-Time Computing

Systems and Applications. RTCSA’99 (Cat. No.PR00306). 328–335. https://doi.org/
10.1109/RTCSA.1999.811269

[38] Jia Xu and David Lorge Parnas. 2000. Priority scheduling versus pre-run-time
scheduling. Real-time systems 18, 1 (2000), 7–23.

[39] Patrick Meumeu Yomsi and Yves Sorel. 2007. Extending rate monotonic anal-
ysis with exact cost of preemptions for hard real-time systems. In Euromicro

Conference on Real-Time Systems. IEEE, 280–290.

10 2022-03-08 15:18. Page 10 of 1–10.

https://doi.org/10.1109/ECRTS.2005.32
https://doi.org/10.1109/EMWRTS.1994.336852
https://doi.org/10.1109/32.387477
https://doi.org/10.1109/RTTAS.1996.509537
https://doi.org/10.1109/RTTAS.1996.509537
https://doi.org/10.1016/S0304-3975(03)00362-1
https://doi.org/10.1016/S0304-3975(03)00362-1
https://doi.org/10.1109/ETFA.2006.355388
https://doi.org/10.1109/ETFA.2006.355388
https://doi.org/10.1109/DATE.2007.364536
https://doi.org/10.1109/DATE.2007.364536
https://doi.org/10.1016/j.sysarc.2011.02.007
https://doi.org/10.1016/j.sysarc.2011.02.007
https://doi.org/10.1023/A:1007980022314
https://doi.org/10.1109/RTCSA.1999.811193
https://hal-cnrs.archives-ouvertes.fr/hal-03006791
https://doi.org/10.1109/12.689649
https://doi.org/10.1016/0166-5316(82)90024-4
https://doi.org/10.1145/2516821.2516848
https://doi.org/10.1145/2516821.2516848
https://doi.org/10.1016/j.sysarc.2021.102007
https://doi.org/10.1016/j.sysarc.2021.102007
https://doi.org/10.1109/RTCSA.1999.811269
https://doi.org/10.1109/RTCSA.1999.811269

	Abstract
	1 Introduction
	2 Motivations
	2.1 Simulation Intervals
	2.2 Preemption Delays

	3 Model and Assumptions
	4 Related work
	4.1 Simulation intervals
	4.2 Taking into account the cost of preemptions

	5 Contributions
	5.1 Summarising the technique of goossens2016periodicity
	5.2 A first contribution: a simulation interval for deterministic schedulers with preemption delay
	5.3 Shorter interval for edf and ftp schedulers in a particular case

	6 Discussion
	6.1 C-sustainability
	6.2 Reducing the pessimism of the general result
	6.3 Extending the model

	7 Conclusion
	References

