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Abstract: Hybrid Electric Vehicles are effective solutions to reduce energy consumption and pollution 

emission in the transport sector. They however present multiple energy sources and complex 

drivetrain structures involving numerous energy transformers. Their control is therefore complex and 

represents a key point to achieve the expected performance. The energy management is a part of this 

control and should be properly developed so that the efficiency of the HEV is enhanced. This topic has 

been of great concern in the two last decades and still mobilizes number of researchers. Energy 

management strategies (EMS) ensuring the power sharing between the different components, sources 

as well as transformers, adapted to different cases have been therefore developed and optimized. This 

chapter presents the definition and principle of the EMSs for HEV. Different families of EMSs are then 

introduced and illustrated by examples in order to provide a better understanding of the methods 

principles. Some of these methods are based on the expertise and the intuition of developer. Others 

use optimization theories in order to operate near the maximum expected efficiency. In most of the 

cases today, offline simulation using global vehicle models are used to develop and compare the 

performance of these different methods. 
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1- Introduction  
Hybrid Electric Vehicles (HEV) have two or more energy sources used for their motion. One of these 

sources has an electric energy type and is always bidirectional to allow energy recovery during 

vehicle deceleration and breaking. Although the hybridization concept is not limited to the use of 

thermal engines (diesel, gasoline or natural gas internal combustion engines), we will consider in 

this chapter only gasoline or diesel engines based HEVs. Other energy sources like Fuel cells based 

on Hydrogen supply or biofuel engines could apply to the methods presented here, but the 

characteristics of the considered generators should be studied to adapt to these methods.  

Besides the multiple sources, the HEV generally uses several components to transmit the energy 

from the sources to the consumers which are usually the traction and the auxiliaries needs. This 

transmission may include electric machines but also mechanical components such as clutches and 

gears. The different arrangements of these components leads to multiple possible drivetrain 

architectures also called topologies. The most known are series, parallel and series-parallel (or 

power-split) architectures. Another classification of HEVs plays on the weight of the electric power 

installed compared to the overall maximum power of the vehicle. Called hybridization ratio or rate 

(H-rate), this parameter allows to give Hybridization hierarchy known as micro (lowest H-rate), 

mild (moderate H-rate) and full hybrid (highest H-rate). The last HEV categorization is related to 

the possibility of plugging them to the grid. In the case of possible recharge from the grid we talk 

about plug-in hybrid (PHEV). For the other case, we will consider the term conventional HEV 

instead of non plug-in HEV used by some authors. 

Whatever the HEV H-rate, architectures or possible charging, the control of HEVs generally 

presents two main levels (figure 1). The first is a global level (called also supervisor) and is 



responsible for relaying the driver's request in terms of vehicle movement and operation of 

auxiliaries. This level then distributes the demand to the different energy sources and provides the 

reference quantity to the various actuators of the vehicle. The second level is a local level and 

allows to communicate with the global supervision (generally through a data bus like CAN bus for 

example) to carry out the actions necessary to achieve the reference quantities and sends back 

information about possible limitation due to components limits (maximum voltage, maximum 

current, maximum temperature, …). The local control of the internal combustion engine (ICE) for 

example translates the torque request from the supervisor into a fuel injection set point according 

to the engine parameters. The local control of the EM (Electric Motor) makes it possible, from the 

torque (or speed) set point demand, to achieve the current control in the machine using the 

management of the inverter switches. 

In this chapter, we will consider the global control level which allows the management of energy 

between the sources of the hybrid vehicle while respecting security coming from the dedicated 

CUs (Control Units). 

After introducing the general principals and the state of the art of the methods used in energy 

management of HEVs, some families are detailed and examples are given.  

 

 

 
Legend: 
BMS : Battery 
management system 
INV: Inverter 
ECU: Engine control 
unit 
TRC: Transmission 
control 
CHC: Chassis control 
AC: Auxiliaries control 
EM: Electric Motor 
ICE: Internal 
combustion engine 

 

Figure 1: HEV control levels 

 

2- General considerations for HEVs energy management 
2.1 Energy management Problem statement 

The existence of multiple sources and multiple energy converters makes it possible for the HEV to 

operate in different modes. The global level of the HEV control has to decide at each time in which 

mode the vehicle should operate and, for each mode, what are the quantities of power exchanged 

between the different elements of the vehicle. The main operating modes that are allowed by the 

association of two or more sources in a HEV, from its light version ("Micro-hybrid") to the most 

complete version ("Full-hybrid") could be simplified as follows: 

o All-electric traction mode. 

o Hybrid mode with Electric assistance during vehicle acceleration (called also “boost” 

function). 

o Energy recovery during deceleration ("electric braking").  

o Hybrid mode with charging the batteries on board by the IC engine.  

Figure 2 shows an example for a parallel HEV architecture including a clutch to allow ICE 

disconnection and thus a true electric mode. 
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a) Electric Mode, traction b) Hybrid Mode, electric assistance  

 

  
c) Electric mode, regenerative braking 

 
d) Hybrid Mode, battery recharging 

Figure 2: Examples of operating modes encountered in a parallel HEV 

 

Depending on the architectures and the hybridization rate, the functions listed above may or may 

not be possible and energetically efficient or not. This raises the problem of managing the 

instantaneous energy to activate one or the other of these functions. Viewed more generally, the 

existence of two or more energy sources introduces degrees of freedom in the control of the 

vehicle and therefore allows one or more strategies to be performed. This strategy, also called 

Energy Management Strategy (EMS) has to fulfill the following objectives:  

o Provide the power distribution between the sources (fuel tank, battery, supercapacitors) 

at each time while ensuring the driver's demand,  

o Manage the energy fluxes between the energy transformers (Electric machines, clutches, 

gears, …), 

o Control the state of charge (Soc) of the energy storage systems (here we will limit to 

battery and supercapacitors). 

 

2.2 Battery management  

One of the goals of energy management is to control the state of charge of the energy storage 

systems (ESS). This objective must respond to a prior choice resulting from the vehicle concept and 

components sizing like the possibility of external recharging (plug-in hybrid) for instance. This 

choice then imposes the overall use of the ESS with floating charge (“charge sustaining”) or 

decreasing charge (“charge depleting”).  

 

2.2.1 Control in floating state of charge ("charge sustaining") 

When the hybrid vehicle is non-Plug-in (conventional HEV), the state of charge of the battery must 

be maintained by recharging phases on board the vehicle. These recharges come from the kinetic 

energy of the vehicle during deceleration phases or from the IC engine using the electric machine 

in generator mode. The charge sustaining window can be at most equal to the maximum battery 

capacity, but is generally much smaller for reasons of power availability and battery lifetime. 

Indeed, the maximum power of charge (respectively of discharge) of the battery depends on the 

Soc and falls drastically at the beginning (battery fully charged) respectively at the end (battery 
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deeply discharged) (Belt et al. 2003). To maintain a charge and discharge power greater than a 

given value, it is imperative to reduce the useful interval of the battery Soc accordingly. With regard 

to lifetime, it is well known now that the depth of discharge magnitude (Soc) accelerates the 

aging of the battery for a given vehicle use (Redondo et al. 2020). It was also observed, in 

correlation with these remarks, that the first hybrid vehicles put on the market in the late 1990s, 

all of them conventional, presented incursions of Soc rarely greater than 10% of the total battery 

capacity (R. Trigui et al. 2003).  

 

2.2.2 Control with decreasing state of charge ("charge depleting")  

Decreasing Soc (or " charge depleting ") consists in letting the battery state of charge decrease 

during use until reaching a minimum value at the end of the Trip. This option is mainly used for 

battery management in plug-in HEVs. However, it is not excluded that a conventional HEV may 

pass through a ZEV ("Zero Emission Vehicle") zone and thereby achieve a temporary Soc decrease. 

This implies that the battery is sized in energy accordingly. In the literature, there are often three 

strategies in the management of the battery energy of a Plug-in hybrid vehicle (Figure 3). 

 
Figure 3: Soc battery control possibilities in an HEV 

 

The first zone corresponds to an all-electric mode (known also as ZEV operation, for Zero Emission 

Vehicle). The decrease in state of charge is the fastest in this area. The second zone corresponds 

to a hybrid operation in decreasing state of charge, also known as the blended mode. This decrease 

is controlled by the alternate On/Off of the ICE. The last zone begins when the state of charge 

reaches its low limit and corresponds to a charge sustaining logic allowing the plug-in HEV to 

operate like a conventional HEV before the next possibility of recharging. 

In what follows we assume that the battery management strategy is known and therefore the 

desired state of charge of the end of use is fixed. 

 

2.2.3 Supercapacitors management : 

HEV could also use supercapacitors as second or third energy source. In the two cases, as 

supercapacitors are used for their high power density, their low energy density does not allow to 

use them intensively during a long period. Besides, the power delivered and the efficiency of the 

supercapacitors are related to their Soc and thus their voltage level. That is why the 

supercapacitors are generally used with no more than 50% of depth of discharge. The management 
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of supercapacitors in HEV application is then of charge sustaining type, based mainly on the voltage 

instantaneous level control. 

 

2.3 The different energy management methods  

To achieve instantaneous power sharing between the energy sources and transformers in the HEV, 

while controlling the storage elements Soc, several methods have been developed over the past 

two decades. In the literature there are several classifications of these methods. The best 

structured in our opinion is that proposed by Salmasi in (Salmasi 2007) also taken up by many 

authors, among them recently Qicheng Xue (Qicheng Xue et al 2020), and represented in a simple 

way in Figure 4. It allows energy management methods to be split into two large families: those 

which are based on modal logic using expert knowledge of the system (called also rule based), and 

those which use optimization principles. 

 

 
Figure 4: Energy Management Strategies classification 

 

2.4 Model based EMS development 

 

As will be detailed further, some of the EMS methods could be intuitive and directly implemented 

in the ECU of the HEVs. Nevertheless, it is widely admitted today that using model based EMS 

development brings many advantages, among them: 

o Methods testing (debugging) is much easier offline using high capacity computers  

o Benchmark of methods could be done in a first step only by simulation 

o Some platforms offer easy transfer from simulation to Hardware In the Loop prototyping 

(HIL) and then to vehicle onboard tests 

Many models or representations based on a systemic approach for the HEVs simulation provide 

sufficiently accurate results in terms of energy consumption so that EMS performance could be 

compared before their real implementation. This comparison uses generally as input predefined 

speed profiles also called driving cycles (see frame 1), in order to take into account the diversity of 

HEVs’ uses (urban, extra urban, highway, standards, …). However, in order to obtain acceptable 

accuracy, the modeling techniques need to be validated with appropriate data for each subsystem 

of the vehicle. 
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Speed profiles called also driving cycles are now common required knowledge in the domain of 
vehicles energy simulation and evaluation. HEVs EMS development and comparison use also 
these profiles. We can distinguish different types of profiles or driving cycles, namely standard 
profiles or database-origin profiles. Standard profiles (like WLTC for Europe) depend on 
countries and are used to compare new vehicles in terms of consumption and pollutant 
emissions (figure 6a). Profiles from databases are previously registered and stored, sometimes 
even statistically treated to define typical trips of vehicles in real use (example: Artemis database 
in Europe (André 2004)) (figure 6b). 

 
a) WLTC standard cycle                                            b) Exra-Urban Artemis cycle 

Figure 6: different types of speed profiles (driving cycle). 
 
In real life operation, speed profiles could be stored in the vehicle memory, and/or predicted on 
a given future time horizon as required in some kinds of controls presented in this chapter. 
Energy consumption is directly linked to the instantaneous variation of speed. Vehicle energetic 
global models try to estimate precisely this energy using driving cycles as input. 

 

 

3- Rule based EMS methods  
Thanks to multiple energy sources and multiple energy converters, HEVs could operate in different 

possible modes for the different movement phases. The most important modes are summarized 

in Table 1. 

 

HEV Use phase Mode name Description 

 
 
 
 

Traction phase 

Electric mode Only battery and electric machines ensure the 
vehicle movement. The ICE is off. 

ICE only mode Only the ICE ensures the vehicle movement. No 
electric flux to or from the battery. 

Hybrid mode with 
electric assistance 

The ICE is on and gives a part of the required 
traction power, the battery and the electric 
motor give the complement of power. 

Hybrid mode with 
Battery charging 

The ICE is on and provides the required traction 
power while charging the battery with an extra 
power. 

 
 

Braking phase 

Electric mode, 
regenerative braking 

The electric motor operates as generator to slow 
the vehicle using electric braking and regenerate 
energy to batteries  

Mechanical braking Total or a share of the mechanical brakes is used 
to decelerate or to stop the vehicle 

 
 

Stand still 

Engine stop This function makes it possible to switch off the 
ICE engine when the vehicle is stationary. Idling 
consumption will thus be avoided. 



Engine on, 
recharging the 
battery 

If needed (and if possible), the battery is charged 
during the vehicle stops using the ICE and an 
electric motor used as generator 

Table 1: Operating modes of an HEV 

 

Based on an approach using mode selection the rule-based EMS methods are themselves divided 

into two categories: Boolean rules and fuzzy rules methods. In both cases, these rules must meet 

the objectives of energy management mentioned above. Given the modal and intuitive nature of 

this type of method, no guarantee can be given as to their optimality with respect to a criterion. 

On the other hand, their implementation in real time is relatively easy. For the two categories, 

Boolean and fuzzy, some strategies will be presented as examples. 

 

3.1. Strategies based on Boolean rules 

3.1.1 Principle  

Boolean rules, often having the logic "If a condition (threshold) is reached, then an action is 

undertaken", allow to activate in a simple and intuitive way the different operating modes. They 

can be developed with or without the use of HEV simulation model. To implement these rules one 

can use combinations of logical operations or state machines (Weimin Li et al. 2007) for example.  

 

3.1.2 Example1: the “thermostat” strategy  

Based on Boolean rules, this strategy uses a simple and effective control of the state of charge of 

the battery based on a hysteresis between two values of this variable. Therefore, when the state 

of charge reaches a high threshold, the ICE engine is turned off and the vehicle operates in Electric 

mode. When it reaches a low threshold, the ICE engine is started and one of the hybrid modes is 

selected. The strategy also uses the notion of energy efficiency of the ICE engine by taking into 

account the specific fuel consumption in the whole working area (usually known as engine map). 

It aims generally to track the operating points of the best efficiency so that when the ICE engine is 

on, its targeted operating point is fixed on the optimal power curve. Depending on the traction 

power required, the optimum power of the ICE engine may be greater than the demand and the 

difference will be used to recharge the battery. In the other case (power demand higher than 

optimal power), the battery provides energy to assist the ICE engine. 

Advantages - One of the main advantages of this method is its simplicity of implementation. The 

hysteresis control of the state of charge of the battery ensures the localization of this state in a 

precise band. In certain hybrid configurations and certain components’ sizes, the operation of the 

ICE engine on the best points of specific consumption is really advantageous as in the case of a 

series hybrid with a hybridization rate close to 0.5 (ie the power of the battery is of the same order 

as the power of the IC engine). 

Disadvantages - The disadvantages of this method are multiple.  

o The number of stops / starts of the ICE is set by the width of the hysteresis band of the 

state of charge control and is completely disconnected from the power demand.  

o Depending on the hybrid architecture and the sizing of the components, especially for 

parallel HEV and for low hybridization rates, it is impossible to constantly operate the ICE 

at its best operating points. 

o If the architecture and the components sizing allow it, the operation of the ICE at its best 

operating points leads to an intensive use of the battery recharging mode. In addition to 

the limited energy efficiency of this mode (due to the efficiency cascade of the 

subsystems), the high demand on the battery leads to the risk of premature ageing.  

 



3.1.3 Example2: the Load following strategy (LFS) 

Unlike the thermostat strategy, the power following strategy (or load following) (Kimura et al. 

1999), favors the traction request to activate one or other of the operating modes. Its principle is 

based on a set of rules such as the following.  

1) Switching from electric mode (IC engine off) to hybrid mode (IC engine running) depends on 

crossing a vehicle speed threshold or a power threshold or a combination of the two with a 

hysteresis between the activation of both modes to avoid oscillations.  

2) Electric assistance mode (boost) is activated when the power required for traction exceeds the 

maximum available power of the ICE engine.  

3) The battery recharging mode by the ICE engine is activated when the state of charge of the 

battery reaches a low threshold.  

4) Braking energy recovery via the electric motor is promoted as soon as the vehicle power is 

negative (braking phase).  

Usually, these rules are supplemented by limitations and protections to insure the safe use of the 

different components. 

Advantages - The main advantage of this method is its universal aspect since it can be applied to 

different architectures and different H-rates of HEVs. It also provides a soft use of the battery as 

the ICE contribution is related to (and not disconnected from) the required power. 

Disadvantages - Among the disadvantages of this method we can cite the control of the implicit 

and non-explicit state of charge and the difficulty of setting the various thresholds. Like all rule-

based strategies, this strategy does not guarantee near optimal consumption or emission of 

pollutants. 

 

3.1. Strategies based on Fuzzy rules  

Given the high number of parameters involved in the energy management of HEVs as well as the 

uncertainties and possible non-linearities, a fuzzy logic approach could be effective (J. S. Won & R. 

Langari 2002). Usually a fuzzy logic controller has four components: 

o "fuzzification": it allows the transformation of an input variable into a fuzzy variable. 

o Knowledge base: it contains the definitions of the membership functions of the variables. 

These functions can be of different forms: triangle, bell, etc. 

o Fuzzy logical inference: reasoning of the fuzzy system according to the established rules, 

generally performed in one or several tables. 

o “Defuzzification”: transformation of the fuzzy calculation result into a quantized output 

for decision making.  

These operations allow, through the notion of relative membership of input variables to an output 

class, to replace the Boolean logic applied to expert rules by a more flexible logic. As an example 

(Krishna et al 2021) proposed the following fuzzification of two key variables used in energy 

management of power-split HEV (figure 5).  

 

 



Figure 5: Fuzzification and degree of membership for two variables a) propulsion torque demand 

and b) Battery Soc. (Krishna et al 2021) 

 

In this way, Instead of having precise thresholds that initiate an action (Engine start for example), 

fuzzy levels (Very Low, Low, Medium, High and Very High in this example) are used. Generally, 

tables of correspondence are set to determine actions on control variables according to the 

different fuzzy levels of the state variable (Soc) and the driver request (torque demand). As an 

example, one fuzzy rule could be: If the level of torque demand is Medium and Soc is Low then ICE 

is On and battery is recharged with recharge level corresponding to medium. The defuzzification 

phase allows then to translate “medium” value of recharge into a numerical value corresponding 

to the required battery recharging power. 

 

4- Optimization based EMS 
The rule based EMSs have the advantage of being simple to implement and robust in use, but do 

not fully address the problem of energy optimization, necessary for the viability of hybrid vehicles. 

Therefore, Energy management could also use optimization methods to improve the efficiency 

potential of HEV. This involves using the degrees of freedom of hybridization to optimize a 

criterion, often minimizing fuel consumption (equivalent in a first approximation to minimizing 

CO2 emissions). This criterion could be more complex by integrating pollutant emissions and / or 

the intensity of use of the battery. The optimization methods can be classified into two categories 

depending on whether they are used offline with a priori knowledge of the instantaneous mission 

of the vehicle (speed versus time profile), or online without prior knowledge of this mission. 

 

4.1 Global offline optimization  

Offline global optimization methods are based on a priori knowledge of the speed profile (known 

also as driving cycle, (see frame 1) and usually use a model based approach. They are therefore 

intended only for simulation, but are the only ones to guarantee a global optimality of the control 

when accepting deviations introduced by the modeling errors. On the other hand, their principles 

and / or their results, as will be seen below, can be used to develop online methods.  

 

4.1.1 formalization of the optimization problem.  

The formalization of the optimization problem is based on the following approach:  

o identification of state variables, control variables and degrees of freedom,  

o the establishment of a criterion to be optimized,  

o identification of the constraints to be respected.  

 

In the case of the HEV, if we limit ourselves to overall control (supervision), there is a degree of 

freedom in the instantaneous choice of the power required from each source as we saw previously. 

It is therefore possible, based on a demand for power at the wheels and the requested power for 

auxiliaries, to distribute this demand between the sources by optimizing a criterion. The generated 

control will directly condition the state of charge of the battery usually considered as the state 

variable of the optimization problem. Apart from a few applications aimed at maximizing dynamic 

performance, the hybrid vehicle is often developed to reduce fuel consumption and pollutant 

emissions. The criterion to be minimized in this case is the following: 

 

J = ∑ (𝛼𝑓𝑢𝑒𝑙𝑚𝑓𝑢𝑒𝑙̇ (𝑖) +𝑁
𝑖=1 𝛼𝑁𝑂𝑥𝑚𝑁𝑂𝑥̇ (𝑖) + 𝛼𝐻𝐶𝑚𝐻𝐶̇ (𝑖) + 𝛼𝐶𝑂𝑚𝐶𝑂̇ (𝑖))𝑇𝑒     (1) 

 



Where N is the number of samples over a period of use of the vehicle, 𝑚̇ is the instantaneous fuel 

flow or the instantaneous emission of the pollutant considered (in g / s) and  the weight given to 

each of the flows. Te is the time sample. 

In what follows, for simplicity of understanding, we will consider a single criterion minimizing fuel 

consumption over the entire use horizon considered. 

 

𝐽 = ∑ 𝑚𝑓𝑢𝑒𝑙̇ (𝑖)𝑁
𝑖=1 𝑇𝑒 (2) 

 

The constraints to be respected are of two levels. The first deals with the last objective of the global 

control which is the control of the state of charge of the battery with the prior choice of the two 

possible options ("charge sustaining" or "charge depleting"). Indeed, an obvious solution to 

minimize criterion J is never to use the ICE engine (the control variable 𝑇𝐼𝐶𝐸 = 0). However, this 

solution requires a permanent use of the battery leading to a continuous discharge without control 

of the Soc. The first constraint to respect is therefore:  

( 1) (0)Soc N Soc Soc                    (3)  

Soc represents the variation in the state of charge over the fixed horizon, the value of which is 

consistent with the battery management option chosen. The other constraints are of the equality 

type, specific to each hybrid architecture, or of the inequality type representing the limitations of 

the various subsystems of the drivetrain (see table 2).  

 

Battery Electric Motors ICE 

_min _maxbat bat batI I I   _min _maxEM EM EMT T T   _min _maxICE ICE ICET T T   

_min _maxbat bat batU U U   _min _maxEM EM EM     _min _maxICE ICE ICE     

_min _maxBatt Batt battTMP TMP TMP   _maxEM EMTMP TMP  _maxICE ICETMP TMP  

Table2: Example of components limits to be taken as constraints for the optimization problem 

I refers to current, U to voltage, T to torque,  to rotating speed, TMP to temperature. Suffixes are 

ICE for engine, EM for electric motor, and bat for battery. 

 

The 2nd step after formalizing the optimization problem is to choose a method to solve it. There 

are generally two families of methods: metaheuristic methods and exact methods. In the following 

we will introduce these two types of methods. 

 

4.1.2  Metaheuristics EMS methods 

Metaheuristics are optimization methods intended to explore in a random or organized manner a 

domain of a complex nature for the search for extremum. They are often iterative and stochastic 

in nature, and can be based on algorithms inspired by physical or natural processes and from 

biology. Among these methods applied to the overall optimization of energy management in HEVs 

we can cite the followings: 

o The simulated annealing method: inspired by a process used in metallurgy (cooling / 

heating cycle process), this method was used for the energy management of a parallel 

hybrid vehicle (Paganelli et al. 2000). The authors noted, however, that the minimum 

found was a local minimum, although close to the global minimum. 

o Genetic (or Evolutionary) Algorithms: use the notion of population and its genetic 

evolution. A selection process (inspired by natural selection) makes it possible to converge 



on the optimal solution (the species). In (Poursamad & Montazeri 2008) the authors use 

genetic algorithms for parameter tuning of a fuzzy logic-based hybrid vehicle control.  

o Other methods inspired by animal biology such as the ant colony algorithm or particle 

swarms POS can also be applied (Chen 2018). These methods can be more useful in the 

case of complex systems (also called difficult) whose parameters and behavior are 

relatively unknown (which is seldom the case in HEV design). On the other hand, they have 

several drawbacks such as a significant mobilization of computing resources and the need 

for tedious and intuitive adjustment of the parameters. Achievement of the global 

minimum in this type of approach is also not guaranteed. 

 

4.1.3 The exact methods  

Exact methods make it possible to find explicit, analytical or numerical solutions to the 

optimization problem. For this a mathematical or numerical representation is necessary for their 

uses. Among the best known and most widely used methods in the field of HEV energy 

management is dynamic programming (DP) (Vinot 2016) and variational calculus using the 

Pontryagin Minimum Principle (PMP) (Lino Guzzella & Antonio Sciarretta 2008).  

 

4.1.3.1 Dynamic programming  

Dynamic programming is defined as a numerical resolution method allowing to explore in a 

sampled and systematic way the space of admissible solutions and to select the global solution 

meeting the chosen optimization criterion. Graph theory is often used to formalize this method. 

One or more state variables are chosen then their meshed temporal space with a given sampling 

step is performed. Dedicated algorithms are then used to find the path of the graph that ensures 

the optimization of the selected criterion. In the case of HEVs, the state variable chosen to be 

represented by the graph is usually the state of charge of the battery. The mesh of the space (Soc 

vs time) leads to a two-dimensional graph. The initial and final Soc points may be equal (generally 

for charge sustaining strategies) or different (mainly for PHEV). When considering the whole 

meshed space with sufficiently tight step sample, the algorithm of building the graph and finding 

the optimal path needs high computing resources. In order to reduce the search space, and 

therefore the calculation time and the size of the memory the meshed space is firstly limited 

between a minimum and a maximum Soc. Then the charge and discharge limits corresponding to 

the maximum and minimum currents of the battery are also introduced leading to a more 

restricted area to explore (figure 7) (Vinot 2016). 

 

 



 

 

Figure 7: Mesh of the battery state of charge 
domain for the dynamic programming method 

Figure 8: Example of a range of arcs 
between two instants of the graph 

 

At each instant i of the cycle, and from a point on the graph representing a state of charge Soc (i), 

different possibilities of achieving the state of charge for the following instant Socj (i + 1) are 

possible (figure 8). Each point Soc (i) can therefore be connected by an arc to a next point in space 

leading to explore an exponential number of possibilities. As the Soc is an integral function of the 

current, the slope of an arc connecting two points on the graph represents the battery current 

between time i and time i + 1. Therefore, for each arc, and assuming known the instantaneous 

speed profile, it is possible to calculate all the relevant variables including the fuel consumption 

considered here as the cost function by using a system modeling of the hybrid vehicle (Vinot 2016). 

The best Soc trajectory on the whole cycle, minimizing the total consumption is deduced using 

specific algorithms based on Bellman equation (Bellman 1957). Control variables corresponding to 

the arcs of the best path are then identified and considered as instantaneous best control. 

 

4.1.3.2  Pontryagin minimum principle (PMP) 

Criterion J (cf. equ. 2) can be also minimized under its associated constraints, on the cycle known 

in advance, by using the Pontryagin minimum principle (Pontryagin 1962). This principle makes it 

possible to transform the global optimization problem into an instantaneous minimization of a 

function called Hamiltonian. If we apply this method to the problem of overall optimization of the 

energy management of HEVs, we can express the problem as follows.  

 

𝐻(𝑥(𝑡), 𝑢(𝑡), λ(𝑡), 𝑡) = 𝑚𝑓𝑢𝑒𝑙̇ (𝑢(𝑡), 𝑡) + λ(𝑡). 𝑃𝑏𝑎𝑡(𝑡) (4) 

 

𝑥̇(𝑡) =
𝜕𝐻(𝑥(𝑡),𝑢∗(𝑡),𝜆(𝑡),𝑡)

𝜕𝜆
     (5) 

𝝀̇(𝒕) =
𝝏𝑯(𝒙(𝒕),𝒖∗(𝒕),𝝀(𝒕),𝒕)

𝝏𝒙
    (6) 

( ( ), *( ), ( ), ) ( ( ), ( ), ( ), )H x t u t t t H x t u t t t   (7) 
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Where x is the state variable, u is the control variable (TICE and Gear number are generally 

considered in the case of HEV), is the Lagrange multiplier representing the weight given to the 

battery use and u* the optimal control that minimizes the Hamiltonian function. 

The state variable considered here is the state of energy Soe, with Pbat the power delivered by the 

battery. In other formulation, Soc could be taken as state variable if we replace the battery power 

by the battery current in equation 5. In the Hamiltonian expression, the fuel flow is independent 

of the state variable. If we assume that at any time, the power (or current) of the batteries is 

independent of the state of energy (or of the Soc), the second optimality condition (equation 7) 

would lead to a derivative of equal to zero and therefore to a constant Lagrange multiplier for 

the entire horizon considered. This hypothesis is plausible as long as the battery power limit is not 

reached and the Soc is in a limited window. This is not the case, however, for supercapacitors 

(Vinot et al. 2013). In the case of a HEV using batteries in charge sustaining mode, this property 

makes it possible to reduce the problem of optimal control into a search of a single parameter () 

on the considered horizon. 

The third optimality condition ( ( ( ), *( ), ( ), ) ( ( ), ( ), ( ), )H x t u t t t H x t u t t t  ) allows the search 

for the optimal control vector u* (generally TICE_opt)which minimizes the Hamiltonian at each time. 

To solve this minimization problem different methods are possible, we can cite: 

o Calculating numerically H vs u at each time and use a minimum search algorithm,  

o Approximating the models of the components by piecewise polynomial functions resulting 

in a differentiable Hamiltonian function that allows a one shot algebraic calculation of the 

minimum expression. 

 

4.2 Online optimized EMSs  

 

Offline global optimization EMS can not be implemented online without modification as they need 

the exact instantaneous speed profile on the optimization time horizon. On the other hand, rule 

based EMS gives no guaranties to be near the optimal result. To implement suboptimal but 

effective EMS able to perform the energy management in a real use of an HEV while approaching 

an optimal efficiency of the system, online optimized EMS could be designed in different ways. 

 

4.2.1 Optimizing rule based parameters 

 

As stated before, rule based strategies suffer from heuristic tuning of their parameters that could 

lead to an uncontrolled efficiency performance. One possible way to improve this issue is to use 

simulation, like in optimization EMS development, to find the best parameters leading to a global 

best behavior (considering a representative set of driving cycles). 

To achieve this, one can use brute force method that explores a wide range of rule based 

parameters values and simulate them (Horrein 2015). Optimization method like simplex method 

(fmincon in Matlab for example) or heuristics (particle swarm, genetic algorithms (Wei Du 2020),…) 

may also be used but results should be checked as the possibility of finding a local minimum is not 

excluded due to multiple non-linearities in the HEV system. 

 

4.2.2 Minimization of equivalent consumption (ECMS)  

The method of minimizing equivalent consumption has been used for about 20 years. More recent 

publications use adaptive variants of this strategy, (Hofman et al. 2007). The basic method is 

applicable to a hybrid vehicle with charge sustaining management of the battery and at all times 

considers an equivalent fuel consumption made up of:  

o the actual fuel consumption of the current point,  

https://journals.sagepub.com/doi/abs/10.1177/0954407020902557


o virtual or future additional consumption. The latter can be positive or negative and 

corresponds to a fictitious quantity of fuel necessary to recharge or discharge the 

battery so that overall this “auxiliary fuel tank” has a constant mean state.  

The principle of the method is based on an instantaneous minimization of the equivalent 

consumption. It can be used as a real time realization of PMP like the -Control technique (Serrao 

et al., 2009) (see 5.4 section). However, because of an average estimate of the performance of the 

various components required to estimate the virtual consumption, an undesired deviation in the 

state of charge of the battery is possible.  

 

4.2.3 Neural networks or machine learning from offline optimization  

The offline exact optimization requires knowledge of the speed profile to find the optimal solution 

for the EMS. In order to replicate online the results of optimization based on dynamic programming 

or PMP methods, neural network approach or more recently machine learning based methods 

could be used. The principle is to consider one or several networks that have as input measured 

and/or estimated parameters necessary to the HEV control (Vehicle and machines speed, traction 

and auxiliaries power demand, actual Soc, targeted Soc, …). The output of these networks are the 

control variables of the HEV, namely the torque request of the ICE and the electric motors, as well 

as the gear number and the clutches states if exist. Using learning database generated offline by 

applying DP or PMP on a HEV model and a driving cycle set, the networks can learn decisions on  

control variables to be used at each time. The idea is to interpolate the current state of the HEV 

with the nearest encountered states in the database so that the control variable selected would 

be near the optimal ones calculated by DP or PMP. In general, a SOC controller is added to these 

kind of networks as a deviation with time is possible as reported in (Scordia 2009) 

 

4.2.4 -Control  

Another possibility of using offline global optimization to develop an online suboptimal strategy is 

to implement the Pontryagin minimum principle (PMP) by estimating the value of the Lagrange 

multiplier online. Indeed, as explained in the 4.3.2 section, for a battery used in charge sustaining 

mode, one can assume that a constant value of on a given driving horizon would insure the 

optimality of the EMS based on this method. However, this will be possible only if the 

instantaneous value or at least a detailed distribution of the battery power is known on the whole 

considered horizon (often calculated using the speed profile and a HEV model). 

To adapt the offline method to online constraints, a constant or periodically estimated value of 

has to be supplied to the control. In practice, the estimated value of could be calculated online 

using a speed prediction and a HEV model. This calculation could need important processing 

resources that are not always available on board the HEV. A priori mapped values of or an 

algebraic estimation when a simple mathematic model of the vehicle is available are often used to 

tackle this issue (Nguyen 2019). 

For PHEV or for HEV that uses supercapacitors instead of batteries, constant value becomes quite 

a strong approximation. An iterative calculation of an instantaneous value of could be achieved 

using the second equation of Pontryagin optimality (equation 7) assuming a time dependent 

value (Vinot 2013). 

The control method could be extrapolated to HEVs with 3 sources (fuel tank, Battery and 

supercapacitors for example). In this case, two multipliers ( 1 and  2) values are needed and have 

to be estimated at each time (see section 5) 

 

4.2.5 Stochastic DP 



Dynamic programming (DP) is used as offline global optimization method as it requires the precise 

knowledge of the speed profile on the whole considered horizon (see section 4.3.1). A derived 

method, called stochastic DP allows to introduce uncertainties about the encountered drive 

conditions and thus to facilitate real life online implementation of the optimization method. The 

principle is to use bellman equation (Bellman 1957) as in the case of offline DP but applied to a 

reduced time horizon and considering possible future variation in the predicted speed profile. In 

(Vagg 2016) the speed profile prediction is based on Markov chain where the probability of moving 

from a speed to another in the near future is explicitly determined using a database of typical 

driving cycles. The probability of different instantaneous future cost (the cost function is generally 

the fuel consumption) as well as the Soc matrix of probability can be calculated using the HEV 

model. To select the best solution, the optimization of the total future cost uses a waited infinite 

sum of all the future instantaneous costs where the weighting factor is constant to be determined 

or has an exponential decreasing value (equal to one for the present instant and converging to 

zero in the infinite horizon)  (Vagg 2016). 

 

4.2.6 Model Predictive Control 

Model Predictive Control is a well known control method developed in the late 70s and is more 

recently used to implement online optimized EMS for HEV. 

The principle of the method is based on three steps: 

- Generate optimized set points of the state variables of the system on a considered 

time horizon 

- Calculate, using a model of the system, a succession of future control sequences 

on a reduced horizon (known also as receding horizon) to be applied to the system 

in order to obtain the desired setpoints 

- Apply at the current time only the first value of the control sequence  

 

These steps are then repeated each time and result in adapting the control when output deviation 

from the predicted values occurs using instantaneous measurements. 

When applied to HEVs EMS, this method could use one of the exact methods (DP or PMP for 

example) to generate the optimized states and controls on the defined receding Horizon by 

predicting the speed profile in this time window and by using the HEV model (step one and two) 

(Xiaosong 2020). Then the optimal control is applied and adapted at each time using different 

methods for optimizing trajectory tracking (quadratic programming associated to linearization 

process for example). 

 

5- Case of using supercapacitors  
 

Supercapacitors (SCs) could be used as the main ESS instead of batteries mainly for micro and mild 

hybrid configurations (figure 9). In this case, as they have high power density and low energy 

density, they are generally used to recover energy during braking and to provide electric assistance 

during acceleration. On the other hand, and in order to improve the power density of battery based 

ESSs, supercapacitors could be used as a third energy source (figure 10). In both cases, energy 

management strategies previously detailed can be applied while taking into account the low 

amount of energy stored in the SCs compared to batteries. Some examples of strategies are given 

in the following. 

 

 



                 
 

Figure 9: Example of parallel HEV with SC as ESS   Figure 10: Example of parallel HEV with hybrid 

 ESS (battery and SC)                      

 

5.1 Rule based strategies 

 

Rule based EMS strategies are the most flexible ones and could be adapted easily to different kind 

of energy storage. For configurations with a supercapcitors based ESS (figure9), load following 

strategy is the most convenient to be used compared to thermostat strategy. For example, 

adapting thresholds of ICE on/off and removing full electric mode due to the few electric energy 

available in the SCs could be easily done. The thermostat strategy would lead to a very frequent 

switching of the ICE state as the SCs have low energy capacity.  

For the configuration where the SCs are associated to batteries as a third source (figure 10), it is 

more complicated to apply directly the previous strategies. One method could be to consider the 

battery and SCs as a unique equivalent source and apply one of the rule based strategies. The 

energy share between battery and SCs is then done locally (vinot 2013). One obvious rule of sharing 

could be: when the required electric power from the equivalent source (positive for traction and 

negative for braking) is higher than a threshold, the supercapacitors are used, otherwise the 

batteries supply (or receive) the whole electric power. 

Another strategy that could also be classified as a rule based is what is called the filtering strategy. 

This kind of EMS is well adapted to multiple sources’ HEVs (more than two) as it is based on 

frequency domain identification of each source. The principle is to split the required power of the 

HEV into three components, one for each source, using low pass filters with an adapted cutting 

frequency for each source. If we consider a HEV with an ICE and a hybrid storage system (battery 

and supercapacitors), the power of higher frequency will be requested to the supercapacitors, the 

intermediate to the battery and the low frequencies to the ICE. This strategy is also valid when a 

Fuel Cell is used instead of the ICE (Snoussi 2018). 

 

5.2 Optimization based strategies 

 

Offline optimization strategies as well as online ones could be applied to the case of HEVs with 

supercapacitors. When Supercapacitors are the sole electric source, only the equations of the 

system change, the optimization problem formulation remains the same. The constraint of the 

battery Soc is replaced by the constraint of minimum and maximum voltage of the supercapacitors. 

For the HEVs with a hybrid ESS (battery and supercapacitors) the application of the PMP 

(Pontryagin Minimum Principle) is the easiest way to tackle the optimization problem. The 

Hamiltonian equation is then adapted to handle a third term with a second Lagrange multiplier 

corresponding to the penalty attributed to the SCs use.  

𝐻(𝑥(𝑡), 𝑢(𝑡), λ(𝑡), 𝑡) = 𝑚𝑓𝑢𝑒𝑙̇ (𝑢(𝑡), 𝑡) + λ1(𝑡). 𝑃𝑏𝑎𝑡(𝑡) + λ2(𝑡). 𝑃𝑆𝐶(𝑡)             (8) 
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Online, this method leads to the use of two lambda-control components; each one is dedicated to 

one electric source state (Castaings 2020). Dynamic programming can also be used but it needs to 

consider a two dimensional graph, each dimension corresponds to the state of one electric source. 

This causes a high computing burden and is very difficult to handle for driving cycles of hundreds 

of seconds.  

 

6-  Conclusion  
The management of energy in hybrid vehicles is a key element in the success of the objective for 

which this type of vehicle has been designed. Indeed, the distribution of instantaneous power 

between the sources and the transformers directly impacts the energy consumption and the 

efficient use of the storage elements. For more than two decades this topic has mobilized a large 

number of researchers. Various methods have been developed and implemented. Some of them 

rely on the different modes allowed by the hybridization with an intuitive setting of parameters. 

Called rule based methods these EMSs are generally simple to develop and could be easily adapted 

to different HEV types. However the main disadvantage is the unknown relative position from the 

optimal efficiency of the HEV due to the heuristic parameters setting. The other kind of EMSs use 

optimization principles and strive to approach the optimum solution by simulation using model 

based optimization methods. These methods could provide the exact solution when the speed 

profile on the whole use horizon is known. The use of this kind of methods is thus restricted to 

simulation and usually provides an ultimate reference for the other EMSs. In order to develop 

efficient methods useful offline, the formers could serve as sources of inspiration either to develop 

learning database or to approximate some of their parameters like the use of speed profile 

prediction instead of the real speed for example.  

For now, most of online optimization methods give satisfactory results when applied to real HEV 

control. However, if we try to get closer to very optimal behavior, the remaining challenges could 

be: 

o Improve velocity profile prediction capabilities. This could use vehicle connectivity to 

include current and future traffic conditions as well as weather and road profile. 

o Take into account the thermal control of the subsystems, in particular for the batteries 

o Improve the optimization criterion to also minimize battery aging 

Finally, we have also to remind that development and comparison of EMSs for HEVs is usually 

based on HEV global modeling. The accuracy expected from the EMSs are then directly related to 

the validity of the model used for their development. Another challenge is then to improve the 

accuracy of the components models while taking into account temperature influence. 
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