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Unique quasi-stationary distribution,
with a possibly stabilizing extinction

Aurélien Velleret

Institut für Mathematik, Goethe Universität, Fachbereich 12, 60054 Frankfurt am Main, Germany,
email: velleret@math.uni-frankfurt.de

Abstract

We establish sufficient conditions for exponential convergence to a unique quasi-statio-
nary distribution in the total variation norm. These conditions also ensure the existence
and exponential ergodicity of the Q-process, the process conditionned upon never being
absorbed. The technique relies on a coupling procedure that is related to Harris recurrence
(for Markov Chains). It applies to general continuous-time and continuous-space Markov
processes. The main novelty is that we modulate each coupling step depending both on a
final horizon of time (for survival) and on the initial distribution. By this way, we could
notably include in the convergence a dependency on the initial condition. As an illustration,
we consider a continuous-time birth-death process with catastrophes and a diffusion process
describing a (localized) population adapting to its environment.

Keywords: quasi-stationary distribution, survival capacity, Q-process, Harris recurrence,
birth-and-death process, diffusion

1. Introduction

1.1. Presentation

Given a continuous-time and continuous-space Markov process with an absorbing state,
we are interested in this work in the long time behavior of the process conditionally on not
being absorbed (not being ”extinct”).

More precisely, our first concern is on the marginal —at time t— conditioned on not
being extinct —also at time t— (the MCNE in short). We wish to highlight key conditions
on the process such that these MCNE converge as t → ∞ to a unique distribution α.
This limiting distribution is called the quasi-stationary distribution (the QSD) —cf
Subsections 1.3 and 2.2, or chapter 2 in [19] for more details on this notion. The techniques
we use allow us to establish not only the existence and uniqueness of the QSD, but also the
exponential convergence in total variation norm, cf Theorem 2.1.

In addition, we deduce, under the same conditions, the existence of a specific eigenfunc-
tion h of the infinitesimal generator, with the same eigenvalue as the QSD. As time goes to
infinity, the renormalizing factor at time t behaves asymptotically as h exp[−λt], cf (2.4)
and Theorem 2.2. This convergence motivates the name survival capacity that we give
to h (sometimes described as the ”reproductive value” in ecological models). Again, the

Preprint submitted to Stochastic Processes and their Applications November 1, 2021

ar
X

iv
:1

80
2.

02
40

9v
6 

 [
m

at
h.

PR
] 

 6
 S

ep
 2

02
1



convergence is exponential, but not uniform over the state space in our case. Moreover,
we deduce the existence of the Q-process. Its marginal at time t is given by the limit
(as T → ∞) of the marginal of the original process at time t conditioned on not being
extinct at time T , cf Theorem 2.3. Thus, it is often described as the process conditioned
to never be absorbed. Finally, we deduce for the Q-process the existence and uniqueness of
its stationary distribution β together with a property related to exponential ergodicity.

To deduce these results, our aim is to combine a large degree of generality with conditions
as easy to verify as possible. A specificity of our approach is that it allows to deduce a
coupling procedure depending on the initial condition that ensures a contraction in total
variation towards the limiting distribution. It is only for commodity that we have restricted
the analysis to cases where there is a unique QSD. One can find in [48] an application to
group selection models where our procedure of proof is exploited to deduce the convergence
to some QSD in a specific basin of attraction. Also, the proof can be adapted quasi verbatim
to discrete time processes.

We exploit the idea, first exploited in [13], to rely on a more constructive method in the
form of a strong regeneration condition, analogous to Harris’ recurrence (what we can see
maybe a bit more clearly in the present work). At the foundation of our proof is clearly
the characterization given in [13] of the uniform exponential convergence to a unique QSD.
As we can see in the applications we present (cf Section 4) lack of reversibility is not at
all an issue for our proofs. The hope with these techniques is also to include easily more
complexity on the stochastic models, (for instance time inhomogeneity) while relying on the
same method with uniform in time estimates (cf [14], [2], [21]).

The remainder of Section 1 is organized as follows. Subsection 1.2 describes our general
notations ; Subsection 1.3 presents our specific setup of a Markov process with extinction ;
and Subsection 1.4 the decomposition of the state space on which we base our assumptions.
Subsection 2.1 presents the main set of conditions which we show to be sufficient for the
exponential convergence to the QSD. Subsection 2.2 states the three main theorems of the
present paper, dealing respectively with the QSD, the survival capacity and the Q-process.
The conditions that we present are then certainly numerous ; yet we believe that they are
quite convenient to deal with in practice, except maybe for (A3), for which we can only give a
few hints in the present work (cf Subsection 2.3 and 4.2). Other issues on the assumptions
are discussed in Subsection 2.4. Subsection 2.5 is devoted to the comparison with the
literature. We turn in Section 3 to elementary properties that relate our assumptions.
Before we deal with the main proofs of the general theorems in Section 5, we present in
Section 4 two applications of these.

Theses results seem to be new, but concern toy-models. We hope that they will help
the reader get insight on our approach. The application of our theorems to more significant
biological models is intended for following work (cf. already [47], [48], [31]).

1.2. Elementary notations

In the following, the notation k ≥ 1 has generally to be understood as k ∈ N while t ≥ 0
(resp. c > 0) should be understood as t ∈ R+ := [0,∞) (resp. c ∈ R∗+ := (0,∞)). In this
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context (with m ≤ n), we denote classical sets of integers by: Z+ := {0, 1, 2...}, N :=
{1, 2, 3...}, [[m,n]] := {m, m+ 1, ..., n− 1, n}, where the notation := makes explicit that
we define some notation by this equality. For maxima and minima, we usually denote:
s ∨ t := max{s, t}, s ∧ t := min{s, t}. Accordingly, for a function ψ, ψ∧ (resp. ψ∨) will
usually be used for a lower-bound (resp. for an upper-bound) of ψ.

Let
(
Ω; (Ft)t≥0; (Xt)t≥0; (Pt)t≥0; (Px)x∈X∪∂

)
be a time homogeneous strong Markov pro-

cess with cadlag paths on some Polish space X ∪ {∂} [[40], Definition III.1.1], where (X ;B)
is a measurable space and ∂ /∈ X . We also assume that the filtration (Ft)t≥0 is right-
continuous and complete. We recall that Px(X0 = x) = 1, Pt is the transition function
of the process satisfying the usual measurability assumptions and Chapman-Kolmogorov
equation. The first entry time (resp. the first exit time) of D, for some domain D ⊂ X , will
generally be denoted by τD (resp. by TD). While dealing with the Markov property between
different stopping times, we wish to clearly indicate with our notation that we introduce a
copy of X (ie with the same semigroup (Pt)) whose dependency upon X is limited to its
initial condition. This copy (and the associated stopping times) is then denoted with a tilde
(X̃, τ̃∂ , T̃D etc.). In the notation PXτE (t − τE < τ̃∂) for instance, τE and XτE refer to the

initial process X while τ̃∂ refers to the copy X̃.

1.3. The stochastic process with absorption

We consider a strong Markov processes absorbed at ∂: the cemetery. More precisely,
we assume that Xs = ∂ implies Xt = ∂ for all t ≥ s and that the extinction epoch: τ∂ :=
inf {t ≥ 0; Xt = ∂} is a stopping time. Thus, the family (Pt)t≥0 defines a non-conservative
semigroup of operators on the set B+(X ) (resp. Bb(X )) of positive (resp. bounded) (X ,B)-
measurable functions. For any probability measure µ on X , that is µ ∈ M1 (X ), and
f ∈ B+(X ) (or f ∈ Bb(X )) we use the notations:

Pµ(.) :=

∫
X
Px(.) µ(dx), 〈µ

∣∣ f〉 :=

∫
X
f(x) µ(dx).

We denote by Ex (resp. Eµ) the expectation corresponding to Px (resp. Pµ).

µPt(dy) := Pµ(Xt ∈ dy), 〈µPt
∣∣ f〉 = 〈µ

∣∣Ptf〉 = Eµ[f(Xt)],

µAt(dy) := Pµ(Xt ∈ dy
∣∣ t < τ∂), 〈µAt

∣∣ f〉 = Eµ[f(Xt)
∣∣ t < τ∂ ],

µAt is what we called the MCNE (at time t, with initial distribution µ). In this setting,
the family (Pt)t≥0 (resp. (At)t≥0) defines a linear but non-conservative semigroup (resp.
a conservative but non-linear semigroup) of operators on M1 (X ) endowed with the total
variation norm: ‖µ‖TV := sup {|µ(A)|; A ∈ B} for µ ∈ M(X ). A probability measure α is
said to be the quasi-limiting distribution of an initial condition µ if:

∀B ∈ B, lim
t→∞

Pµ(Xt ∈ B
∣∣ t < τ∂) := lim

t→∞
µAt(B) = α(B).

It is now classical (cf e.g. Proposition 1 in [MV12]) that α is then a quasi-stationary
distribution or QSD, in the sense that: ∀ t ≥ 0, αAt(dy) = α(dy).

Our first purpose will be to prove that the assumptions in Subsection 2.1 provide suffi-
cient conditions for the existence of a unique quasi-limiting distribution α, independent of
the initial condition.
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1.4. Specification on the state space

In the following, we will always assume the following decomposition of X :

Assumption 0. : ”Exhaustion of X” There exists a sequence (D`)`≥1 of closed subsets
of X such that:

∀n ≥ 1, D` ⊂ D◦`+1 and ∪`≥1 D` = X . (A0)

This sequence will serve as a reference for the following statements. For instance, we
will have control on the process through the fact that the initial distribution belongs to
some set of the form:

M`, ξ := {µ ∈M1 (X ) ; µ (D`) ≥ ξ} , with ξ ∈ (0, 1). (1.1)

Note that for any ξ > 0: M1 (X ) =∪`≥1M`, ξ. Let also:

D := {D; D is closed and there exists ` ≥ 1 such that D ⊂ D`} . (1.2)

2. Exponential convergence to the QSD

2.1. Hypotheses

We recall that for any set D, we defined the first exit and entry times as:

TD := inf {t ≥ 0; Xt /∈ D} , τD := inf {t ≥ 0; Xt ∈ D} .

Assumption 1. : ”Mixing property”
There exists some probability measure ζ ∈ M1 (X ) such that, for any ` ≥ 1, there exists
L ≥ `, c, t > 0 such that:

∀x ∈ D`, Px [Xt ∈ dx; t < τ∂ ∧ TDL ] ≥ c ζ(dx). (A1)

Assumption 2. : ”Escape from the Transitory domain”
For given ρ > 0 and E ∈ D:

eT := sup
x∈X

Ex (exp [ρ (τ∂ ∧ τE)]) <∞. (A2)

The order ρ in the previous exponential moment is required to be larger than the fol-
lowing ”survival estimate” that involves the measure ζ in (A1):

ρS := sup
{
ρ ∈ R; sup

`≥1
inf
t>0

eρt Pζ(t < τ∂ ∧ TD`) = 0
}
. (2.1)

Assumption 3. : ”Asymptotic comparison of survival”
For a given E ∈ D and ζ ∈M1 (X ):

lim sup
t→∞

sup
x∈E

Px(t < τ∂)

Pζ(t < τ∂)
<∞. (A3)
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We say that Assumption (A) holds, whenever:
”(A1) holds for some ζ ∈M1 (X ) and a sequence (D`) that satisfies (A0). Moreover, there
exist E ∈ D such that (A2), holds with some ρ > ρS as well as (A3).”

As we shall see in Subsection 3, (A1) implies that ρS < ∞. In order to ensure As-
sumption (A), we may not need to estimate precisely ρS : it is possible (depending on the
process) that (A2) is satisfied for any potential value for ρ > 0 (where E is likely to depend
on ρ). Moreover, ρS as well as assumption (A3) actually do not depend of the choice of ζ
satisfying (A1).

2.2. Main Theorems: the simplest set of assumptions

Theorem 2.1. Assume that Assumption (A) holds. Then, there exists a unique QSD α.
Moreover, we have exponential convergence to α of the MCNE’s at a given rate γ > 0. More
precisely, for any pair ` ≥ 1 and ξ ∈ (0, 1), there exists C = C(`, ξ) > 0 such that:

∀ t > 0, ∀µ ∈M`, ξ, ‖Pµ [Xt ∈ dx | t < τ∂ ]− α(dx) ‖TV ≤ C e−γ t. (2.2)

It is classical (cf e.g. Theorem 2.2 in [19]) that, as a QSD, α is associated to some extinction
rate λ:

∀ t ≥ 0, Pα(t < τ∂) = e−λ t, so that αPt = e−λ t α. (2.3)

Let: ht(x) := eλ tPx(t < τ∂). (2.4)

Theorem 2.2. Again under Assumption (A), we have exponential convergence in the supre-
mum norm of (ht)t≥0 to a limit h, with the rate γ deduced from (2.2). The function h, which
describes the ”survival capacity” of the initial condition µ, has a positive lower-bound on
any D`, an upper-bound on X and vanishes on ∂. It also belongs to the domain of the
infinitesimal generator L, associated with the semi-group (Pt)t≥0 on (B(X ∪ {∂}); ‖.‖∞),
and:

Lh = −λh, so ∀ t ≥ 0, Pt h = e−λ th. (2.5)

Remark: Like in [13], it is also not difficult to show that there is no eigenvalue of L between
0 and −λ, and that h is the unique eigenvector associated to −λ.

Theorem 2.3. Under again Assumption (A), we have:
(i) Existence of the Q-process:
There exists a family (Qx)x∈X of probability measures on Ω defined by:

lim
t→∞

Px(Λs
∣∣ t < τ∂) = Qx(Λs), (2.6)

for all Fs-measurable set Λs. The process (Ω; (Ft)t≥0; (Xt)t≥0; (Qx)x∈X ) is an X -valued
homogeneous strong Markov process.
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(ii) Transition kernel:
The transition kernel of the Markov process X under (Qx)x∈X is given by:

q(x; t; dy) = eλ t
h(y)

h(x)
p(x; t; dy), (2.7)

where p(x; t; dy) is the transition kernel of the Markov process X under (Px)x∈X . In other
words, for all ψ ∈ Bb(X ) and t ≥ 0, 〈δxQt

∣∣ψ〉 = eλ t 〈δx Pt
∣∣h×ψ〉 / h(x), where (Qt)t≥0

is the semi-group of X under Q.

(iii) Exponential ergodicity:
There is a unique invariant distribution of X under Q, defined by:

β(dx) := h(x)α(dx).

Moreover, there exists γ > 0 and C = C(`, ξ) such that:

∀ t > 0, ∀µ ∈M`, ξ, ‖QµB[h](Xt ∈ dx)− β(dx)‖ 1
h
≤ C e−γ t. (2.8)

where ‖µ‖ 1
h

:=

∥∥∥∥µ(dx)

h(x)

∥∥∥∥
TV

≥ ‖µ(dx)‖TV
‖h‖∞

, µB[h](dx) := h(x)µ(dx) /〈µ
∣∣h〉,

Qµ(dw) :=
∫
Xµ(dx)Qx(dw).

2.3. How to verify (A3)?

For discrete space, it is quite natural to deduce (A3) from the fact that there exists t
such that: infx∈E Pζ(Xt = x) > 0. We can thus couple some trajectories starting from ζ and
passing in x at time t to the set of all trajectories starting from x. From this we can infer a
lower-bound of the asymptotic survival ability of the former (starting from ζ) compared to
the latter (starting from x). For an illustration, this coupling is exploited in the birth and
death process in Subsection 4.1.

For continuous space however, the process starting from ζ will never hit precisely x. We
need to wait a bit for the process starting from x to diffuse before the association we expect
can be ensured. Although it appears quite more complicated, our argument is very similar.
In cases where the Harnack inequality holds (notably pure diffusive processes, cf Subsection
4.2.2), one is usually able to prove:

∀x ∈ E, Px
(
Xt ∈ dx; t < τ∂

)
≤ cPζ

(
Xtα ∈ dx; tα < τ∂

)
,

where t, tα, c > 0 are independent of x. Like for the discrete space case, we then deduce (A3)
from the Markov property and an additional control of the survival on finite time-interval.
Note that when the Harnack inequality holds, it is natural to exploit it already in the proof
of (A1), cf Subsection 4.2.2.

In a much general setting, and especially when jumps are involved in the process, the
situations might get much tricky when one wishes to look for a similar coupling of trajec-
tories. The issue is notably on exceptional behavior along which we have poor controls (no
jump for a long time, too many jumps, too large etc.). In [46], we provide a very efficient
and more easily verified condition which ensures (A3), given the other assumptions. Since
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this condition is technical and may appear too abstract without the illustration of various
examples, we encourage any interested reader to look at [47] and [33], besides the simple
illustrations given in [46].

2.4. Remarks on the Assumptions and the results

Remark 2.4.1. Since X is right-continuous and the filtration is both right-continuous and
complete, the first entry time of any Borel set is a stopping time, cf. Theorem 52 in [20],
or more recently Theorem 2.4 in [7]. It means in particular that the first exit time TD` and
the first entry time τD` are stopping times (for any ` ≥ 1 and any initial condition). The
result extends in fact to any iterated combination of the kind ”next entry time of D` after
the first exit time of DL following the first entry time of D`”. For this, we shall use that
there is a positive gap between each of the three random times (say τ0 < T1 < τ1) involved,
and that for any t, : (s, ω) 7→ 1{τ0(ω)<s≤t} has left continuous paths (and similarly with T1
instead of τ0 and possibly so on by induction).

Remark 2.4.2. This property on first entry times is the main reason for us to assume
X Polish. The space topology is not much exploited. It means notably that one could treat
càdlàg processes X that are known to satisfy the strong Markov property only w.r.t. the basic
filtration (that is a priori not right-continuous), as long as this strong Markov property can
be ensured for sequences of entry and exit times of sets from the family (D`)`≥1. It is for
simplicity that we assume that the strong Markov property is fulfilled for a right-continuous
filtration, noting that it holds for our examples. At least, as stated in Theorem 7.7 of [43], a
Feller semigroup on a locally compact and separable space generates a process that is strong
Markov for the augmented filtration that we consider. Yet, the required condition on the
family (D`)`≥1 covers a broader range of processes.

For an example of càdlàg process for which one may easily find suitable sets (D`)`≥1
although the strong Markov property is not satisfied for the augmented filtration, one can
adapt the counter-example provided in page 90 of [43]: such counter-examples are easily
produced by specifying a partially absorbing set whose exit time is non-predictible. We can
think for instance that the process stays where it hits this sets (in [43], the set is {0} for a
process on R) for an exponential time, before leaving.

Remark 2.4.3. As we can see in the illustrations of [46] (exploiting this result), it is not
required for the process to be strong Feller: for jump processes, there may exist bounded
measurable function f such that Ptf is discontinuous. h itself might not be continuous,
notably for discontinuous jump rate.

Remark 2.4.4. (A1) imposes a weak form of irreducibility condition, with this reference
measure ζ, and a coherence in time to prevent periodicity.

It may happen that there exists absorbing domains DA (whose escape can only happen
at τ∂). Any MCNE with initial condition x ∈ DA is necessarily supported in DA. Any ζ
that satisfies (A1) is thus also supported in DA. Moreover, if these MCNE converge to a
unique QSD as in our result, this QSD is necessarily supported on DA as well.

Remark 2.4.5. Assumption (A1) is a stronger version of Doeblin’s condition that appears
for the convergence of Markov Chains without extinction. It also implies that any border of
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extinction shall be approached by the sequence D` while ` → ∞, but never from inside any
D`, since by Lemma 3.0.3:

∀ ` ≥ 1, ∀ t > 0, inf{Px(t < τ∂); x ∈ D`} > 0.

Remark 2.4.6. When it concerns pure jump processes, one can generally choose DL := D`.
For other processes, one often needs ”a bit of space” between D` and DcL to obtain a lower
bound uniform in x ∈ D` over trajectories from x to ζ staying inside DL (as in our second
application with a diffusion).

Remark 2.4.7. To understand (2.8), it is worth noticing that, considering some general
initial condition in the left-hand side of (2.6), we obtain for the Q-process a biased initial
condition:

∀µ ∈M1 (X ) , limt→∞Pµ(Λs
∣∣ t < τ∂) = QµB[h](Λs). (2.9)

To deduce (2.8) from (2.2), we reformulate (2.7) in terms of B[h], Pt, At and Qt:

∀ t ≥ 0, ∀µ ∈M1 (X ) , (µB[h])Qt = (µPt)B[h] = (µAt)B[h]. (2.10)

Originally, we intended to adapt the proof of Theorem 2.1 on the marginal at time t
conditioned on survival at time t + T to deduce a control uniform in T . This approach is
effective but leads to a weaker result where ‖.‖ 1

h
is replaced by ‖.‖TV . The convergence of

the MCNE is here more informative, because h is bounded.

Remark 2.4.8 (On the indices). Throughout the proof, the constants and sets that we
consider will be indexed by a capital letter referring to the property they are involved in.
The indexes S, E, M , C, A, R, D, P and L stand respectively for ”Survival” (notably in
(2.1), (3.1) and (5.15)), ”first Entry” (in (A2), where it can also refer to ”Escape”, and in
Lemma 5.1.2), ”Mixing” (in (A1)), ”Containment” (throughout Section 5.1), ”Absorption”
(in (5.17)), ”Renewal” (in (5.22)), ”Doeblin” (also in (5.22)), ”Persistence” (in (5.16))
and finally ”Last exit” (in Lemma 5.1.4). ◦ as an index plays a similar role to indicate
parameters referring to the core of convergence as specified in Theorem 5.1.

2.5. Comparison with the literature

General perspective. Although there is already a vast literature on QSDs (see notably the
impressive bibliography collected by Pollett [39]), the approach we follow seems to have been
explored only in the very recent years. For a review on the results that were previously
obtained, we refer notably to general surveys as in [19], in [23] or more specifically for
population dynamics in [MV12]. We see already in these surveys how essential is the role
played by the spectral theory. The spectral theory is very effective both to relate the
QSD and the survival capacity to the first eigenvector of a diagonalizable operator and
to identify the convergence rate as the gap between the first and the second eigenvalues
(cf e.g. [11]). The principal drawback of the spectral theory is that it usually relies on
reversibility. Certainly, for 1 dimensional processes, this condition of time-symmetry is
quite easily satisfied ; while, more generally, it can be deduced from conditions easy to
verify (detailed balance notably). This may explain why reversibility is so extensively
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studied. Yet, it is a very restrictive condition for higher dimensions, as it is well explained
in the appendix A of [12].

Alternative methods are usually much less effective. In [18], the authors prove the
existence of the QSD via a Tychonov fixed point theorem. Another proof for the existence
of the QSD is presented in [26] for Markov Chains on Z+, based on compactness arguments
and renewal techniques. In [5], the authors prove, under quite stringent conditions, the
existence and uniqueness of the QSD and propose estimations of this QSD up to some
computable time, again with renewal arguments. The authors of [22] relate the speed
of convergence to QSD to the one of a related Doob’s transform towards its stationary
distribution. Yet the conditions of the last two papers seem to apply essentially to discrete-
space processes, or at least when the extinction is in some sense uniformly bounded. The
existence of the QSD and the survival capacity has also been related, at least for discrete
time and discrete space, to the notion of R-positivity (cf e.g. [44], [45] or [42]). This is
especially useful when the process is easily described by generating functions (in particular
for Galton-Watson processes) but seems quite an abstract criterion otherwise. Still, it
provides the main principle of focusing on the exponential rate of extinction, which is at
the core of our study. Our proof can reasonably be judged as an extension of the one
presented in [27] with a focus on general practical assumptions for R-positivity, noting that
their analysis is restricted to discrete-time and discrete-space Markov processes.

The dependency on the initial condition. Upper-bounds of the form:

‖Pµ [Xt ∈ dx | t < τ∂ ]− α(dx) ‖TV ≤ C(µ) e−γ t. (2.11)

assume generally C(µ) = 〈µ
∣∣W 〉 in the case of α being a stationary distribution (i.e. for

processes without extinction). The use of such a reference function W has been thoroughly
studied in [36] in the case of Markov Chains, or in e.g. [24], [10], [9] for continuous time
processes. The condition on W is what characterizes it as a Lyapunov function and relate
a priori to a control of the first entry time τE . Different probabilistic bounds have generally
been proposed, although, including extinction, exponential moments appear compulsory
(all the more since λ, the limiting rate of extinction, is not precisely known). In a loose
version, and still for Pt as a conservative semi-group, such exponential control may take the
form:

Pt0W ≤ e−ρW t0W + CW , where ρW , CW > 0.

E is then generally chosen as the set {W ≤ dW } for dW sufficiently large for

Pt0W ≤ e−ρ
′
W t0W + C ′W1E

to hold (for a smaller value ρ′W < ρW and some C ′W > 0). For E to be convenient with
respect to the other criteria (mixing or comparison of survival) and especially when ρS is
not estimated precisely, it is usually assumed that W is proper (i.e. W (x) converges to
infinity as ‖x‖ tends to infinity).

An extension of this assumption for the non-conservative case has been recently pro-
posed in [3] through their Assumption A. Another usual version involves the infinitesimal
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generator L and assumes the following:

LW ≤ −ρWW + CW , where ρW , CW > 0.

The inequality is stronger than the previous one for proper W . A related estimate for non-
conservative cases is also proposed in Proposition 2.10 of [3]. When considering extinction,
we lose also the property of linearity over the initial condition. This explains why upper-
bounds like 〈µ

∣∣W 〉 are not so general and why we focus on general initial distributions and
not only Dirac Masses.

The conclusion that we present is quite natural for the models we have in mind, where
extinction plays a stabilizing role, preventing transient dynamics. In the perspective of
natural selection, we expect to observe the prevalence of trajectories leading to and gravi-
tating around some basin of attraction, notably compared to those dragged away in deadlier
regions. Although the burden of mal-adaptation may seem light in the short run, if it is
too hard for the process to escape from less adapted areas, one can presume that the pro-
cess cannot have been there for long. In particular, the trajectories starting from favorable
initial conditions may outcompete what remains of the distribution, so that it becomes the
leading part in the convergence to the QSD.

Other expressions of C(µ) have been presented in [16], [28] and [3], with similar interpre-
tation. Note that the proofs in [16] and [3] concern the convergence towards a unique
Yaglom distribution, which may not be unique as a QSD, for any initial conditions with
a light enough tail. In [16], (2.11) is obtained with a non-linear dependency of the form
C(µ) = C 〈µ

∣∣ψ1〉 / 〈µ
∣∣ψ2〉. As can be seen in our following paper[46], the dependency we

introduce implies (2.11) with C(µ) = C/〈µ
∣∣h〉, for some C > 0. So the former extends

our result by including the more classical dependency through a Lyapunov function. In
[28] and [3], the convergence is stated in a weighted norm involving a weight function W
(resp.V ) related to the previous ψ1. The dependency C(µ) stated in their analog of (2.11)
is implicitly related to both 〈µ

∣∣h〉 and 〈µ
∣∣W 〉 (their function h plays the same role as our).

A dependency on ψ1 (or on W ) is neglected in our article: (A2) ensures in a way that we
can find some upper-bounded ψ1 (we refer e.g. to Lemma 3.6 in [16]).

A hint to connect the current techniques to their setting is to adjust the probabilities of
transition of the Markov process according to such weight function W . The set of positive
measures µ such that

∫
W (x)µ(dx) ≤ 1 for instance takes the place of the set of probability

measures (for more details, we refer to Subsection 2.3.2 of [46]). In general practice, it does
not seem so clear to us how to find such Lyapunov functions especially when one wishes to
combine simple bounds on different parts of the space. So we believe that our assumption
(A2) is more natural to verify in many examples (cf e.g. our second application), while
easier to interpret.

The assumptions. If one can relate our set of assumptions to the ones proposed in [27],
the similarity is clearly greater with [16], [28] and [3], because of the introduction of a
continuous-space setting. It is proved in [3] that their conditions are not only sufficient, but
also necessary, and similarly in Theorem 2.3 of [17] with regards to [16]. Similar reciprocal
results are obtained in [46] for the current setting.
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Due to our trajectorial approach, we require additional confinement properties (with
restrictions of the probabilities upon the events {t < TDL}). As explained above, Lyapunov
functions are also not directly exploited in our approach. The survival estimates presented
in [16], [28] and [3] appears less natural to interpret than the condition on survival that we
propose (ρ > ρS): they require the introduction of a function, say ψ2, for which the time
behavior of ψ2(Xt) must satisfy a certain minimization property. Given Lemma 3.2 in [16],
their condition appears more general and can certainly be convenient for specific models.
Nonetheless Theorem 2.3 in [46] proves that ρS takes the optimal value λ provided that the
convergence results (2.2) and of the survival capacity hold.

The approach. The techniques exploited in [16], [28] and [3] are quite different from ours.
In the steps of the R-theory, the study of the h-transformed process is at the core of [28],
with a weighted norm. Contraction estimates under similar weighted norms are exploited
in [16] and [3]. Our proofs are much more constructive and rely on a control on entry times
of core sets thanks to the competition between different behaviors. It extends to models
where the uniqueness of the QSD does not hold due to transitivity conditions, as one can
observe in the applications we have in [48]. In particular, our work offers a new constructive
perspective even for the results in [13] (cf Subsection 5.3) since the coupling steps which we
introduce apply directly to the MCNE (and not to their linearized versions).

3. Several implications of (A1)

Lemma 3.0.1. Assume that (A1) holds for two probability measures ζ1 and ζ2. Then, the
associated values for ρS coincide. Moreover, the sets E for which assumption (A3) holds
are the same for both measures.

”From mixing to regeneration, then survival”: (A1) trivially implies, for any ` such
that ζ(D`) > 0 the following regeneration estimate:

There exists t, c > 0, L ≥ ` such that, with DS := D` ⊂ DL:

∀x ∈ DS , Px(Xt ∈ DS ; t < τ∂ ∧ TDL) ≥ c. (3.1)

Lemma 3.0.2. Assume that (3.1) holds (for t, c > 0, DS ⊂ DL and ζ(DS) > 0). Then,
ρS ≤ −1

t ln(c).

In particular, we deduce that (A1) implies ρS <∞.

Lemma 3.0.3. (A1) is equivalent to the apparently stronger version (with the same ζ):
For any ` ≥ 1, and tY > 0, there exists L ≥ `, t ≥ t∨ and c > 0 such that:

∀x ∈ D`, Px [Xt ∈ dx; t < τ∂ ∧ TDL ] ≥ c ζ(dx). (A1)

3.1. Proof of Lemma 3.0.1

Assume that ρ1S is associated to a first choice of ζ1 satisfying (A1), and consider another
choice ζ2. By (A0), there exists ` ≥ 1 such that ζ2(D`) ≥ 1/2. By (A1) applied to ζ1, for
some cJ , tJ > 0 and L > `:

Pζ2(XtJ ∈ dx; tJ < τ∂ ∧ TDL) ≥ cJζ1(dx). (3.2)
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By definition of ρ1S , for any ρ > ρ1S , there exists cS , tS > 0 and L′ ≥ L such that:

∀ t ≥ tS , Pζ1(t < τ∂ ∧ TDL′ ) ≥ cS exp[−ρt]. (3.3)

By combining (3.2), (3.3) and the Markov property, we deduce:

lim sup
t>0

exp[−ρ(t+ tJ)]

Pζ2(t+ tJ < τ∂ ∧ TD′L)
≤
(
cJ cS exp[ρtJ ]

)−1
<∞.

By optimizing in ρ, we deduce ρ2S ≤ ρ1S and the equality by symmetry.

Concerning assumption (A3), (3.2) and the Markov property imply that for any t ≥ 0
and x ∈ X :

Pζ2(t+ tJ < τ∂) ≥ cJPζ1(t < τ∂)

Thus
Px(t+ tJ < τ∂)

Pζ2(t+ tJ < τ∂)
≤ (cJ)−1

Px(t < τ∂)

Pζ1(t < τ∂)
.

If assumption (A3) holds for ζ1 and E, it thus holds also for ζ2 and the same E. �

3.2. Proof of Lemma 3.0.2

Assume (3.1). Let x ∈ DS , ρ := − 1
tRG

ln(cRG), TL := inf {t ≥ 0, Xt /∈ DL} . By induction
over k ∈ N and the Markov property:

∀ k ≥ 1, inf
x∈DS

Px(k tRG < TL) ≥ exp(−ρ k tRG).

Thus, for a general value of t > 0:

inf
x∈DS

Px(t < TL) ≥ inf
x∈DS

Px
(⌈

t
tRG

⌉
tRG < TL

)
≥ exp

(
−ρ

⌈
t

tRG

⌉
tRG

)
≥ exp(−ρ (t+ tRG)) = cS e

−ρ t with cS := exp(−ρ tRG) = cRG. �

3.3. Proof of Lemma 3.0.3:

Let ` ≥ LS for which we apply (A1). By induction with the Markov property, it is
quite straightforward to extend the property (A1) on D` with the same LM , t(k) := k × t,
c(k) := c × (c ζ(DS))k−1. Then, for any tY > 0, we only need to apply this extension for
some k ≥ 1 such that t(k) ≥ tY. On the other hand, (A1) clearly implies (A1) (take tY = 0),
so that we have indeed proved (A1)⇔ (A1). �

4. Two models to which our results apply

4.1. Birth-and-death process with catastrophes

We choose to illustrate our result with this example for its clear simplicity. In this birth
and death process, the population can get extinct punctually at any time during what we
call a catastrophe. These events happen at a rate depending on the current number of alive
individuals. Otherwise, the process gets extinct when there is only a unique individual that
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ends up dying. To ensure uniqueness of a QSD, we will impose that the catastrophe rate
is large enough when the population size is large. Biologically, we could imagine that the
population is under the threat of some voracious predators, but can stay hidden as long as
the population size is not too large.

In fact, one has now quite a complete description of quasi-stationarity for birth-and-
death processes. It is proved in [34] that there exists a unique QSD for one dimensional
birth and death processes if and only if (2.11) holds with a uniform constant C(µ) = C > 0.
This equivalence is probably due to the fact that in these models, extinction can only occur
once the process is inside some given compact set (i.e. once it has descended from infinity),
as suggested in Theorem 19 in [23]. Like in [13] and as we will do, the authors of [23]
include direct extinction from any state of the birth-and-death process (what is called a
”catastrophe”). Theorem 19 in [23] states that the behavior of the process is the same if
catastrophe only happens in a compact set. In Theorem 4.1 of [13], the authors prove that,
for a bounded catastrophe rate, there is descent from infinity (see notably [4]) iff (2.11)
holds with a uniform constant C(µ) = C. This does not exclude however that (2.11) could
hold without descent from infinity, which we prove with our technique.

4.1.1. Description of the process

X, the population size, is a time-homogeneous Markov Chain on Z+ where ∂ = 0 is the
absorbing state and X = N. Given X0 = n ≥ 1, there is a death with rate dn > 0 (leading
to X = n− 1), a birth with rate bn > 0 (leading to X = n+ 1) and a catastrophe with rate
cn ≥ 0 (leading to X = 0). Since c1 and d1 play the same role (the transition is from X = 1
to X = ∂), we assume w.l.o.g. c1 = 0. Actually, d1 > 0 is not required in the following
statements.

Theorem 4.1. Assume that: for some n ≥ 1 (thus for all n) Pn(τ∂ <∞) = 1

and lim inf
n→∞

cn > inf
k≥1

(bk + dk + ck). (4.1)

Then, the conclusions of Theorem 2.1, 2.2 and 2.3 hold.

At least for some of the models, the speed of convergence towards the QSD cannot be
uniformly bounded over all initial conditions, since:

Proposition 4.1.1. We can define some positive values for (bn, dn, cn)n≥1 such that (4.1)
holds and for which, whatever large the time t > 0, and whatever small the similarity
threshold ε ∈ (0, 1), we can still find some initial condition x ∈ X such that:∥∥Px (Xt ∈ dy

∣∣ t < τ∂
)
− P1

(
Xt ∈ dy

∣∣ t < τ∂
)∥∥
TV
≥ 1− ε.

The proof of Theorem 4.1 and Proposition 4.1.1 are achieved resp. in Subsection 4.1.2-3.

Remark 4.1.2. Explicit values for ρS can hardly be obtained except for very specific models.
Yet, it might be of interest to find, depending on the specific model under consideration, more
precise estimates as our value infk(bk + dk + ck). This upper-bound comes from a survival
estimate of the simplest form: the process reaches some position k (as optimal as we need)
on which to stay up to (large) time t. We are a priori very far from a necessary and
sufficient condition: it seems hardly possible to infer generically the level of catastrophe rate
that affects the process as it evolves at large values.
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Remark 4.1.3. By the condition Pn(τ∂ < ∞) = 1, we mean that the process is non-
explosive. With: T∞ := limn→∞ inf {t ≥ 0; Xt ≥ n} , our condition means that ”for
some n ≥ 1 (thus for all), Pn(T∞ =∞) = 1”. Clearly, this property holds provided it holds
in the associated birth-and-death process without catastrophe (i.e. imposing cn ≡ 0). The
simplest case is then when the sequence bn/n is upper-bounded. We refer to Theorem 5.5.2
in [32] for a more general condition (still deduced from the case without catastrophe).

We do not exclude that it could hold more generally. Yet, for catastrophe to play a role
in this condition would require the family of catastrophe rate (cn) to quickly reach very large
values as n goes to infinity. It does not seem likely in practical applications.

Remark 4.1.4. Considering τ̄∂ := inf {t ≥ 0; Xt = 0} ∧ T∞ as the extinction epoch, our
theorem extends to the case T∞ < ∞. It also extends to models where catastrophes do not
entirely exterminate the population. Assume for instance that after a catastrophe, from a
population of size larger than some K ≥ 1, only K individuals are to survive. We can keep
the extinction for population of size initially lower than K, but it’s not very significant here.
Then (A2) can easily be adapted with K ∈ E = [[1, `E ]]. The proof of the other assumptions
remains the same.

Remark 4.1.5. The alternative conditions given in [16] seem also very efficient to obtain
Theorem 4.1. Since ρS is finite, this will certainly not be the case for the ones in [28].

4.1.2. Proof of Theorem 4.1

By (4.1), let k, `E ≥ 1 and ρE > 0 be such that:

0 < ρ̃S := bk + dk + ck < ρE < inf{n≥`E+1}cn := ρ̃E . (4.2)

ζ := δk, DS := {k} , E := [[1, `E ]].

Let D` = [[1, `∨k]], for ` ≥ 1. In the following, we ensure (A) (where ζ(DS) > 0 is obvious).
First, (A0) is obvious.

Proof of (A1) and (A3). :
Let n ≥ k. Consider

∂n := {0} ∪ [[n+ 1,∞[[, τn∂ := inf {t ≥ 0; Xt ∈ ∂n} .

Then the process Yt := Xt 1{t<τn∂ } is a Markov Chain on the finite space [[0, n]], absorbed at
∂ = 0. Since ∀ ` ≥ 1, d` > 0, b` > 0, this Chain (Yt) is irreducible and it is elementary to
prove that:

∀ tY > 0, ∃ cY > 0, ∀ i, j ∈ [[1, n]], Pi(YtY = j) ≥ cY . (4.3)

With j := k and n := `M ∨ k, (4.3) clearly implies (A1) (with parameters ` = `M , L =
LM , c = cM , t = tM ). We can indeed choose ζ := δk, LM := n, tM = 1 (arbitrary), and cM
the value of cY associated to the choice of tY = tM .

With i := k and ` = `E , (4.3) and the Markov property imply (A3) for any E, because:

∀ t > 0, ∀ j ∈ [[1, `E ]], Pj(t < τ∂) ≤ (1/cY )×Pk(XtY = j; t+ tY < τ∂)

≤ (1/cY )×Pk(t < τ∂).
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Proof of (A2). :
By (4.2), the catastrophe rate is larger than ρ̃E as long as the process remains outside

E. It implies that we can upper-bound τ∂ ∧ τE by an exponential variable with rate ρ̃E .
Thus:

∀ t > 0, ∀n ≥ `E + 1, Pn(t < τE ∧ τ∂) ≤ exp(−ρ̃E t). (4.4)

It is classical -by Fubini Theorem, and the integral expression of the exponential- to relate
the exponential moment with the repartition function by:

En (exp [ρE (τE ∧ τ∂)]) = 1 + ρE

∫ ∞
0

exp[ρE t]Pn(t < τE ∧ τ∂) dt. (4.5)

By (4.4) and (4.5), we conclude:

∀n ≥ `E + 1, En (exp [ρE (τE ∧ τ∂)]) ≤ 1 + ρE

∫ ∞
0

exp[−(ρ̃E − ρE) t] dt

= 1 + {ρE / (ρ̃E − ρE)} <∞.

Proof that for any k ≥ 1: bk + dk + ck ≥ ρS. :
Immediately, by (4.2):

∀ t ≥ 0, Pk(Xt = k; t < τ∂ ∧ TDk) ≥ Pk(∀ s ≤ t, Xs = k) = exp(−ρ̃S t).

4.1.3. Proof of Proposition 4.1.1

We consider one of the simplest choice, which is to take bn, dn linear in n (the classical
Malthus’ growth model, without competition) and cn constant for n ≥ 2. We can then
choose arbitrarily:

b1, d1, b̄, d̄ ∈ (0,∞)5, c2 > (b1 + d1), (4.6)

with c1 = 0, ∀n ≥ 2, bn := b̄ n, dn := d̄ n, cn := c2.

(4.1) is clearly satisfied. There is no explosion for this model, so that extinction happens
a.s. (note Remark 4.1.3 of Subsection 4.1.1 on this aspect).

We shall only need to consider transitions between values of the form 2n, n ≥ 2. Let:

Tn := inf
{
t ≥ 0; Xt ≤ 2n−1 orXt ≥ 2n+1

}
, (4.7)

τn := inf {t ≥ 0; Xt ≤ 2n} . (4.8)

We use the following lemma, whose proof is deferred after the one of Proposition 4.1.1:

Lemma 4.1.6. For some u > 0, it holds: lim
n→∞

P2n(Tn ≤ u) = 0.

For given t, ε > 0, let K := bt/uc+ 1 and N ≥ 1 (by Lemma 4.1.6) such that:

P1(Xt ≤ 2N
∣∣ t < τ∂) ≥ 1− ε/2, (4.9)

∀n ≥ N, P2n(Tn ≤ u) ≤ ε× e−(c2−d1)t/(4K). (4.10)
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With initial condition x := 2N+K+1, in order that X reaches 2N before time t ≤ K u,
it must at least once have got from 2N+k to 2N+k−1 during a time-interval less than u, for
some 1 ≤ k ≤ K + 1. With the Markov property, this implies, with (4.7), (4.8), (4.10) and
the fact that the extinction rate is always lower-bounded by d1:

Px(τN ≤ t) ≤
∑
{k≤K+1}P2N+k(TN+k ≤ u) ≤ ε e−(c2−d1)t/2.

Px(τN ≤ t; t < τ∂) ≤ e−d1 t Px(τN ≤ t) ≤ ε e−c2 t/2.

Since the extinction rate is upper-bounded by c2: Px(t < τ∂) ≥ e−c2 t.
This implies Px(τN ≤ t

∣∣ t < τ∂) ≤ ε/2. Therefore, with also (4.9):

‖δ1At − δxAt‖TV ≥ P1(Xt ≤ 2N
∣∣ t < τ∂)− Px(Xt ≤ 2N

∣∣ t < τ∂)

≥ 1− ε/2− ε/2 ≥ 1− ε. �

Proof of Lemma 4.1.6. :
With initial condition 2n, we can decompose X as a semi-martingale, up to time t ∧ Tn:

∀ t > 0, Xt∧Tn := 2n +
∫ t∧Tn
0 (b̄− d̄)Xs ds+Mt∧Tn , (4.11)

where (Mt∧Tn)t is a martingale with bounded quadratic variation, with (4.7):

< M >t∧Tn=
∫ t∧Tn
0 (b̄+ d̄)Xs ds ≤ (b̄+ d̄) 2n+1 t. (4.12)

Let u := (8 |b̄− d̄| ∨ 1)−1 so that, by (4.7), a.s.:

∀ t ≤ u,
∣∣∣ ∫ t∧Tn0 (b̄− d̄)Xs ds

∣∣∣ ≤ |b̄− d̄| 2n+1 u ≤ 2n−2. (4.13)

P2n(Tn ≤ u) ≤ P2n

(
sup{t≤u}Mt∧Tn ≥ 2n−2

)
by (4.11) and (4.13)

≤ 2−(2n−4) E2n(< M >u∧Tn) by Doob’s inequality

≤ 2−(2n−4) (b̄+ d̄) 2n+1 u by (4.12)

=
4 (b̄+ d̄)

|b̄− d̄| ∨ 1
2−n −→

n→∞
0 with the definition of u. �

4.2. Adaptation of a population to its environment: application to a diffusion process

In this illustration, the notion of being in a mal-adapted region is quite intuitive and the
criteria for the exponential convergence to a unique QSD rather natural. Again, the general
proof for this illustrative example is unclear without our techniques, except maybe with
those of [16]. Yet, in this case, it is presumably quite technical to find a proper Lyapunov
function (although our argument proves in fact that they exist). In fact, our control is
deduced from local bounds ensuring both a rapid escape from several specific local domains
together with sufficiently low transition rates between these domains.
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4.2.1. Presentation of the model

We consider a simple coupled process describing the eco-evolutive dynamics of a popu-
lation. We model the population size by a logistic Feller diffusion (Nt)t≥0 where the growth
rate (r(Xt))t≥0 is changing randomly. Namely, the adaptation of the population and the
change of the environment are assumed to act on a hidden process (Xt) in Rd, from which
the growth rate is deduced. For simplicity, we will assume that Xt evolves as a continuous
Markov process driven by some Brownian Motion and a drift (possibly depending on N
and X). For very low values of r(Xt), it is expected that the population shall vanish very
quickly. It would thus not change much of the result to introduce an absorbing boundary at
some threshold of mal-adaptation. Yet, we want our result to be independent of any such
truncation of the trait space and say that this large extinction is sufficient in itself to bound
the mal-adaptation, while highlighting that the initial condition indeed matters here.

In a general setting, the process can be described as:

(S)

{
dNt = (r(Xt)− c Nt) Nt dt+ σ

√
Nt dB

N
t

dXt = b(Xt, Nt) dt+ θ(Xt, Nt) dB
X
t

with initial conditions (n, x), BN and BX two independent Brownian Motions, c, σ > 0, and
r, b, θ being locally Hölder continuous functions. We also require that θ is locally elliptic,
in the following sense: for any compact set K of Rd+1, there exists θ̄ > 0 such that for any
(n, x) ∈ K and ξ ∈ Rd:

∑
i,j θi,j(n, x)ξiξj ≥ θ̄ |ξ|2.

Theorem 4.2. Consider the process (X,N) with the notations specified above and the
assumption that lim sup‖x‖→∞ r(x) = −∞. Then, all the results of Subsection 2.2 hold. In
particular, there is exponential convergence in total variation of the MCNEs to the unique
QSD.

It is also not much more costly to introduce catastrophes, arising at rate ρc(x, n), leading
to the complete extinction of the population. Partial extinction of the population (with
jumps on the population size), are however quite more technical to deal with (because the
Harnack inequality is not as obvious). In [46], where the focus is on processes with jumps,
we shall present techniques that makes it much more manageable.

The main issue for this model is to specify the conditions for (A2) to hold. We provide
in Subsection 4.2.4 a way to prove it in a strong case where it holds for any ρ, i.e. for the
following Theorem 4.2.1. For diffusions like this, (A1) and (A3) may be deduced quite
roughly thanks to the Harnack inequalities, as presented in the next subsection. In order
to satisfy assumption (A3), there is no additional restriction on the set E, so that the only
requirement on E is for (A2).

4.2.2. Harnack inequalities for (A1) and (A3)

In the following, we say that a process (Yt) on Y ⊂ Rd with generator L (including
possibly an extinction rate ρc) satisfies Assumption (H) if the following property holds:

Consider any path-connected open relatively compact sets D,D′ ⊂ Y, such that D ⊂ D′,
with C∞ boundaries, and such that for any point x ∈ ∂D′, there exists a closed ball C ∈ Rd
(of non-empty interior) such that C ∩ D′ = {y}. For any 0 < t1 < t2 and non-negative
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C2 constraints: u∂D′ : ({0} × D′) ∪ ([0, t2] × ∂D′) → [0,∞), there exists a unique solution
u ∈ C1,2((0, t2)×D′) ∩ C0([0, t2]×D′) to the problem:

∂tu(t, y) = Lu(t, y) on [0, t2]×D′;
u(t, y) = u∂D′(y) on ({0} × D′) ∪ ([0, t2]× ∂D′).

It is non-negative on int(D′) and it satisfies, for some C = C(L, t1, t2,D,D′) > 0 indepen-
dent of u∂D′ :

infy∈D u(t2, y) ≥ C supy∈D u(t1, y).

Proposition 4.2.1. Assume that Assumption (H) holds, and lim sup‖x‖→∞ r(x) = −∞.
Then, all the results of Subsection 2.2 hold, and we have in particular exponential conver-
gence in total variation of the MCNE to the unique QSD.

Assumption (H) is crucial for the proofs of both (A1) and (A3), yet not at all for the
one of (A2). As stated in the next proposition, the form of the equation for N is the main
ingredient.

Proposition 4.2.2. Assume that (X,N) is a càdlàg process on Rd × R+ such that N is
solution to:

dNt = (r(Xt)− c Nt) Nt dt+ σ
√
Nt dB

N
t ,

where BN is a Brownian motion. Assume that τ∂ is upper-bounded by inf{t ≥ 0;Nt = 0}.
Provided that lim sup‖x‖→∞ r(x) = −∞, it holds that for any ρ > 0, there exist n > 0 such
that:

sup
x∈X

Ex (exp [ρ (τ∂ ∧ τE)]) <∞,

where E := B̄(0, n)× [1/n, n], with B̄(0, n) the closed ball of Rd centered in 0 and of radius
n.

The main elements of the proof are given in Subsection 4.2.4, with the most elementary
arguments deferred to the Appendix.

From Proposition 4.2.1 to Theorem 4.2. Looking at the system (S) of equations, Assump-
tion (H) holds for the generator:

Lf(x, n) := [r(x)− c n] ∂nf(x, n) + b(x, n) ∂xf(x, n)

+ n σ2/2×∆nf(x, n) + θ2(x, n)/2×∆xf(x, n).

The proof for existence and uniqueness of the solution u for such second-order partial
operator with Hölder coefficients and elliptic diffusion coefficient can be found for instance
in Corollary 2, Section 4, Chapter 3 of [29]. It also ensures that the solution has two con-
tinuous x-derivatives and one continuous t-derivative. The fact it is non-negative is then
a consequence of the Maximum principle (cf. e.g. Theorem 1, Chapter 2 in [29]). Finally,
the comparison comes from the parabolic Harnack inequality, exploiting the regularity of u
and the fact it is non-negative. For its proof, we refer to Theorem 1.1 in [30]. The Harnack
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inequality on the open and path-connected set D is not too difficult to deduce from the
local Harnack inequalities these authors provide. One essentially needs to cover D̄ by a
finite number of balls included in D′ on which the local inequalities can be applied. For
any points x, y ∈ D̄, we can then construct a path between them for which the number
of visited such balls is uniformly bounded. The interval [t1, t2] shall then be split into as
many time-intervals and the local Harnack inequalities applied recursively to conclude that
Assumption (H) holds.

Assumption (H) shall hold more generally, notably under the Hörmander condition
instead of the condition of ellipticity (cf e.g. [38]). Lots of articles are dedicated to prove
such estimates under various conditions.

4.2.3. Proof of Theorem 4.2.1

In order to conveniently exploit Assumption (H), we choose to consider (D`) as some
sequence (can be anyone) of strictly increasing compact and path-connected sets with C∞

boundaries whose union is Y := Rd × R∗+.
Such a sequence clearly satisfies (A0) and any set of the form B̄(0, n) × [1/n, n] is a

subset of D` for ` sufficiently large. (A2) thus also hold for this process.

Assumption (H) with Yt = (Xt, Nt) implies (A1). :
For some non-negative C∞ function f with support in D`, we apply Assumption (H)

with D := D`, D′ := D`+1 with u∂D′(t, y) := f(x) on {0} × D` and u∂D′(t, y) := 0 on
R∗+ × ∂D`+1. The solution u we obtain is identified thanks to Itô formula as: u(t, y) :=

Ey
(
f(Yt); t < τ `+1

∂

)
, with an additional extinction when the process exits D`+1. Applying

Harnack inequalities implies thus that for any y ∈ D`, and some reference y0 ∈ D1:

Ey
(
f(Yt2); t2 < τ `+1

∂

)
≥ c Ey0

(
f(Yt1); t1 < τ1∂

)
.

Since it is classical that Py0
(
Yt ∈ D1; t < τ1∂

)
> 0, we can obtain a probability measure ζ,

independent of `, such that (since c does not depend on f):

∀ y ∈ D`, Ey
(
Yt ∈ dy; t < τ `+1

∂

)
≥ c ζ(dy).

Assumption (H) with Yt = (Xt, Nt) implies (A3). :
The proof of (A3) is a bit similar but much more technical because the reference measure

is now in the upper-bound, so that we can no longer neglect trajectories exiting D′. W.l.o.g.,
we consider E to be of the form D` for ` sufficiently large. Since the support of ζ is included
in D1, we wish to prove that there exists c > 0 such that for any y1 ∈ D1 and yE ∈ E:

PyE (Yt ∈ dy; t < τ∂) ≤ cPy1 (Ytα ∈ dy; tα < τ∂) , (4.14)

where we can choose here 0 < tα < t arbitrary (c depending on this choice). (4.14) directly
implies (A3) with the functions fs(y) = Py(s− tα < τ∂), and the Markov property.

In the step 4 of the proof given in Section 4 of [15], N. Champagnat and D. Villemonais
used a trick to obtain results such as (4.14). Their idea is to apply the parabolic Harnack
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inequality on some regular and compact domain R such that E ⊂ R ⊂ X and d(E, ∂R) > 0
while approximating the function:

u(t, y) := Ey (f(Yt); t < τ∂) , with t ≥ tR, y ∈ R,

defined for some non-negative f ∈ C∞(X ) and any choice of 0 < tR < tα. Although we can
prove (as they do) that u is continuous, it is a priori not regular enough to apply Harnack
inequality directly. Thus, we approximate it on the parabolic boundary [tR, ∞)× ∂R⋃
{tR} ×R by the family (Uk)k≥1 of smooth non-negative functions (C∞+ w.l.o.g.). We

then deduce approximations of u in [tR, ∞)×R by (smooth) solutions of:

∂tuk(t, y)− Luk(t, y) = 0, t ≥ tR, y ∈ R◦

uk(t, y) = Uk(t, y), t ≥ tR, y ∈ ∂R, or t = tR, y ∈ R.

By Assumption (H), the constant involved in the Harnack inequality does not depend on
the values on the boundary. Thus, it applies with the same constant for the whole family
of approximations uk. We refer to the proof in [15] to state that the Harnack inequality
then extends to the approximated function u, where the regularity of u ∈ C1,2 is required
to apply the Itô formula on the process u(t − s, Ys). Thus, (4.14) indeed holds (where we
could have chosen any y ∈ E).

Now we have concluded that Assumption (A) holds, so that the conclusions of Theorems
2.1 to 2.3 hold. �

4.2.4. Proof of Proposition 4.2.2: escape from the transitory domain

The purpose of this section is to demonstrate how to prove (A2) when, depending on the
position in the transitory domain, there are various reasons for a quick escape. To combine
several local estimates, dealing with suprema in the initial condition of exponential moments
appear much more convenient than Lyapunov estimates, see Appendix A. Moreover, these
exponential moments can be naturally deduced from probabilities of retention (or transfer)
in the transitory domain for a finite given time, see Appendix B, C or D.

Decomposition of the transitory domain
In our choice for E, with three parameters n0 < n∞ < nE to be fixed, its complementary

T = X \ E is made up of 3 subdomains: ”y =∞”, ”y = 0”, and ”‖x‖ =∞”, according to
figure 1. They are formally defined as follow:

• T N∞ :=
{
Rd \B(0, nE)

}
× (n∞,∞)

⋃
B(0, nE)× (nE ,∞) (”y =∞”),

• T0 := B(0, nE)× [0, n0] (”y = 0”),

• T X∞ :=
{
Rd \B(0, nE)

}
× (n0, nE ] (”‖x‖ =∞”).

Essentially, we will need to choose n∞ sufficiently large to have the property of descent
from infinity for T N∞ ; nE > n∞ sufficiently large to have a growth rate so low that the
population cannot maintain itself in T X∞ ; n0 sufficiently small to prove that the population
can hardly survive after entering T0. Thus, the process will escape each region with an
exponential moment. Yet, we also need to prove that the process will not circulate between
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Figure 1: subdomains for (A2)

the different transitory areas. Therefore, we will set these areas such that at least some of
the transitions (those associated with an increase of the population size) happens with so
low probability that Theorem 1 holds true.

For each of these domains, we define the following exponential moments that we shall
relate by specific inequalities. Let th > 0 (a threshold needed to ensure the boundedness)
and τ̂E := τE ∧ τ∂ ∧ th (remember that τE is the hitting time of E):

• EN∞ := sup{E(x,n)[exp(ρ τ̂E)]; (x, n) ∈ T N∞ },

• EX∞ := sup{E(x,n)[exp(ρ τ̂E)]; (x, n) ∈ T X∞ },

• E0 := sup{E(x,n)[exp(ρ τ̂E)]; (x, n) ∈ T0}.

Implicitly, we assume ρ to be given. Then, EN∞, EX∞ and E0 can be seen as functions of n0,
n∞ and nE . These values are to be specified depending on ρ for the proof of (A2) to hold.
The dependency in th shall be negligible as th →∞.

A set of inequalities associating the local bounds
The local exponential moments that we introduce are related thanks to the three fol-

lowing propositions, obtained from local bounds mentioned in the following three lemmas.
We refer to Appendices A, B, C and D to see first how to deduce (A2) from the three
propositions that follow, and then respectively for the (technical) proofs of the propositions
(including the lemmas):

Proposition 4.2.3. Given any ρ > 0, we can define n∞ > 0 and C ≥ 1 such that, whatever
nE > n∞ and th > 0: EN∞ ≤ C

(
1 + EX∞

)
.

Proposition 4.2.4. Given any ρ, ε, n∞ > 0, we have, for some C ≥ 1 (in fact independent
of any parameters), and any nE sufficiently large and th > 0:
EX∞ ≤ C (1 + E0) + ε EN∞.
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Proposition 4.2.5. Given any ρ, ε, n∞ > 0, we have, for some C ≥ 1, any n0 sufficiently
small, any nE ≥ n∞ and any th > 0: E0 ≤ C + ε

(
EN∞ + EX∞

)
.

The associated elementary bounds on finite time
The main ingredient for these propositions are simple comparison properties that are

specific to each of the transitory domain. By focusing on each of the domains separately
(with the transitions between them), we can highly simplify our control on the dependency
of the processes. Specific autonomous one-dimensional processes indeed act as upper-bounds
for each of the domains. The values of (Xt) do not affect these auxilliary processes, but
only the regions on which they act as upper-bounds.

Propositions 4.2.3 and 4.2.4 are deduced from the estimates given in Lemmas 4.2.6 and
4.2.7 on autonomous processes of the form:

ND
t := n+

∫ t

0
(r − c ND

s ) ND
s ds+

∫ t

0
σ
√
ND
s dBs. (4.15)

Propositions 4.2.3 relies on the property of descent from infinity valid for any value of r:

Lemma 4.2.6. Let ND be the solution of (4.15), for some r ∈ R and c > 0, with n the
initial condition. Then, for any t, ε > 0 there exists n∞ > 0 such that:

supn>0 Pn(t < τD↓ ) ≤ ε with τD↓ := inf
{
s ≥ 0, ND

s ≤ n∞
}
.

Proposition 4.2.4 relies on the strong negativity on the drift term:

Lemma 4.2.7. Considering any c, t > 0, with τD∂ := inf
{
t ≥ 0, ND

t = 0
}

:

supn>0 Pn
(
t < τD∂

)
−→
r→−∞

0.

Moreover, for any n, ε > 0, there exists nc such that, for any r sufficiently low, with TD∞ :=
inf
{
t ≥ 0, ND

t ≥ nc
}

: Pn
(
TD∞ ≤ t

)
+ Pn

(
ND
t ≥ n

)
≤ ε.

Finally, Proposition 4.2.5 relies on an upper-bound given as a Continuous State Branch-
ing Process, for which the extinction rate is much more explicit. It is clearly as strong as
needed for sufficiently small initial condition.

We recall that the complete proofs (of Proposition 4.2.2 from the propositions and of
the propositions themselves) are deferred to respectively Appendices A, B, C and D. With
this, we have concluded the proof of Proposition 4.2.2.

5. Proof of Theorems 2.1-3

In Subsection 5.3, we present the general principles of our coupling that concludes the
proof of Theorem 2.1. These principles would alone end the proof in the context of the
Assumption (A) in [13]. Yet, with our more general assumptions, these principles require
the results of the two previous subsections. First, we prove in Subsection 5.1 that the
MCNE will keep in the long run some mass on some specific set D◦ (which is weaker but
related in some sense to the tension of the laws); then we prove in Subsection 5.2 that (A3)
holds in fact for X instead of just E. At the end of Subsection 5.3, the proof of Theorem 2.1
is then complete. The following Subsection 5.4 and 5.5 then prove respectively Theorem
2.2 and 2.3.
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5.1. Stabilization of the process in the long run

The main purpose of this section is to prove:

Theorem 5.1. Assume that (A) holds. Then, there exists M◦ = M`◦, ξ◦ (with `◦ ≥ 1,
ξ◦ > 0) such that for any ` ≥ 1 and ξ ∈ (0, 1), there exists t◦ = t◦(`, ξ) > 0 such that:

∀µ ∈M`, ξ, ∀ t ≥ t◦, µAt ∈M◦. (5.1)

Remark 5.1.1. Assumption (A3) is not involved in the proof of Theorem 5.1. This will
be important in [46] since we will exploit Theorem 5.1 to provide an alternative criterion to
(A3).

Proof of Theorem 5.1:
According to (A2), let `E ≥ 1 and ρE > ρS be such that:

with E := D`
E
, τ1E := inf {t ≥ 0; Xt ∈ E} ,

eT := supx Ex
(
exp

[
ρE (τ1E ∧ τ∂)

])
<∞. (5.2)

From (2.1), i.e. the definition of ρS , there exists ρ̃S ∈ (ρS , ρE), cS > 0 and `S ≥ 1, such
that:

∀ t ≥ 0, Pζ(t < τ∂ ∧ TD`S ) ≥ cS exp(−ρ̃S t). (5.3)

We then apply (A1) with ` = `E to state that there exists LC ≥ `S ∨ `E , tC , cC > 0 such
that, with DC := DLC :

∀x ∈ E, Px
[
XtC ∈ dy, tC < τ∂ ∧ TDC

]
≥ cC ζ(dy). (5.4)

W.l.o.g., we are allowed to replace, in the following usage of (5.3), D`S by DC .
In order to conclude the proof of Theorem 5.1, we need the following three Lemmas, for

which we define by induction over i ∈ N:

T iC := inf
{
t ≥ τ iE ; Xt /∈ DC

}
, T 0

C := 0,

τ i+1
E := inf

{
t ≥ T iC ; Xt ∈ E

}
.

Lemma 5.1.2. First entry in E: Assume that (5.2), (A1) and (5.3) hold. Then, for
any `, ξ, there exists CE = CE(`, ξ) > 0 such that:

∀ th > 0, ∀µ ∈M`, ξ, Pµ(th ≤ τ1E
∣∣ th < τ∂) ≤ CE e−(ρE−ρ̃S) th .

Lemma 5.1.3. Containment of the process after T iC:
Suppose that (5.3) and (A1) hold. Then, there exists `◦ ≥ LC , and c◦ > 0 such that:

∀x ∈ DC , ∀ t > 0, Px
(
t < T 1

C ∧ TD`◦ ∧ τ∂
)
≥ c◦ exp[−ρ̃S t].

Lemma 5.1.4. Last exit from DC:
Suppose that (A0), (A1), (5.2), (5.3) hold (with E ⊂ DC) and ρE > ρ̃S. Then, there exists
CL > 0, such that for any µ ∈M1 (X ) with th > t > 0:

Pµ
(
T
I(th)
C ≤ th − t, th ≤ τ

I(th)+1
E , τ1E < th

∣∣∣ th < τ∂

)
≤ CL e−(ρE−ρ̃S) t,

with I(th) := max
{
i ≥ 0; T iC ≤ th

}
(<∞ a.s.).

The proofs of these Lemmas are deferred, in the order of occurrence, after the proof
that they imply Theorem 5.1.
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5.1.1. Proof that Lemmas 5.1.2-3 imply Theorem 5.1

With Lemma 5.1.2 and 5.1.4, we obtain an upper-bound (with high probability) on how
much time the process may have spent outside DC . Thus, we can associate most of trajec-
tories ending outside DC to others ending inside DC . From this association, we deduce a
lower-bound on the probability to see the process in DC .

Let us first define D◦ according to Lemma 5.1.3. In the following, we will define:
M◦ := {µ ∈M1 (X ) ; µ(D◦) ≥ ξ◦} for a well-chosen ξ◦. Thanks to Lemma 5.1.4, we
choose some t > 0 sufficiently large to ensure: ∀ th > t, ∀µ ∈M1 (X ) ,

Pµ
(
T
I(th)
C ≤ th − t, th ≤ τ

I(th)+1
E , τ1E < th

∣∣∣ th < τ∂

)
≤ 1/4 . (5.5)

Let ` ≥ 1, ξ ∈ (0, 1). Thanks to Lemmas 5.1.2, we know that for some t◦ ≥ t > 0:

∀ th ≥ t◦, ∀µ ∈M`, ξ, Pµ
(
th ≤ τ1E

∣∣∣ th < τ∂

)
≤ 1/4 . (5.6)

Let µ ∈M`, ξ. Let us first assume that:

Pµ
(
τ
I(th)+1
E ≤ th

∣∣∣ th < τ∂

)
≥ 1/4 . (5.7)

By definition of I(th), on the event
{
τ
I(th)+1
E ≤ th

}
∩{th < τ∂}, we know that the process

stays in DC in the time-interval [τ
I(th)+1
E , th]. In particular:

µAth(D◦) ≥ µAth(DC) ≥ Pµ
(
τ
I(th)+1
E ≤ th

∣∣∣ th < τ∂

)
≥ 1/4 . (5.8)

where we recall that `◦ ≥ LC by Lemma 5.1.3.
Now that this case has been easily treated, we consider the complementary:

Pµ
(
τ
I(th)+1
E ≤ th

∣∣∣ th < τ∂

)
< 1/4 .

Thus, by (5.5) and (5.6): Pµ
(
th − t < T

I(th)
C , τ1E ≤ th

∣∣∣ th < τ∂

)
≥ 1/4 . By defining the

stopping time: τC := inf{s ≥ th − t; Xs ∈ DC}, we deduce:

Pµ
(
th − t ≤ τC < th

∣∣∣ th < τ∂

)
≥ 1/4 . (5.9)

By the Markov property, then Lemma 5.1.3:

Pµ (Xth ∈ D◦, th − t ≤ τC < th, th < τ∂)

≥ Eµ
[
PXτC

(
X̃th−τC ∈ D◦, th − τC < τ̃∂

)
; th − t ≤ τC < th ∧ τ∂

]
≥ c◦ exp[−ρ̃St]Pµ [th − t ≤ τC < th ∧ τ∂ ]

≥ c◦ exp[−ρ̃St]Pµ
[
th − t ≤ τC < th

∣∣ th < τ∂
]
× Pµ [th < τ∂ ] .

So (5.9) indeed implies µAth (D◦) ≥ ξ◦ with ξ◦ := c◦ e
−ρ̃S t/4. WithM◦ := {µ ∈M1 (X ) ; µ(D◦) ≥ ξ◦}

(ξ◦ given by the previous formula does not depend on `, ξ or µ), we indeed prove (5.1) for
the case where (5.7) does hold false. Recall that the first case where (5.7) does hold true is
directly concluded in (5.8). �
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5.1.2. Proof of Lemma 5.1.2

By (5.2) and the Markov inequality:

∀µ, ∀ th > 0, Pµ
(
th ≤ τ1E ∧ τ∂

)
≤ eT e−ρE th . (5.10)

Let ` ≥ 1, ξ ∈ (0, 1). We apply (A1), (5.3) and the Markov property to obtain that there
exists c > 0 (that we can decompose as c = ξ cS cM (`) for some constant cM (`) > 0 only
depending on `) such that: ∀µ ∈M`, ξ, ∀ th > 0,

Pµ (th < τ∂) ≥ c e−ρ̃S th . (5.11)

Thus, by (5.10), (5.11), with: CE := eT /c > 0,

∀µ ∈M`, ξ, ∀ th > 0, Pµ
(
th ≤ τ1E

∣∣∣ th < τ∂

)
≤ CE exp[−(ρE − ρ̃S) th]. �

5.1.3. Proof of Lemma 5.1.3

Thanks to (A1), applied with ` = LC , there exists some D◦, tE , cE > 0 such that:

∀x ∈ DC , Px
(
τ1E ≤ tE ∧ TD◦ ∧ τ∂

)
≥ cE . (5.12)

Recalling (5.4), we deduce that conditionally on Fτ1E and on the event
{
τ1E ≤ tE ∧ TD◦

}
:

PX
τ1
E

(
X̃tC ∈ dx, tC < T̃ 1

C ∧ T̃D◦ ∧ τ̃∂
)
≥ cC ζ(dx). (5.13)

By combining (5.12), (5.13), (5.3) and the Markov property, we deduce that:

Px
(
th < T 1

C ∧ TD◦ ∧ τ∂
)
≥ c◦ exp[−ρ̃S th],

with c◦ := cE cC cS exp[ρ̃S (tE + tC)] > 0. �

5.1.4. Proof of Lemma 5.1.4

The idea is to use that it is very unlikely for the process to still be alive after experiencing
an excursion outside E for a long time (and still be there). Indeed, compared to trajectories
that stay inside E (in particular those reaching quickly DS , for which (3.1) holds, and not
leaving DL) the probabilities of the associated events vanish with a larger rate: ρE > ρ̃S .

It would have been convenient if we could initiate the comparison just before T
I(th)
C , where

the process exits E for the last time before th. Yet, it is not a stopping time, so that the
Markov property is not directly applicable and the proof gets more technical.

Let us first prove that I(th) <∞. Since X has càdlàg paths, we would have on the event
{I(th) =∞}: supj T

i
C = supj τ

i
E = T < th with XT− ∈ E ∩ X \ DC . Yet, by (A0), this set

is empty, so that a.s. I(th) <∞. Then, exploiting a discretization of time in time-intervals
of length tL to be fixed later:

P := Pµ
(
T
I(th)
C ≤ th − t, th ≤ τ

I(th)+1
E ∧ τ∂ , τ1E < th

)
=
∑
{i≥1} Pµ

(
T iC ≤ th − t, th ≤ τ

i+1
E ∧ τ∂

)
≤
∑
{i≥1}

∑
{k≥0} 1{k tL≤th−t}Pµ

(
T iC ∈ (k tL, (k + 1)tL], th ≤ τ i+1

E ∧ τ∂
)

=
∑
{i≥1}

∑
{k≥0} 1{k tL≤th−t}Eµ

[
PX(k+1)tL

(
th − (k + 1)tL ≤ τ̃1E ∧ τ̃∂

)
;

T iC ∈ (k tL, (k + 1)tL], (k + 1)tL ≤ τ i+1
E ∧ τ∂

]
,
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where we used the Markov property. Exploiting (5.2):

P ≤ eT
∑
{k≥0} 1{k tL≤th−t} exp[−ρE (th − (k + 1)tL)]

×
∑
{i≥1} Pµ

[
T iC ∈ (k tL, (k + 1)tL], (k + 1)tL ≤ τ i+1

E ∧ τ∂
]
. (5.14)

The trick is to observe that, by definitions of τ iE < T iC , one shall have Xs ∈ DC for any
s ∈ [τ iE , T

i
C), in particular on some vicinity to the left of T iC . Defining for k ≥ 0:

τkC := inf {s ≥ ktL : Xs ∈ DC} ,

we see that the events
{
T iC ∈ (k tL, (k + 1)tL]

}
∩
{

(k + 1)tL ≤ τ i+1
E ∧ τ∂

}
are disjoint (for k

fixed) and included in the event
{
τkC < (k + 1)tL ∧ τ∂

}
. On the other hand, exploiting the

Markov property together with Lemma 5.1.3:

Pµ [th < τ∂ ] ≥ c◦ exp[−ρ̃S(th − k tL)]Pµ
[
τkC < (k + 1)tL ∧ τ∂

]
.

Coming back to (5.14), we deduce:

P ≤ eT e
ρE tL

c◦
Pµ [th < τ∂ ]×

∑
{k≥0} 1{k tL≤th−t} exp[−(ρE − ρ̃S)× (th − ktL)].

The sum over k is upper-bounded by:

exp[−(ρE − ρ̃S)t]×
∑
{`≥0} exp[−`(ρE − ρ̃S)tL] ≤ e−(ρE−ρ̃S)t

1− e−(ρE−ρ̃S)tL
.

This concludes the proof of the Lemma, with: CL :=
eT e

ρE tL

c◦(1− e−(ρE−ρ̃S)tL)
. The choice of tL

is free, so that we can fix it to optimize this constant. �

5.2. Persistence

5.2.1. Theorem 5.2

For the proof of the following Theorem 5.2, we need the following Corollary of Theo-
rem 5.1:

Corollary 5.2.1. ”Stability”:
Under Assumption (A), there exists tS , c

′
S > 0 and ρ̃S ∈ (ρS , ρE) such that:

∀u ≥ 0, ∀ t ≥ u+ tS , Pζ(t− u < τ∂) ≤ c′S eρ̃Su Pζ (t < τ∂) . (5.15)

Theorem 5.2. Assume that there exists ρE > ρ̃S, DS ⊂ X , E ⊂ X and ζ ∈ M1 (X ) such
that (A3), (A2), (5.3) and (5.15) hold. Then, there exists tP , cP > 0 such that:

∀x ∈ X , ∀ t ≥ tP , Px (t < τ∂) ≤ cP Pζ (t < τ∂) . (5.16)
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5.2.2. Proof of Corollary 5.2.1:

By (5.1) and (A1), there exists c > 0 such that for any v sufficiently large: ζAv ≥ c ζ.
with the Markov property, it implies for any u ≥ 0:

Pζ(v + u < τ∂) ≥ cPζ(v < τ∂)Pζ(u < τ∂).

Exploiting (5.3) with t = u, we deduce Corollary 5.2.1 with v = t− u and c′S = (c cS)−1.
�

5.2.3. Proof of Theorem 5.2

From (A3), there exists tA, cA > 0 such that:

∀ t ≥ tA, ∀x ∈ E, Px(t < τ∂) ≤ cA Pζ(t < τ∂). (5.17)

This proof is very close to the one in [15] (p13:”Step 2: Proof of (A1)”), except that, in
(5.15), t− u shall be larger than some value, and similarly for t in (5.17). To compare the
notations, our eT , cA and cS refer resp. to their M , Cm and 4/c1DmDn1 . Thus, we won’t
detail it much and refer to [15].

Let ζ ∈M1(X ), t ≥ tP := tS ∨ tA and x ∈ X .

Px(t < τ∂) ≤ cA Ex [Pζ(t− τE < τ̃∂); τE < (t− tP ) ∧ τ∂ ] + Px(t− tP ≤ τE ∧ τ∂) (5.18)

thanks to property (A3), since t − τE ≥ tP ≥ tA on {τE < (t− tP ) ∧ τ∂}. By (A2) (with
the Markov inequality) and Corollary 5.2.1, with u = tA for the first term of (5.18) and
u = t− tS for the second: ∀t ≥ 0, ∀x ∈ X ,

Px(t < τ∂) ≤
(
cA + eρ̃S(tP−tS) /Pζ (tS < τ∂)

)
× c′S eT Pζ(t < τ∂) �

5.3. Coupling procedure: proof of Theorem 2.1

5.3.1. Definition of the uncoupled part

With a given set of parameters tD, cD, tP , cP > 0 (cf following subsection) we define
for th > tP :

J(th) := b(th − tP )/tDc . (5.19)

For t ≥ 0, µ ∈M1 (X ), th > tP , and k ∈ N, let:

a(k, t) = athµ (k, t) := 1{k≤J(th), k tD≤t} ×
cD/cP (1− cD/cP )k−1

× Pµ(th < τ∂)

Pµ(t < τ∂)
×

Pζ(t− k tD < τ∂)

Pζ(th − k tD < τ∂)
. (5.20)

Remark 5.3.1. As we can see in the proof of Fact 5.3.8, a(k, t) corresponds to the mass
associated with the k-th step of coupling, considered at time t with the constraint that it must
represent a fixed proportion of µAth (at time th). We refer to Figure 2 for a presentation
of the coupling architecture.
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Let rj := 1 −
∑
{k≤j} a(k, j tD). Under the condition rj > 0, that we will prove to

be true by induction over j ≤ J(th), we define:

νj(dx) := (1/rj)×
[
µAj tD(dx)−

∑
{k≤j} a(k, j tD) ζA(j−k) tD(dx)

]
, (5.21)

with the convention ν0 := µ. Remark that this definition ensures νj(X ) = 1.

Remark 5.3.2. νj shall correspond to the marginal of the process conditioned of not being
already coupled at time j tD. We normalize what remains of µAj tD when we subtract the
contribution of each coupling step (only those up to the j-th will contribute to the sum). The
main difficulty will be to prove that, under suitable conditions, νj is indeed a positive mea-
sure, thus a probability measure. In Figure 2, the associated coupling procedure is presented
for the more general case where we compare two initial conditions in someM`, ξ rather than
already in MR.

Remark 5.3.3. The procedure extends to cases where the QSD is not unique provided that
µ(1) and µ(2) are in the same basin of attraction, as we can see in [48]. This procedure
already deals with an inhomogeneity in time due to the conditioning for survival at time th,
so that adaptations to time-inhomogeneous processes are likely to be easy.

Explanation of the procedure as presented in Figure 5.3.1: Since both initial
conditions belong to the same M`, ξ, the time t◦ = t`,ξ◦ needed to reach MR can be chosen
uniformly. Then, after every time-interval of size tD and as long as time th − tP is not
reached, we shall exploit property (5.22). We split the ”remaining MCNE” (the νj after j
splitting steps) in order to extract a component whose contribution to the MCNE at time th
is explicit. This contribution (in the expression of ζ[th − t`,ξ◦ ]) is proportional to ζAth−t for
a splitting at time t. For this contribution at time th to be fixed, note that the contribution
to the MCNE at time t has to depend both on the remaining time th − t and the specific
value of νj .

5.3.2. Definition of the constants involved

For clarity, we denote by th (for horizon of time) the time t that appears in Theorem 2.1.
During this coupling procedure, it will stay fixed, and won’t appear in the other sections.
The constants cP , tP > 0 come from Theorem 5.2, while cD, tD > 0 come from this corollary
of Theorem 5.1:

Proposition 5.3.4. ”Coupling and Renewal”
Suppose that (A1) holds and (5.1) also for some M◦ := M`◦, ξ◦. Then, with `R := `◦,
ξR := ξ◦/2, MR := M`R, ξR , DR := D`R , there exits cD ∈ (0, 1) and tD ≥ t◦(`R, ξR)
such that:

∀µ ∈MR, µAtD(dx) ≥ cD ζ(dx) and
µAtD(DR)− cD

1− cD
≥ ξR. (5.22)

Remark 5.3.5. The subscript D refers to ”Doeblin’s” condition, since we will likewise
iteratively couple a proportion at most cD of the distribution. The properties (5.22) and
(5.16) make us able to prove the induction: νj ∈MR ⇒ νj+1 ∈MR.
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Figure 2: Illustration of the coupling procedure

The figure illustrates the coupling procedure on two initial conditions µ(1) and µ(2). We
can observe by symmetry how the MCNE are progressively decomposed with time descend-
ing along the vertical axis. By construction, the middle red parts (at time th) are com-

mon for both initial conditions (both its distribution ζ[th − t`,ξ◦ ] and the amount of mass).

Proof of Proposition 5.3.4. :
We apply (5.1) with ` = `R and ξ = ξR. Thus, with tR := t◦(`R, ξR):

∀µ ∈MR, ∀ t ≥ tR, µAt ∈M◦, i.e. µAt(DR) ≥ 2 ξR (5.23)

We can then define cM ∈ (0, 1), tM ≥ tR thanks to (A1), cf Subsection 3.3, such that:

∀x ∈ DR, Px [XtM ∈ dx; tM < τ∂ ] ≥ cM ζ(dx). (5.24)

We can then choose cD := cM ξR ∈ (0, 1), tD := tM ≥ tR (for the statement of the
proposition), and observe that:

∀µ ∈MR, µAtM (dx) ≥ µ(DR) cM ζ(dx) by (5.24)

≥ ξR cM ζ(dx) = cD ζ(dx) because µ ∈MR.

µAtD(DR)− cD
1− cD

≥ 2ξR − cD
1− cD

=
2− cM

1− ξR cM
ξR ≥ ξR,

by (5.23), where we used 1 ≥ (1− ξR) cM (of course cM ∈ (0, 1) and ξR > 0). �

Remark: Our choice for ξR and cD is done for simplicity and can certainly be improved
regarding the convergence rate γ. What we require is rather: ξR ≤ cM

cD
∧ ξ◦−cD

1−cD .

5.3.3. Lower-bound on the marginals

At time th, for any initial condition µ ∈MR, the MCNE shall be lower-bounded by:

ζ[th](dx) :=
∑
{j≤J(th)} ( cD/cP )×(1− cD/cP )j−1 ζAth−j tD(dx) ≥ 0. (5.25)
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Remark: The definition of (ζ[t])t≥0 implicitly depends on cD, tD, cP and tP , but not on
µ, ` or ξ.

The proof of Theorem 2.1 will be completed thanks to Theorems 5.1, 5.2 and the fol-
lowing proposition:

Proposition 5.3.6. Suppose (5.1), (A1) and (5.16) hold, with cD and tD chosen according
to Proposition 5.3.4, cP , tP according to (5.16). Then, to any pair ` ≥ 0 and ξ ∈ (0, 1), we
can associate a time t◦ = t◦(n, ξ) > 0 such that:

∀µ ∈M`, ξ, ∀ th,2 ≥ th,1 ≥ t◦, µAth,2 ≥ ζ[th,1 − t◦]. (5.26)

But as a first step to conclude the proof of Theorem 5.1, we prove the following lemma:

Lemma 5.3.7. Assume that for some j ≤ J(th)−1, rj > 0, νj ∈M1 (X ) and (5.27) holds.
Then:

rj+1 > 0 and ∃ 0 < cj ≤ cD, νj+1(dx) = (νjAtD(dx)− cj ζ(dx)) / (1− cj).

Then, in order to achieve the induction ”νj ∈ MR implies νj+1 ∈ MR” we ensure
iteratively:

Pνj (th − j tD < τ∂) ≤ cP Pνj (tD < τ∂) Pζ (th − [j + 1] tD < τ∂) , (5.27)

and νjAtD ≥ cD ζ, (5.28)

that come respectively from (5.16) and (5.22). The proof of Proposition 5.3.6 is achieved
in this second step, while the third one concludes the proof of Theorem 2.1.

Step 1: proof of Lemma 5.3.7. :
First of all, we need to relate 1 −

∑
k≥1 a(k, j tD) to the repartition of mass at time

th, which is done in the proof of the following lemma, whose proof (similar to the next
paragraph, yet much simpler) is reported in Appendix E:

Fact 5.3.8. Assume that for some j ≤ J(th)− 1: rj > 0, νj ∈M1 (X ).

Then rj =

[
1− cD

cP

]j
× Pµ(th < τ∂)

Pµ(j tD < τ∂)
× 1

Pνj (th − j tD < τ∂)
.

By the definition of νj , cf (5.21): µAj tD =
∑j

k=1 a(k, j tD) ζA(j−k) tD + rj νj .

µA[j+1] tD =
Pµ(j tD < τ∂)

Pµ([j + 1] tD < τ∂)
µAj tD · PtD

=
∑
{k≤j} a(k, j tD)×

Pµ(j tD < τ∂)× Pζ([j + 1− k] tD < τ∂)

Pµ([j + 1] tD < τ∂)× Pζ([j − k] tD < τ∂)
ζA[j+1−k] tD

+ `j νjAtD , (5.29)

where `j := rj ×
Pµ(j tD < τ∂)

Pµ([j + 1] tD < τ∂)
× Pνj (tD < τ∂). (5.30)
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By (5.20), i.e. the definition of a(k, j tD):

a(k, j tD)× Pµ(j tD < τ∂)

Pµ([j + 1] tD < τ∂)
×

Pζ([j + 1− k] tD < τ∂)

Pζ([j − k] tD < τ∂)
= a(k, [j + 1] tD).

Thus 1 =
∑
{k≤j} a(k, [j + 1] tD) + `j i.e. rj+1 = `j − a(j + 1, [j + 1] tD), (5.31)

by evaluating (5.29) on X and the definition of rj+1, cf.(5.21).
By (5.30), (5.20) and by Fact 5.3.8:

cj :=a(j + 1, [j + 1] tD)/`j (5.32)

=

[
1− cD

cP

]−j
× Pµ(j tD < τ∂)

Pµ(th < τ∂)
×

Pνj (th − j tD < τ∂)

Pνj (tD < τ∂)
× Pµ([j + 1] tD < τ∂)

Pµ(j tD < τ∂)

× cD
cP

(
1− cD

cP

)j
× Pµ(th < τ∂)

Pµ([j + 1] tD < τ∂)
× 1

Pζ(th − [j + 1] tD < τ∂)

=
cD
cP

Pνj (th − j tD < τ∂)

Pνj (tD < τ∂)× Pζ(th − [j + 1] tD < τ∂)
.

Thanks to (5.27): • 0 < cj ≤ cD.
Since cD < 1, using (5.31) and (5.32): • rj+1 = `j (1− cj) > 0.
Finally, by (5.21), i.e. the definition of νj+1, (5.32) and (5.29):

νj+1 = (1/rj+1)×
[
µA[j+1] tD −

∑
{k≤j+1} a(k, (j + 1) tD) ζA(j+1−k) tD

]
= (νjAtD − cj ζ)× `j /rj+1

• νj+1 = (νjAtD − cj ζ) /(1− cj). �

Step 2: proof of Proposition 5.3.6 with Lemma 5.3.7. :
We first defineMR thanks to Proposition 5.3.4 together with (A1) and (5.1) such that

(5.22) holds.

Step 2.1: under the assumption that µ ∈MR. Then, by induction over j ≤ J(th), we
state (Ij): rj > 0 and νj ∈ MR. We initialize at j = 0, with r0 = 1 and ν0 := µ ∈ MR by
hypothesis.

Assume (Ij) for some j ≤ J(th)−1. Then, by (Ij) and (5.22), (5.28) holds. j ≤ J(th)−1
means notably th − [j + 1] tD ≥ tP , thus thanks to (5.16):

Pνj (th − j tD < τ∂) = Eνj
[
PXtD (th − [j + 1] tD < τ∂) ; tD < τ∂

]
≤ cP Pζ (th − [j + 1] tD < τ∂)× Pνj [tD < τ∂ ] .

Thanks to Lemma 5.3.7 together with (5.28): νj ≥ 0 thus νj ∈M1 (X ). Moreover, for any
measurable set D:

νj+1(D) ≥ (νjAtD(D)− cj) /(1− cj) = 1− (1− νjAtD(D)) / (1− cj)
≥ (νjAtD(D)− cD) / (1− cD),
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since ζ(D) ∨ νjAtD(D) ≤ 1, cj ≤ cD and : c → 1 − (1 − νjAtD(D)) / (1 − c) is decreasing.
In particular, νj+1 ∈M1 (X ) holds true and thanks again to (5.22) we prove finally:

νj+1(DR) ≥ 1

1− cD
(νjAtD(DR)− cD) ≥ ξR.

Therefore, (Ij+1) holds.
By induction, we get (IJ(th)) thus rJ(th) > 0 and νJ(th) ∈MR ⊂M1 (X ). By (5.21), i.e.

the definition of νJ(th), and since (At) is a semigroup:

µAth =
Pµ(J(th) tD < τ∂)

Pµ(th < τ∂)
µAJ(th) tDPth−J(th) tD

≥ Pµ(J(th) tD < τ∂)

Pµ(th < τ∂)

[∑
{k≤J(th)} a(k, J(th) tD) ζA[J(th)−k] tD Pth−J(th) tD

]
≥

∑
k≤J(th)

Pµ(J(th) tD < τ∂)

Pµ(th < τ∂)
a(k, J(th) tD)

Pζ(th − k tD < τ∂)

Pζ([J(th)− k] tD < τ∂)
ζAth−k tD .

Finally, thanks to (5.20) and (5.25), we conclude: µAth ≥ ζ[th].

Step 2.2: µ ∈M1 (X ). For general initial conditions, recall that in Proposition 5.3.4,
we constructedMR such thatM◦ ⊂MR. Thus, (5.1) holds withMR instead ofM◦. Since
th,2 ≥ th,1, we obtain µAt◦+th,2−th,1 ∈ MR. As µAth,2 = µAt◦+th,2−th,1Ath,1−t◦ , we finally
deduce from (5.29):

µAth,2 ≥ ζ[th,1 − t◦].

�

Step 3: conclusion of the proof of Theorem 2.1. :
Thanks to Proposition 5.3.6:

∀ ` ∈ N, ∀ ξ ∈ (0, 1), ∀ (µ1, µ2) ∈ (M`, ξ)
2, ∀ th,2 ≥ th,1 ≥ t◦,

µ1Ath,1 ≥ ζ[th,1 − t◦] and µ2Ath,2 ≥ ζ[th,1 − t◦]
thus ‖µ2Ath,2 − µ1Ath,1‖TV ≤ ‖µ2Ath,2 − ζ[th,1 − t◦]‖TV + ‖µ1Ath,1 − ζ[th,1 − t◦]‖TV

≤ 2× [1− ζ[th,1 − t◦](X )]. (5.33)

1− ζ[th](X ) = 1−
∑
{j≤J(th)} ( cD/cP )

[
1− cD/cP

]j−1
by (5.25),

=
[
1− cD/cP

]J(th) ≤ exp[−γ (th − tP − tD)] by (5.19),

with γ := − 1

tD
ln

[
1− cD

cP

]
(5.34)

Finally, with (5.33), (5.34) and C = C(`, ξ) := 2 exp[γ (tP + tD + t◦(`, ξ))]:

‖µ2Ath,2 − µ1Ath,1‖TV ≤ C e−γ th,1 . (5.35)
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This states that for any µ ∈M`, ξ, (µAth){th≥0} is a Cauchy-sequence for the total variation

distance. Thus, it converges for this distance to some distribution α`,ξ. Since for any ` ≤ `′
and ξ ≥ ξ′ > 0, it is clear by definition that M`, ξ ⊂ M`′, ξ′ , we deduce α`,ξ = α`∨`

′, ξ∧ξ′

= α`
′, ξ′ . This means (since M1 (X ) =∪(`,ξ)M`, ξ) that a unique distribution α is the

attractor. In particular, there cannot be a QSD different from α.
For any initial condition µ: lim

t→∞
Pµ(Xt ∈ dy

∣∣ t < τ∂) = α(dy), where the conver-

gence holds in the weak topology (ie α is a quasi-limiting distribution). One can then easily
adapt the proof of Lemma 7.2 in [8] to deduce that α is effectively a QSD and ∀ t ≥ 0,
Pα(t < τ∂) = e−λ t. By letting th,2 →∞ in (5.35), with µ2 = µ1 = µ ∈M`, ξ:

‖Pµ [Xt ∈ dx | t < τ∂ ]− α(dx) ‖TV ≤ C(`, ξ) e−γ t

This ends the proof of Theorem 2.1 (up to Appendix E). �

5.4. Proof of Theorem 2.2:

Step 1: proof of the uniform convergence to h

Considering the arguments in the proof of Theorem 5.2, it is easily seen that for any
probability measure µ, there exists c′P , t′P such that:

∀x ∈ X , ∀ t ≥ t′P , Px (t < τ∂) ≤ c′P Pµ (t < τ∂) .

Here, we need this estimate for µ := α. To achieve this, we only need to apply (A1) and
adjust the value for cP : c′P := cP e

−λ tM / (α(D`M ) cM ), where tM , cM are given by (A1)
for initial condition in D`M . This can be translated in term of a uniform bound on h by:

‖h•‖∞ := sup{t≥0} ‖ht‖∞ ≤ c′P ∨ eλ tP <∞. (5.36)

Like in the proof of Proposition 2.3 in [13], we deduce that, for any s, t > 0, µ ∈M`, ξ:

|〈µ|ht〉 − 〈µ|ht+s〉| = 〈µ|ht〉 |〈α− µ|hs〉| ≤ ‖h•‖2∞ C(`, ξ) e−γ t. (5.37)

The constant C can actually be taken independently of `, ξ. Indeed, because the previous
expression is linear in µ and 〈α

∣∣ht〉 ≡ 1:

|〈µ
∣∣ht − ht+s〉| = 2|〈µ̄

∣∣ht − ht+s〉|, where µ̄ := (µ+ α)/2.

By choosing ` sufficiently large to ensure ξ := α(D`M )/2 > 0, we deduce that for any
µ ∈ M1 (X ), µ̄ ∈ M`, ξ. The inequality (5.37) is thus uniform in µ ∈ M1 (X ), so that (ht)
defines a Cauchy sequence for the uniform norm. We deduce that ht converges to some
unique function h, whose norm is also bounded by ‖h•‖∞. �

Step 2: Characterization of the survival capacity h

The rest of the proof is directly taken from [13]. As the punctual limit of (ht), and
since for any t ≥ 0, ht vanishes on ∂, this also hold for h. With the uniform bound (5.36),
we deduce that h is also bounded. As stated in the beginning of this Subsection 5.4, we
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can replace ζ by any probability measure µ in (5.16) (with specific values for cP (µ) =
cP (`)/ξ, tP (µ) = tP (`) > 0). In particular, for µ = δx, with x ∈ D`:

∀ t ≥ tP (`), Pα(t < τ∂) ≤ cP (`)Px(t < τ∂) thus ∀ t ≥ tP (`), ht(x) ≥ cP (`) > 0.

This proves that h has a positive lower-bound on any D`. By the Markov property and
(2.3):

∀u > 0, Puh(x) = lim
t→∞

Ex [PXu(t < τ∂)]

Pα(t < τ∂)
= e−λu lim

t→∞

Px(t+ u < τ∂)

Pα(t+ u < τ∂)
= e−λu h(x).

From this and (5.36), we immediately deduce that h is in the domain of L and Lh = −λh.
�

5.5. Proof of Theorem 2.3:

Except for (iii), for which we will prove (2.8), and for the uniqueness of the stationary
distribution, the proof is almost the same as in [13].

Step 1: Proof that the Q-process is well-defined and characterization

Let Λs be a Fs-measurable set and µ ∈M1 (X ). By the Markov property:

Pµ(Λs
∣∣ t < τ∂) = Eµ

[
eλs ht−s(Xs)/〈µ

∣∣ht〉; s < τ∂ , Λs

]
.

By Theorem 2.2, the random variable M t
s := 1{s<τ∂} e

λs ht−s(Xs) / 〈µ
∣∣ht〉, (where t ≥ s)

converges a.s. to:

Ms := 1{s<τ∂} e
λs h(Xs) / 〈µ

∣∣h〉,
where 〈µ

∣∣h〉 > 0 because h is positive on X . For t sufficiently large (a priori depending on
µ), we deduce from (5.36) and the convergence of 〈µ

∣∣ ηt〉 to 〈µ
∣∣ η〉:

0 ≤M t
s ≤ 2 eλs ‖h•‖∞ / 〈µ

∣∣h〉. (5.38)

Thus, by the dominated convergence Theorem, we obtain that Eµ(Ms) = 1.
By the penalisation’s theorem of Roynette, Vallois and Yor (cf Theorem 2.1 in [41]) these

two conditions imply that M is a martingale under Pµ and that Pµ(Λs
∣∣ t < τ∂) converges

to Eµ(Ms; Λs) for all Λs ∈ Fs when t → ∞. In particular for µ = δx, this means that Qx

is well defined and:

dQx

dPx
∣∣Fs = 1{s<τ∂} e

λs h(Xs)

h(x)
. (5.39)

(5.39) implies directly (2.7). Concerning (2.10):

µB[h]Qt(dy) =

∫
h(x)

〈µ
∣∣h〉µ(dx)

h(y)

h(x)
eλ t p(x; t; dy)

=
h(y)

〈µ
∣∣Pt h〉 µPt(dy) = µPtB[h] by (2.5),

=
h(y)Pµ(t < τ∂)

〈µPt
∣∣h〉 × µPt(dy)

Pµ(t < τ∂)
=

h(y)

〈µAt
∣∣h〉 µAt(dy) = µAtB[h].
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For a more general convergence, with µ as initial condition and Λs ∈ Fs, we deduce:

lim
t→∞

Pµ(Λs
∣∣ t < τ∂) = Eµ

(
eλs h(Xs) / 〈µ

∣∣h〉; s < τ∂ ,Λs

)
=

∫
X
µ(dx)

h(x)

〈µ
∣∣h〉Ex

(
eλs

h(Xs)

h(x)
; s < τ∂ ,Λs

)
=

∫
X
µ(dx)

h(x)

〈µ
∣∣h〉Qx(Λs) = QµB[h](Λs).

by (5.39) and the definition of µB[h] in (2.9).
Moreover, the convergence holds in fact in total variation over Fs, as we prove it now.

By the previous calculations, (5.38) and (5.36), for any ε > 0:∥∥Pµ(dw
∣∣ t < τ∂)−QµB[h](dw)

∥∥
TV,Fs

≤ Eµ|M t
s −Ms|

≤ 4 eλs
‖h•‖∞
〈µ
∣∣h〉 Pµ(|M t

s −Ms| ≥ ε) + ε,

so lim sup
t→∞

∥∥Pµ(dw
∣∣ t < τ∂)−QµB[h](dw)

∥∥
TV,Fs

≤ ε.

By letting ε→ 0, we conclude:

∀ s ∈ R+,
∥∥Pµ(dw

∣∣ t < τ∂)−QµB[h](dw)
∥∥
TV,Fs

−→
t→∞

0.

For the proof that X defines a strong Markov process under (Qx)x∈X , we refer again to
the proof in [13].

Step 2: The invariant distribution for X under Q
For all t ≥ 0 and f ∈ Bb(X ), with (5.39):

〈β
∣∣Qt f〉 = 〈α

∣∣h×Qt f〉 = eλ t 〈α
∣∣Pt (h×f)〉

= 〈α
∣∣h×f〉 = 〈β

∣∣ f〉, (5.40)

where we used (2.3). We prove the uniqueness with the next subsection.

Step 3: Proof of (2.8)

Exploiting (2.10), we deduce from our definitions:

‖(µB[h])Qt − β‖ 1
h

=

∥∥∥∥∥ µAt

〈µAt
∣∣h〉 − α

∥∥∥∥∥
TV

≤ 〈µAt
∣∣h〉−1× [‖µAt − α‖TV + |〈µAt

∣∣h〉 − 1|]. (5.41)

To ensure a lower-bound on 〈µAt
∣∣h〉, we exploit (2.5) and write:

〈µAt
∣∣h〉 =

eλt〈µPt
∣∣h〉

〈µ
∣∣ht〉 =

〈µ
∣∣h〉

〈µ
∣∣ht〉 .

We already know that ht is uniformly upper-bounded and h has a lower-bound on any D`.
Since |〈µAt

∣∣h〉 − 1| = |〈µAt − α
∣∣h〉| ≤ ‖µAt − α‖TV ‖h•‖∞, and exploiting (5.41) and

(2.2), we conclude that there exists C ′ = C ′(`, ξ) > 0 such that:

∀ t > 0, ∀µ ∈M`, ξ, ‖QµB[h](Xt ∈ dx)− β(dx)‖ 1
h
≤ C ′ e−γ t. �
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Step 4: Convergence with initial condition for the Q-process

When µQ is the initial condition of the Q-process, it is in general not possible to in-
terpret it as µB[h]. Indeed, we should expect in this case µ(dx) to be proportional to
h(x)−1 µQ(dx), which may not be integrable. Thus, the convergence to β might in general
not be exponential.

However, it is exponential for measures with support in any of the D`, in particular
Dirac masses. Indeed, we have a lower-bound of h: h(`) := inf {hx; x ∈ D`} , which is
positive because of (A1) and (5.16). Thus, if µQ ∈M1 (X ) has support on D`, 〈µQ

∣∣ 1/h〉 ≤
1/h(`) <∞, so:

µQ = µB[h], with µ(dx) := µQB(1/h) := µQ(dx) / (h(x)×〈µQ
∣∣ 1/h〉).

Now, µ has the same support as µQ, thus µ(D`) = 1, i.e. µ ∈M`,1. By (2.8):

‖µQQt − β‖TV = ‖µB[h]Qt − β‖TV ≤ C(`, 1) e−γ t.

More generally, since the Q-process is linear with its initial condition, and by (A0), the
property of uniqueness of the stationary distribution β holds.

Besides, to have exponential convergence, it suffices that: 〈µQ
∣∣ 1/h〉 < ∞. It can be

deduced from
∑

`≥1 µQ(D` \ D`−1) /h(`) < ∞ (note that one has lower-bounds of h(`)). In
any case, the convergence still holds in total variation. �

Appendices:

Appendix A: Combine all the inequalities to prove Proposition 4.2.2

We shall first prove that an upper-bound of the global supremum can be deduced from
the upper-bounds in Propositions 4.2.3-5. So we start by assuming that the inequalities
derived in these propositions hold for some parameters εX , ε0, CN∞, CX∞ and C0 (CN∞ coming
from Proposition 4.2.3; εX and CX∞ from Proposition 4.2.4; ε0 and C0 from Proposition 4.2.5)
and explain how these inequalities can imply the global supremum in (A2). This implication
shall hold at least for εX and ε0 sufficiently small, which is obtained with nE sufficiently
large. The constraints on εX and ε0 are mentioned while we handle the inequalities. We
prove next that we can indeed find suitable choices of εX , ε0, CX∞, CN∞ and C0 for the
upper-bounds in Propositions 4.2.3-5 to hold with these constraints.

th is introduced to make sure that EX∞∨EN∞∨E0 <∞ (≤ exp[ρ th]). It is needed to justify
the following inequalities, but this specific upper-bound plays no role. By the upper-bounds
in Propositions 4.2.4 and 4.2.3:

EX∞ ≤ CX∞ (1 + E0) + εX CN∞(1 + EX∞)

(1− εX CN∞) EX∞ ≤ CX∞ + εX CN∞ + CX∞ E0.

Provided that: εX ≤ (2CN∞)−1, recalling that CN∞ ∧ CX∞ ≥ 1, and combining it with the
upper-bounds of Proposition 4.2.5, it yields:

EX∞ ≤ 3CX∞ + 2CX∞ E0, EN∞ ≤ 4CN∞C
X
∞ + 2CN∞C

X
∞ E0

E0 ≤ C0 + 7 ε0CN∞C
X
∞ + 4 ε0CN∞C

X
∞E0

thus
(
1− 4 ε0CN∞C

X
∞
)
E0 ≤ C0 + 7 ε0CN∞C

X
∞.
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Provided: ε0 ≤
(
8CN∞C

X
∞
)−1

, and recalling that CN∞ ∧ C0 ≥ 1, we deduce:

E0 ≤ 4C0, EX∞ ≤ 11CX∞C0, EN∞ ≤ 12CN∞C
X
∞C0.

Finally, provided: εX ≤ (2CN∞)−1, ε0 ≤
(
8CN∞C

X
∞
)−1

, conditions which we can satisfy and
restrict the choices of n∞ and nE > n∞, we deduce:

sup(x,n)
{
E(x,n)[exp(ρ τ̂E)]

}
≤ 12CN∞C

X
∞C0 <∞. (6.1)

More precisely, for any ρ, we obtain from Proposition 4.2.3 the constants n∞ and CN∞, so
that we can set εX := (2CN∞)−1. We then deduce, thanks to Proposition 4.2.4, some value
for nE and CX∞. Setting ε0 = (8CN∞C

X
∞)−1, we can choose, according to Proposition 4.2.5,

some value n0 > 0 and C0. Taking the limit in (6.1) as th →∞ (recall that τ̂E := τE∧τ∂∧th)
and choosing n := n∞ ∨ nE ∨ n0 conclude the proof of Proposition 4.2.2.

�

Appendix B: Descent from infinity, proof of Proposition 4.2.3

Lemma 4.2.6 implies Proposition 4.2.3. :
We obtain by induction and the Markov property: ∀n > 0, Pn(k t < τD↓ ) ≤ εk.

Thus, by choosing ε sufficiently small (for any given value of t > 0), we ensure:

CN∞ := sup{n>0}

{
En[exp(ρτD↓ )]

}
< +∞.

A fortiori with T↓ := inf {t,Nt ≤ n∞} ∧ τE ≤ τD↓ ,

sup
(x,n)

{
E(x,n)[exp(ρ T↓)]

}
≤ CN∞ <∞.

At time T↓, the process is either in E or in T X∞ . Thus:

E(x,n)[exp(ρ τ̂E)] ≤ E(x,n)[exp(ρ T↓) ; (x, n)T↓ ∈ E]

+ E(x,n)

[
exp(ρ T↓)E(X,N)T↓

[exp(ρ τ̂E)] ; (X,N)T↓ ∈ T
X
∞

]
,

with the Markov property and the fact that (τ̂E − T X∞ )+ ≤ th on the event
{(X,N)T↓ ∈ T X∞ }. Therefore:

EN∞ ≤ CN∞ (1 + EX∞). �

Proof of Lemma 4.2.6. :
The proof of this Lemma relies mainly on the same arguments as in [1], part 6, related

to the descent from infinity. Let Zt := σ/2×
√
ND
t . It is solution to the following EDS:

Zt := z +

∫ t

0
ψ (Zs) ds+Bt, where ψ(z) := − 1

2 z
+
r z

2
− c z3. (6.2)
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As long as Z is very large and |B| not exceptionally large, the leading term −cZ3
t indeed

makes the process come down in finite time. Let V := Z−B. It is the solution of the ODE:

dVt
dt

= − 1

2(Vt +Bt)
+
r (Vt +Bt)

2
− c (Vt +Bt)

3, (6.3)

Let z2 ≥ z1 := sup

{
z > 0,

∣∣∣∣− 1

2z
+
rz

2

∣∣∣∣ ≥ cz3

2

}
, (6.4)

TB := inf {t > 0, Bt /∈ [−z2, 2 z2]} , TV := inf {t > 0, Vt < 2z2} , (6.5)

where we consider w.l.o.g. an initial condition z strictly bigger than 2 z2, so that TV is
positive a.s. Then, as in [1], we get on the time interval [0, TB ∧ TV ]:

Bt ≥ −z2 ≥ −Vt/2, implying Vt +Bt ≥ Vt/2 and Vt +Bt ≥ z2,∣∣∣∣− 1

2(Vt +Bt)
+
r (Vt +Bt)

2

∣∣∣∣ ≤ c

2
(Vt +Bt)

3,

d

dt

[
(Vt)

−2] =
−2

(Vt)3
dV

dt
≥ 2×

(
c− c

2

)
×
(
Vt +Bt
Vt

)3

≥ c

8
,

thus V
(−2)
t − z(−2) ≥ c t/8 and in particular Vt ≤

√
8/(c×t).

Thus, {t ≤ TB} ⊂ {TV ≤ t} ∪
{
Vt ≤

√
8/(c×t)

}
.

By (6.5), let z2 be sufficiently big to ensure: P(TB < t) ≤ ε. Then, denote:

z∞ :=
(√

8/(c×t) + 2 z2

)
∨ (4 z2). We deduce that, on the event {t ≤ TB}, either Zt ≤ z∞

or TV ≤ t while ZTV ≤ 4z2 ≤ z∞. In any case, τD↓ ≤ t. Hence: ∀ z > 0, Pz(t < τD↓ ) ≤ ε. �

Appendix C: Mal-adaptation too large, proof of Proposition 4.2.4:

Lemma 4.2.7 implies Proposition 4.2.4. :
Let ρ, ε, n∞ > 0 (c > 0 is the same as for the definition of Z). For simplicity, we choose

t := log(2)/ρ > 0 (i.e. exp [ρ t] = 2), and assume w.l.o.g. t < th. We choose r∨ ∈ R
according to Lemma 4.2.7 such that:

∀n > 0, ∀ r ≤ r∨, Pn
(
t < τD∂

)
≤ e−ρ t/2 = 1/4,

∀ r ≤ r∨, Pn∞
(
TD∞ ≤ t

)
+ Pn∞

(
ND
t ≥ n∞

)
≤ ε/4.

Since lim sup‖x‖→∞ r(x) = −∞, with nE chosen sufficiently large:

∀x /∈ B(0, nE), r(x) ≤ r∨.

Let (X,N) with initial condition (x, n) ∈ T X∞ . In the following, we denote:

TN∞ := inf {t ≥ 0, Nt ≥ nc} , τ0 := inf {t > 0, (X, N)t ∈ T0} ,
T := t ∧ TN∞ ∧ τ0 ∧ τE ∧ τ∂ . (6.6)
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Since, on the event {T = t}, either Nt ≥ n∞ or (X,Y )t ∈ T X∞ :

E(x,n)[exp(ρ τ̂E)] = E(x,n)[exp(ρ T ) ; T = τ̂E ] + E(x,n)[exp(ρ τ̂E) ; T = τ0]

+ E(x,n)[exp(ρ τ̂E) ; T = t] + E(x,n)[exp(ρ τ̂E) ; T = TN∞ ]

≤ exp(ρ t) (1 + E0) + exp(ρ t)P(x,n)[T = t]EX∞
+ exp(ρ t)

(
P(x,n)[T = TN∞ ] + P(x,n)[Nt ≥ n∞, T = t]

)
EN∞,

by the Markov property. Now, by (6.6), ND is an upper-bound of N before T . Thus, by
our definitions of t, nE , r∨:

E(x,n)[exp(ρ τ̂E)] ≤ 2 (1 + E0) + EX∞/2 + ε EN∞/2.

Taking the supremum over (x, n) ∈ T X∞ in the last inequality yields:
EX∞ ≤ 4 (1 + E0) + ε EN∞. �

Proof of Lemma 4.2.7. :
We recall our definition of Z and ψ in (6.2). In the following, we condider ψ as a function

of r, thus the notation ψr(z) := −1/(2 z) + (rz)/2− c z3.
Step 1: supz>0 ψr(z) −→

r→−∞
−∞.

Let A > 0, zA := 2
A and r∨ := −A2. Then:

∀ z ≤ zA, ∀ r ≤ 0, ψr(z) ≤ −1/(2 zA) = −A,
∀ z ≥ zA, ∀ r ≤ r∨ ≤ 0, ψr(z) ≤ r∨ zA = −2A. �

Step 2: bound on ZAt := z −A t+Bt for A large:
Let ε, tD > 0. We can choose ∆z > 0 such that, with N ∼ N (0, 1):

P
(

sup{t≤tD}Bt ≥ ∆z
)

= 2P
(
N ≥ ∆z /

√
tD
)
≤ ε. (6.7)

Then, we can choose A > 0 (sufficiently big) such that:

P (BtD ≥ A tD) = P
(
N ≥ A

√
tD
)
≤ ε.

We also choose r∨ thanks to step 1 such that:

∀ r ≥ r∨, sup
z>0

ψr(z) ≤ −A ≤ 0.

We now assume that the initial condition of Z satisfies Z ≤ z∞ (z∞ = σ
√
n∞/2).

For any zE ≥ z∞ + ∆z and r ≤ r∨, we deduce:

sup{t≤tD} Zt ≤ z∞ + sup{t≤tD}Bt,

P
(

sup{t≤tD} Zt ≥ zE
)
≤ P

(
sup{t≤tD}Bt ≥ ∆z

)
≤ ε by (6.7),

P (ZtD ≥ z∞) ≤ P (BtD ≥ A tD) ≤ ε by our choice of A and r∨.
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Thus

P
(
TD∞ ≤ tD

)
≤ P (ZtD ≥ z∞) + P

(
sup{t≤tD} Zt ≥ zE

)
≤ 2 ε,

with nE = (2 zE/σ)2. It proves the second claim of the Lemma (up to a change of ε by ε/2).

Step 3: descent from infinity and extinction
Now, we need to assume c > 0. Let again ε, tD > 0. Thanks to Lemma 4.2.6 (for r = 0

since P(tD < τ↓) is decreasing with r) we choose z↓ > 0 such that, with
τ↓ := inf {t ≥ 0; Zt ≤ z↓}:

∀ r ≤ 0, ∀ z > 0, Pz∞(tD < τ↓) ≤ ε (6.8)

Like in the previous step, we choose A > 0 such that:

P (BtD ≥ A tD − z↓) ≤ ε.

Again, we choose r∨ thanks to step 1 such that: ∀ r ≤ r∨, supz>0 ψr(z) ≤ −A ≤ 0.
Then, with r ≤ r∨, on the event {τ↓ ≤ tD}, conditionally on Zτ↓ :

PND
τ↓

(
2 tD − τ↓ < τ̃∂

D
)
≤ PZτ↓

(
Z̃tD > 0

)
≤ P (z↓ −A tD +BtD > 0) ≤ ε, (6.9)

by our choices of A and r∨. Finally, by the Markov property, for any z > 0:

Pz∞
(
2 tD < τD∂

)
≤ Pz∞ (tD < τ↓) + Ez∞

[
PZτ↓

(
2 tD − τ↓ < τ̃D∂

)
; τ↓ ≤ tD

]
≤ 2 ε with (6.8), (6.9)

which proves the first claim of the Lemma (replace ε by ε/2 in the proof and take tD = t/2).
�

Appendix D: Too few individuals, proof of Proposition 4.2.5:

For (x, n) ∈ T0, with n0 sufficiently small, we would like to say that mortality is so strong
in this area that it overcomes an exponential growth at rate ρ. In order to get an estimate
of mortality in T0, we will use some coupling with branching processes and consider the
process after a time tD = 1 (arbitrary). In practice, we prove that for any ρ, ε′ > 0, there
exists C ′ ≥ 1 such that for any nE sufficiently large:

E0 ≤ C ′ + ε′
(
EN∞ + EX∞ + E0

)
.

By taking ε′ = (ε ∧ 1)/2, C = 2C ′, it clearly implies Proposition 4.2.5.

The equation NU
t = n0 +

∫ t
0 r+N

U
s ds+ σ

∫ t
0

√
NU
s dBN

s defines an upper-bound of
N on [0, tD] provided n ≤ n0, while NU is a classical branching process. The survival of
(X,N) beyond tD clearly implies the survival of NU beyond tD. Let us define ρ0 by the
relation: Pn0

(
tD < τU∂

)
=: exp(−ρ0 tD). For a branching process like NU , it is classical

that: ρ0 → ∞ as n0 → 0. Indeed, with u(t, λ) the Laplace exponent of NU (cf e.g. [37]
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Subsection 4.2, notably Lemma 5): Pn0

(
τU∂ ≤ tD

)
= exp[−n0 limλ→∞ u(tD, λ)] → 1, as

n0 → 0.
So we can impose that ρ0 > ρ, and even that exp(−(ρ0 − ρ) tD) is sufficiently small to

make transitions from T0 to T0, T N∞ or T X∞ of little incidence.

E(x,n)[exp(ρτ̂E)] ≤ E(x,n)

[
exp(ρτ̂E); τ̂E < tD

]
+ E(x,n)

[
exp(ρτ̂E); (x, n)tD ∈ T0 ∪ T

N
∞ ∪ T X∞

]
≤ exp[ρ tD] + exp(ρ tD) (E0 + EN∞ + EX∞) P(x,n)(tD < τ∂)

≤ C ′ + ε′ (E0 + EN∞ + EX∞), where C ′ := exp[ρ tD]

and ε′ := exp(−(ρ0 − ρ) tD)→ 0 as n0 → 0. �

Appendix E: Proof of Fact 5.3.8

Like in the proof of Lemma 5.3.7 with Fact 5.3.8:

µAth =
Pµ(j tD < τ∂)

Pµ(th < τ∂)
µAj tD · Pth−j tD

=

j∑
k=1

a(k, j tD)× Pµ(j tD < τ∂)

Pµ(th < τ∂)
×

Pζ(th − k tD < τ∂)

Pζ([j − k] tD < τ∂)
ζAth−k tD

+ rj ×
Pµ(j tD < τ∂)

Pµ(th < τ∂)
× Pνj (th − j tD < τ∂) νjAth−j tD (6.10)

Yet, by (5.20): a(k, j tD)× Pµ(j tD < τ∂)

Pµ(th < τ∂)
×

Pζ(th − k tD < τ∂)

Pζ([j − k] tD < τ∂)
=
cD
cP

(
1− cD

cP

)k−1
,

so that we obtain, by evaluating the measures in (6.10) on X :

rj ×
Pµ(j tD < τ∂)

Pµ(th < τ∂)
× Pνj (th − j tD < τ∂) = 1−

j∑
k=1

cD
cP

(
1− cD

cP

)k−1
=
(
1− cD/cP

)j
. �
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