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characteristics. Many researchers apply Artificial Intelligence
(AI), namely traditional machine learning and deep learning to
mitigate these issues and improve the accuracy and robustness
of their models. In this context, this paper surveys AI-based
approaches for pedestrian navigation with wearable inertial
sensors. It shows that these approaches can be classified
into the 2 following classes depending on how the inertial
measurement data is aggregated to gather the most of useful
information.

1) Human gait driven AI methods: Inspired by the nature
of human walking, inertial signals are segmented by the user’s
gait (step or stride) events. Each segment can be utilized to
estimate the user’s step vector: length and direction.

2) Sampling Frequency driven AI methods: Inherited from
the acceleration double integration approach, inertial signals
are segmented into fixed length sequences, overlapping or not.
AI methods are trained to infer the user’s velocity or change
in position given a fixed length of inertial measurements. The
length of a segment partly depends on the measurement’s
sampling frequency.

This survey details the two-categories proposed to classify
existing AI based pedestrian navigation methods with wear-
able inertial sensors. It analyses their principal hypotheses,
advantages and limitations, both at theoretical and experi-
mental levels. Theoretical analysis identifies the assumptions
underlying the learning methods and reviews their validity.
Experimental assessment is conducted in each category with
one representative method selected in each category. The
experimental assessment is conducted on 3 testing tracks,
each is about 250 meters, including both indoor and outdoor
environment, stairs, with the user holding the device in front
of his chest.

Section II and III present the AI based pedestrian naviga-
tion state-of-the art methods: the human gait driven and the
sampling frequency driven AI methods, respectively. The two
methods selected in the aforementioned categories are detailed
in section IV. Section V is dedicated to the experimental as-
sessment, including the evaluation and comparison of the two
selected methods on pedestrian tracks. Section VI concludes
the survey.

II. HUMAN GAIT DRIVEN AI METHODS

Human gait driven AI methods are tightly related to the
Step-and-Heading approach: triggered by the user’s gait (step

Abstract—Miniaturized IMU (inertial measurement units) are 
widely integrated in wearable devices, promoting the versatile 
and low cost pedestrian inertial navigation technology, especially 
for indoor environment. In recent years, AI (Artificial Intelli-
gence) is applied to improve the performance of this technology. 
AI methods work with data samples, thus it is important to select 
a suitable process for segmenting the inertial data sequences. This 
survey classifies A I m ethods f or p edestrian i nertial navigation 
into two categories, namely human gait driven methods and 
sampling frequency driven methods, according to their data 
segmentation process. Human gait driven methods segment the 
inertial measurement sequence by gait (step or stride) events 
and learn to infer a gait vector (step/stride length and direction) 
given a gait segment. Sampling frequency driven methods learn 
to infer the user’s velocity or change in position given a fixed-
length segment of inertial measurements. The survey studies the 
underlying assumptions and their validity of the two categories 
of AI methods. Two methods (SELDA and RoNIN), each from 
a category, are chosen for evaluation and comparison, on three 
testing tracks totaling 770m, covering indoor and outdoor en-
vironment, including stairs. The experiments highlight the two 
methods’ advantages and limitations, supporting the theoretical 
analyses. The selected methods achieve 7m and 12m positioning 
errors, respectively.

Index Terms—Indoor positioning, inertial sensors, pedestrian 
navigation, dead reckoning, Machine Learning, Deep Learning

I. INTRODUCTION

Pedestrian positioning technology with inertial sensors is
used in many daily life applications such as navigation apps
and Augmented Reality games. This choice results from the
lack of GNSS (Global Navigation Satellite System) signals
indoors and degraded performance of GNSS positioning even
in urban canyons. Indoor positioning technologies can also
be based on radio beacon networks deployed in buildings.
But this technology faces many problems such as high layout
cost, changing indoor radio propagation context, crowd effect,
human body tissue absorption, and so on. Inertial naviga-
tion systems have become more and more popular because
they are infrastructure-free solutions and low cost. But their
performance is degraded by inertial signals drift during a
long period, lack of robustness when dealing with variable
pedestrian motion modes (slow/normal/fast walking, going
up or down stairs, stationary, etc.), device poses (in swing-
ing hand, "texting", in pocket, etc.) and individual walking
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or stride) events and estimate the user’s current step length
and heading. Wearable inertial sensor records are segmented
by gait events, which can be detected using the cyclic pat-
terns. Detecting gait cycles from inertial signals collected in
different device carrying modes (swinging, texting, in pocket,
on armband,...) is challenging, since the signals of different
modes have different shapes. [1] considers that a peak in
the acceleration norm or a valley in the angular velocity
norm represents a step instant, for all carrying modes. Thus
they propose 2 parallel Histogram Gradient Boosting Decision
Trees (GBDT) [2] based models. One detects acceleration
peaks and the other angular velocity valleys. A decision
process is designed to combine the output of the 2 models.
Tested for normal and visually impaired gaits, it achieves 97%
correct step detection with 4 different device carrying modes.

Once the IMU measurement signals are segmented by gait
events, each segment can be utilized to estimate the current
step/stride length and its direction. In the literature so far, step
length and direction are estimated separately.

A. A Two-step Estimation Process: step/stride length and
walking direction

1) Step or Stride length Estimation: Step length varies
from person to person and even for the same person. It
depends on the motion modes (normal/fast walking, going up
or down stairs). Even for the same person and same motion,
different device poses on the user’s body result in different
signal patterns. When the physical modeling becomes too
complicated, Artificial Intelligence comes in handy.

One common approach is to extract features manually
from a step/stride segment. Wang and al. [3] classify relevant
features into statistical (mean, standard deviation, maximum,
etc.), time-domain (number of peaks, zero-crossing ratio, etc.),
frequency domain (dominant frequencies, spectrum energy,
etc.) and higher-level features (based on empirical models).
The extracted features are utilized in an ensemble regression
model combining 6 regressors: Extreme Gradient Boost (XG-
Boost) [4], LightGBM [2], K-Nearest Neighbor (KNN) [5],
Decision Tree (DT) [6], AdaBoost [7] and Support Vector
Regression (SVR) [8]. Klein and al. [9] leverage feature
selection to accelerate the deep learning process. They extract
60 candidate features from the input sequence, perform feature
selection with Monte-Carlo runs and ridge regression, then
the selected features are fed to a convolutional neural network
to regress step length. Inspired by the Weinberg Model [10],
Zhang et al. [11] express the acceleration in the global frame
via device attitude tracking, remove the gravity component,
filtered it with moving average and take the differences of
peak and valley of vertical acceleration as input features to an
OS-ELM (Online Sequential Extreme Learning Machine) [12]
to regress step length.

An alternative to feature engineering is end-to-end regres-
sion with the step or stride sequence. Gu et al. [13] use 2
stacked autoencoders and a dense layer to learn step length
from a step sequence. Yang et al. [14]’s step length model is
a Deep Believe Network (DBN) built with multiple Gaussian

Bernoulli Restricted Boltzmann Machines (RBM, for feature
extraction) [15] and a regression layer on top. Wang et al. [16]
combine the stride sequence with other empirical features as
their model’s input. Their model is detailed in section IV.

2) Heading estimation: In earlier PDR frameworks, head-
ing is usually estimated by Extended Kalman Filter fusing
the device’s angular velocity and magnetometer readings,
assuming that the offset between the device’s and the user’s
pointing directions is approximately constant, which is the
case of "texting" or "calling" modes. This assumption is not
true in the "swinging" or "pocket" modes. More recently deep
learning methods are applied to infer the user’s heading from
sequences of the IMU measurements.

Zhang et al. [11] found recognizable patterns in the se-
quences of the device’s azimuth angle and magnetometer
readings when the user changes direction. Thus, they select
them as input features to their OS-ELM network to regress the
user’s heading angle. Wang et al. [17] proposes a hierarchical
LSTM [18] architecture associated with a spatial transformer
[19] to regress walking direction of each step made by a
pedestrian, taking as input 3D acceleration, angular rate and
magnetometer readings over a complete trajectory, leveraging
the strong correlation between the headings of the adjacent
steps.

B. Analysis of Underlying Assumptions

The main interest of this approach is that it’s based on
physical modeling of human gait. AI methods driven by
realistic gait changes are close to the physical facts and thus
more explainable. Gait driven AI methods are based on the
following hypotheses, proven or empirical.

1) Human walking is cyclic: In [20], walking locomotion
is described as a process in which the erect, moving body is
supported by first one leg, and then the other. As the moving
body passes over the supporting leg, the other leg swings
forward to prepare for its next supporting phase.

2) The gait cycles and the movements of the upper and
lower body limbs’ movements are correlated: It allows gait
event detection with wearable sensors. According to [21], dur-
ing normal walking, head and trunk travel as a unit and move
“up and down” as the center of gravity follows the mechanics
of the limbs. During each stride, the arms reciprocally flex and
extent.

3) Human paces are regular and constrained: According
to a statistical study presented by [3], within their dataset
containing 13.5km and 10145 strides of gait measurements
collected by a foot mounted device, including fast, normal
and slow walking, 99.5% of strides were within 1.55m and
no stride exceeds 1.75m. The mean and standard deviation of
stride length are 1.33m and 0.18m.

4) Step/stride length and inertial signals collected from
different body parts are correlated: Empirical models are de-
veloped based on foot mounted sensors, for example Kim [22]
found correlation between mean acceleration norm and stride
length and Ladetto [23] found correlation between acceleration
variance and stride length. The hypothesis may be reasonable
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considering the correlation between foot movements and the
those of the rest of the body.

Hypothesis 1 and 3 are proven in regular walking situations.
Exceptions exist though, for example an elderly user may lose
balance and fall down. In such case the cyclic and regular
pattern of gait is corrupted. Hypothesis 2 is a simplification
of the reality, especially for the arms. Users can move their
arms freely while walking and detecting step under irrelevant
arm/hand movements remains challenging. On the other hand,
human gait driven AI models rely vitally on the quality of gait
event detection. Poor gait segmentation during the training
phase can result in overfitting since it prevents the model
from learning relevant representations. For hypothesis 4, even
if this correlation exists, it will differ for different device
carrying modes (handheld, pocket, armband,. . . ) and different
user motions (normal walking, stair climbing, running, ...).
Step length estimation taking into account several carrying
modes is challenging. Most of the current research works
either consider a single device pose ( [16], [14]) or necessitate
device pose classification ( [3], [9]). [13] was a first attempt
to estimate step length with a step segment of IMU measure-
ments for 2 carrying modes: swinging and pocket, without
classification. However, they only presented walking distance
error (sometimes errors may compensate for themselves if we
add them up) and they didn’t show convincing generalization
ability on unseen users.

III. SAMPLING FREQUENCY DRIVEN AI METHOD

Sampling Frequency driven AI methods learn to infer the
user’s velocity or change in position given a fixed-length
inertial measurement sequence, regardless of the gait events.
Inherited from the acceleration double integration approach,
this branch of methods remedy the drift by piece-wise es-
timation or correction to stop the error propagation. In the
literature, the duration of a segment is usually between 1 and
2 seconds.

A. Existing Approaches

RIDI (Robust IMU Double Integration [24]), considered
as the "ancestor" of this branch, tracks the user via the
device. RIDI regresses a horizontal velocity of the device
given a sequence (200 frames at 200Hz) of acceleration and
angular velocity expressed in a reference frame whose y-
axis is aligned with the gravity. The regressed velocity is
utilized to correct low frequency errors in the acceleration,
such that the integration of the corrected acceleration matches
the predicted velocities. The device’s position is estimated
by double integrating the corrected acceleration. The same
group of authors later proposed RoNIN (Robust Neural Inertial
Navigation [25]), that we will detail in section IV.

IONet [26], another pioneer of sampling Frequency driven
AI methods, considers the true acceleration and angular rate
of the user as latent variables of IMU raw measurements.
The remedy proposed by IONet to reduce drift is to "break it
down": inertial measurements are segmented into fixed length
time windows (200 frames at 100Hz) with a stride of 10

frames, each segment is "pseudo independent" of others if we
consider that the user’s initial velocity of the segment can be
roughly estimated from the signal’s frequency, considering the
regularity of human movement. Then the following mapping
is possible:

(a,w)200∗6
fθ→ (∆l,∆ψ) (1)

where a and w are the triaxial acceleration and angular rate
measurements segments, ∆l is the distance traveled and ∆ψ
is the user’s change in heading over the same time window.
the mapping fθ is done by a 2- layer Bi-directional LSTM
network, selected for its ability to handle time dependencies.

Feigl et al. [27] map a sequence (128 frames at 100Hz) of
acceleration magnitude and angular rate magnitude (they call
them SMV: signal magnitude vectors) to the user’s velocity
magnitude within the same time window, using a CNN for
feature extraction and Bi-directional LSTM for regression.

B. Analysis of Underlying Assumptions

A benefit from this category is that the sampling frequency
driven AI methods don’t need gait analysis, which is already
a complex challenge. Deep learning models always require
constant input length, thus, fixed length segments are naturally
suitable for deep learning. In contrast, gait driven methods
need interpolation or padding to uniformize the number of
measurements contained in a gait segment. They consider the
following two assumptions.

1) The true kinematic of the user’s center of mass is
continuous and can be recovered from inertial measurements
collected from different body parts: This branch of methods
consider this assumption to be true.

2) Each fixed length segment is independent of the others:
This means that each window of inertial signals contains
sufficient information to yield a velocity or displacement
estimation over the same time window.

Hypothesis 2 implies that a segment is able to yield velocity
estimation without knowledge of the initial velocity, this is
approximately true only if we consider a cyclic and regu-
lar movement that the velocity is correlated to the signal’s
frequency. Thus, the inferred velocity may be sensitive to
noises, and the fixed segment length may not be ideal to
handle different walking dynamics or less regular walking
patterns, for example, extreme slow walking, or some elderly
people who frequently lose balance. The same hypothesis
also implies that a segment contains sufficient information to
infer heading change over the same time window. Combettes
et al. [28] did a survey on traditional methods to estimate
the angular misalignment between the unconstrained device’s
pointing direction and the user’s walking direction, namely
Principal Component Analysis (PCA), [29], [30], Forward and
Lateral Accelerations Modeling (FLAM) [31] and Frequency
analysis of Inertial Signals (FIS) [32]. All these methods
assume that the walking heading is observable with handheld
inertial sensors during one step/stride, In another word, a
segment of signal cut within gait cycles does not provide
enough information to recover a walking heading.
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Fig. 1: Stride length model overview [16]

IV. SELECTED METHODS FOR THE EXPERIMENTAL
ASSESSMENT: SELDA AND RONIN

The method [16]: pedestrian Stride-length Estimation based
on LSTM and Denoising Autoencoders (titled SELDA in
the rest of the paper) is selected among the gait driven AI
methods. The later is representative of the category with
sufficient implementation and data processing details, along
with a benchmarking dataset. RoNIN [25] is selected among
the sampling frequency driven AI methods since the authors
published their implementation, trained model weights and a
part of their dataset.

A. SELDA: pedestrian Stride-length Estimation based on
LSTM and Denoising Autoencoders

[16] presents a deep learning stride length estimation model
taking as input stride event segmented acceleration and angular
velocity readings, collected by a smartphone IMU.

1) SELDA Dataset: is publicly available [33], collected by
5 volunteers of different genders, ages and heights, using a
Huawei mate 9 smartphone. Throughout the recordings, the
users hold the phone horizontally in right hand in front of
their chest. The stride length ground truth is provided by a
foot mounted IMU module.

The dataset contained more than 22 km, 10000 strides of
gait measurements in natural motions such as fast walking,
normal walking, slow walking, running, jumping. It covers
indoor and outdoor environment including stairs, escalators,
elevators, office environments, shopping mall, streets and
metro station.

2) Data preprocessing: The raw triaxial accelerometer and
gyroscope readings at 100Hz are segmented by stride events.
The stride segments are zero-padded to reach a uniform length
of 300. 4 higher-level stride length features given by empirical
models (Weinberg [10], Kim [22], Ladetto [23], Scarlet [34])
are also computed within a stride segment:

Weinberg = Kw × 4
√
amax − amin (2)

where amax and amin are the maximum and the minimum
vertical accelerations.

Kim = Kk ×
3

√∑N
i=1 |ai|
N

(3)

where |ai| represents the acceleration magnitude of the i-th
sample.

Ladetto = α× f + β × v + γ (4)

where f is the stride frequency and v is the variance of
acceleration magnitude.

Scarlett = Ks ×

∑N
i=1 |ai|
N − amin

amax − amin
(5)

where
∑N

i=1 |ai|
N is the average acceleration magnitude

and amax and amin are the maximum and the minimum
acceleration magnitudes.
We estimate the parameters Kw, Kk, Ks, α, β and γ by
lineair regression on the whole training set.

3) Stride Length Estimation: The algorithm comprises 3
steps (Fig. 1).

Feature extraction by LSTM. The input is fed to an LSTM
based networks containing 2 parallel LSTM layers, one pro-
cesses the accelerometer sequence and the other, gyroscope
sequence. Feature extracted from accelerations and angular
velocities as well as higher-level stride length features are
concatenated and fed to 4 consecutive dense layers to regress
a stride length. The goal of the first phase is to obtain a LSTM
feature extractor.

Denoising the features by autoencoder. Once the LSTM
network is trained, We only keep the feature extracting layers
and discard the regression layers. To address the poor signal
quality of the smartphone sensors, an autoencoder is built. The
concatenated features extracted by LSTM is fed to a dropout
layer to get a corrupted version of it, then the corrupted input
goes through the encoder, the decoder reconstructs the input
features from the encoder’s output. We chose dropout rate =
0.3. The autoencoder is trained in an unsupervised manner
minimizing the error between the reconstructed input and the
original input.

Stride length regression. Once the autoencoder is trained,
we retrieve features extracted by its encoder, as the input for
the final stride length regression. The stride length is regressed
by 3 consecutive dense layers. All layers are fine-tuned with
the regression.

4) Adaptation for experimental assessment: We implement
the SELDA model according to [16]. 35 higher-level features
are utilized in the article, but definitions of only 4 among
them are available, thus we decide to use only 4 higher-level
features. We train the SELDA model with SELDA dataset.

To obtain the user’s trajectory, we pile up 3 modules namely
step detection, stride length estimation (SELDA) and heading
estimation to build a complete pedestrian dead reckoning
(PDR) algorithm. Since we are only interested in SELDA’s
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performance, we use the stride detection result and the user’s
heading at each stride event, all provided by the reference foot
mounted tracker. More detail about our foot mounted tracker
can be found in section V.

B. RoNIN: Robust Neural Inertial Navigation

RoNIN is a state-of-the-art pedestrian positioning algorithm
using smartphone IMU measurements. Both RoNIN dataset,
model implementation and trained model weights are publicly
available [35].

1) RoNIN dataset: contains 42.7 hours of IMU data col-
lected in 3 buildings, by 100 participants and 3 android
devices. Usual device carrying mode and human activities are
considered (smartphone in a bag, in pocket, handheld, walking,
sitting). A sample track contains synchronised accelerometer
and gyroscope readings, game rotation vector provided by
android API and ground truth user trajectories and orientations,
provided by visual-inertial SLAM using a tango phone, placed
on the participant’s chest. All measurements are synchronized
and sampled at 200Hz. A json file contains sensor biases, scale
factors and necessary information for the spatial alignment
procedure.

2) Data pre-processing: To use the RoNIN networks, ac-
celeration and angular rate sequences must first be expressed
in a navigation frame.

At the beginning of each recording, an "alignment" pro-
cedure is performed between the IMU device and the tango
phone, by attaching them together screen to screen during
a static period. The alignment procedure allows to estimate
the rotation quaternion from the device’s body frame to the
tango phone’s body frame at the beginning of the recording:
qimu_to_tango. This quaternion is available in the json files of
RoNIN dataset as part of the input. We also need the tango
phone’s orientation (w.r.t the navigation frame) at the begin-
ning of the sequence qinit_tango_ori. Using these 2 quaternions,
we can estimate the initial orientation of the IMU device w.r.t
the global frame qinit_imu_ori.

qinit_imu_ori = qimu_to_tango ⊗ qinit_tango_ori (6)

For the rest of the sequence, the device’s orientation will
be estimated from its game rotation vector (GRV) [36] qgrv.
The game rotation vector, provided by android API, estimated
only using accelerometer and gyroscope readings, indicates
the device’s orientation w.r.t some reference coordinate frame
whose z axis is aligned with the gravity, and whose horizontal
axes are not necessarily aligned with the axes of the navigation
frame. If this unknown reference frame is almost fixed (if we
ignore the drift), the angular offset between the navigation
frame and the game rotation vector’s reference frame, denoted
qinit_rotor, can be estimated at the beginning of the sequence:

qinit_rotor = qinit_imu_ori ⊗ q ∗grv (t = 0) (7)

Using this angular offset and the game rotation vector, we can
express the IMU device’s orientation quaternion in real time:

qimu_ori = qinit_rotor ⊗ qgrv (8)

We can now express acceleration and angular rate
measurements in the navigation frame, using the orientation
quaternion of the IMU device:

qnav_acc = qimu_ori ⊗ qacc ⊗ q∗imu_ori (9)

qnav_gyro = qimu_ori ⊗ qgyro ⊗ q∗imu_ori (10)

where qacc and qgyro are pure quaternions, their vector parts
are 3D acceleration or angular rate measurements.

3) Importance of the Game Rotation Vector: Neither pub-
lished paper nor implementation about the game rotation
vector was available. To understand it, we compare the attitude
(roll-pitch-yaw w.r.t the local North-East-Down) computed by
MAGYQ ( [37]), an EKF based algorithm, fusing acceleration,
angular rate and magnetometer readings, even under magnetic
disturbances, and the ones given by the game rotation vectors.
We run the following experiment: ULISS (see section V) and a
Xiaomi Mi8 phone are attached rigidly on a aluminium plate,
oriented in such way that their z axes are parallel (see Fig 2).
We consider 2 scenarios.

Fig. 2: experimental setup for studying the game rotation
vector

• Track 1: slow and steady rotations.
• Track 2: random rotations during walking.

In Fig 3a and Fig 3b respectively, the top figure shows
Euler angles of the smartphone computed from android game
rotation vector, and the middle figure shows Euler angles of
ULISS, computed by MAGYQ. We observe that the game
rotation vector’s roll angle and ULISS’s pitch angle seem to
have the same pattern, same observation for game rotation
vector’s pitch angle and ULISS roll angle. In the bottom figure,
we plot the 3 curves, representing the variations of angular
offsets between Euler angles given by the 2 algorithms. The
under-script "a" stands for android and "u" stands for ULISS.

∆roll = rollu−rollu(t = 0)−(pitcha−pitcha(t = 0)) (11)

∆pitch = pitchu − pitchu(t = 0)− (rolla − rolla(t = 0))
(12)

∆yaw = yawu−yawu(t = 0)+(yawa−yawa(t = 0)) (13)

The figures show that the game rotation vector is good at
estimating roll and pitch (related to the gravity), there is no
huge difference between game rotation vector and MAGYQ
result. The offset between game rotation yaw and ULISS yaw
is almost constant during several minutes of recordings.

We observe punctual peaks in the offset variation plot,
which are due to the singularity points in both game rotation
vector and ULISS attitude.
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(a) Track 1: Euler angles for slow and steady rotations

(b) Track 2: Euler angles during walking

Fig. 3: Comparison of attitude angles estimated by android
game rotation vector and MAGYQ for two scenarios

We can conclude that the offset between the game rotation
vector and the device’s orientation w.r.t to North-East-down
frame is approximately constant during several minutes.

4) Model: The authors compares 3 variants based on dif-
ferent deep learning models: ResNet [38], LSTM [18] and
Temporal Convolutional Network (TCN) [39] to estimate the
user’s position. We only assess RoNIN ResNet, since it yields
the best results in the article.

RoNIN ResNet regresses 2D velocity vectors (Vx, Vy).
The loss function aims at minimizing the error between the
regressed velocity and the difference of positions in the ground
truth over a window of 200 frames (1s). At test time, the
network makes prediction with a stride of 5 frames and
integrate the inferred velocities to estimate trajectories.

5) Adaptation for experimental assessment: We use the
article’s published model implementation and trained model
weights (RoNIN ResNet) for experimental assessment, but
we couldn’t follow the alignment procedure described in the
article, instead we rotate the predicted trajectories horizontally
to match the user’s true initial heading.

To make the algorithm more transparent, we estimate the
device’s orientation with MAGYQ instead of using the game
rotation vector, since the offset between them is approximately
constant during several minutes.

(a) (b)

Fig. 4: (a) ULISS sensor; (b) experimental setup: one ULISS
sensor is held in the user’s right hand and the other on the
user’s right foot

V. EXPERIMENTAL ASSESSMENT

A. Experimental setup

We use 2 ULISS sensors [40], one as a wearable device to
collect IMU and magnetometer readings, the other is attached
to the user’s foot to obtain stride instants, ground truth stride
length and trajectories. ULISS (Fig 4(a)) is a state-of-the-
art Inertial Navigation System containing an Xsens Mit-7
IMU-Mag sensor and a GNSS receiver, providing triaxial
accelerator, gyroscope and magnetometer readings at 200Hz,
GNSS signal at 5Hz, using GPS timestamps.

During each recording, the user holds the device horizon-
tally (in such way the z axis points to the sky, Fig 4(b)), and
walks naturally. This configuration is required by SELDA. In
contrast, RoNIN can operate under less constrained conditions.
All recordings started in an outdoor environment.

The test user is a 1.66m tall healthy man and 3 testing
tracks are recorded. Test 1 and 3 correspond to 251m and
288m respectively. The user walks in both outdoor and indoor
environment, including stairs. Test 2 is 230m long. The user
walks on an outdoor horizontal plan.

B. Performance evaluation

We chose 3 performance metrics to evaluate the horizontal
trajectories estimated by the selected methods: scale factor
(SF), Endpoint error rate (EPR) and Root Mean Square Error
(RMSE). The scale factor is the ratio of the total length of
estimated trajectory les to the total length of the ground truth
trajectory lgt. We expect the ratio to be close to 1.

SF =
les
lgt

(14)

The endpoint error is the difference between estimated position
( ˆxend, ˆyend) and the ground truth position (xend, yend) at the
end of the trajectory. The endpoint error rate is the ratio of
endpoint error to the ground truth trajectory’s total length.

endpoint_error =
√

[(xend − ˆxend)2 + (yend − ˆyend)2]
(15)

ERP =
endpoint_error

lgt
(16)
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Fig. 5: Estimated trajectories for SELDA (blue), RONIN
(orange) and the ground truth (green)

Fig. 6: Stride length predicted by SELDA (blue) and the
ground truth (orange)

RMSE mesures the standard deviation on horizontal positions.

RMSE =

√√√√ 1

n

n∑
i=1

[(xi − x̂i)2 + (yi − ŷi)2] (17)

where n is the sequence’s length, (xi, yi) is the user’s ground
truth position at time step i and (x̂i, ŷi) is the predicted one.
The experimental results are reported in table I. Estimated and
ground truth trajectories are shown in Figure 5.

SELDA RoNIN

SF
(unitless)

EPR
(%)

RMSE
(m)

SF
(unitless)

EPR
(%)

RMSE
(m)

test 1 1.08 4.85 7.12 0.97 0.25 5.30
test 2 0.92 0.40 2.63 0.82 14.4 12.96
test 3 1.10 6.03 11.66 0.86 6.64 18.09

average 1.03 3.76 7.14 0.88 7.10 12.12

TABLE I: Performance evaluation of SELDA based PDR and
RoNIN

C. Analysis

Scale factor (SF) is the most important among the 3 chosen
metrics, since SELDA only estimates stride length. SELDA
overestimates twice and underestimate once the walking dis-
tance, with an average scale factor of 1.03. RoNIN always
underestimates the walking distance, with an average scale
factor of 0.88. The standard deviations of their scale factors are
0.083 and 0.067 respectively, which means that RoNIN better

Fig. 7: Velocity predicted by RoNIN (blue) and the ground
truth velocity (orange)

tracks the variations of the user’s dynamics. On the other hand,
important drifts are observed in RoNIN trajectories for test 2
and 3. To better understand these observations, we plot the
stride lengths estimated by SELDA against the ground truth
in Fig 6, and the predicted velocity against the ground truth
in Fig 7. Fig. 6 shows that SELDA is not able to capture the
variations in the user’s stride length. Especially, when going up
and down stairs (smaller strides), its predictions are very close
to 1.32m with extremely few variations. Despite the almost
constant stride length estimation, the SELDA based PDR’s
walking distance error is within 10%, thanks to the fact that
human walking is regular and constrained.

The velocity norm plot in Fig. 7 shows that RoNIN better
tracks the user’s dynamical changes as compared to SELDA.
Special motions (start and stop, going up/down stairs) are
predicted in the velocities, though RoNIN tends to underesti-
mate. On the other hand, velocities predicted by RoNIN are
much noisier than the ground truth, especially in test 2 and 3,
which explains the important drift observed in the estimated
trajectories. As explained in the theoretical analysis, ignoring
gait events can result in noisy predictions.

Globally, the two methods show completely opposite be-
haviours: SELDA yields almost constant predictions corre-
sponding to the user’s "nominal" stride length, with very few
variation. In contrast, RoNIN captures well the variations of
the user’s dynamic but may be too sensitive to noises.

VI. CONCLUSION

This survey proposes two main categories to classify ex-
isting AI methods for pedestrian navigation using wearable
inertial sensors. (1) Human gait driven AI methods use gait
event segmented signal sequence to infer gait vectors and (2)
sampling frequency driven AI methods use fixed length signal
sequence to infer the user’s velocity or change in position.
Gait driven methods are based on physical modeling of human
walking and yield reasonable predictions thanks to the fact that
human locomotion is regular and constrained. However, it is a
simplification of the reality and can fail to capture the variation
of the user’s dynamics. Sampling frequency driven methods
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don’t need the complex gait analysis and are able to capture
the changes in the user’s dynamics, but ignoring the gait events
can result in noisy inferences. Experiments comparing two
methods, one in each category, confirm the theoretical analy-
ses and show their complementary behaviours. The methods
selected for category (1) and (2) achieve 7m and 12m average
positioning errors respectively, on 3 indoor/outdoor testing
tracks, totaling 770m and including stairs.

Both categories are facing challenges. Gait driven AI meth-
ods need to improve their robustness to deal with different
device poses and user motions. Sampling frequency driven
AI methods need to reduce noises in their predictions. Future
research could fuse the 2 approaches.
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