Self-regulated propagation of intense infrared pulses in elongated soft-x-ray plasma amplifiers
Résumé
Increasing the electron density of collisionally pumped plasma-based soft-x-ray lasers offers promising opportunities to deliver ultrashort pulses. However, strong nonlinear effects, such as overionization-induced refraction and self-focusing, hinder the propagation of the laser beam and thus the generation of elongated volume of lasing ions to be pumped. Using a particle-in-cell code and a ray-tracing model we demonstrate that optically preformed waveguides allow for addressing those issues through a self-regulation regime between self-focusing and overionization processes. As a result, guiding intense pulses over several millimeters leads to the implementation of saturated plasma amplifiers.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|